ebook img

Eigenvalue and Eigenvector Problems in Applied Mechanics PDF

262 Pages·2019·5.49 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Eigenvalue and Eigenvector Problems in Applied Mechanics

Advanced Structured Materials Sorin Vlase Marin Marin Andreas Öchsner Eigenvalue and Eigenvector Problems in Applied Mechanics Advanced Structured Materials Volume 96 Series editors Andreas Öchsner, Faculty of Mechanical Engineering, Esslingen University of Applied Sciences, Esslingen, Germany Lucas F. M. da Silva, Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal Holm Altenbach, Otto-von-Guericke University, Magdeburg, Sachsen-Anhalt, Germany Common engineering materials reach in many applications their limits and new developments are required to fulfil increasing demands on engineering materials. The performance ofmaterials can beincreasedby combiningdifferent materials to achieve better properties than a single constituent or by shaping the material or constituents in a specific structure. The interaction between material and structure mayariseondifferentlengthscales,suchasmicro-,meso-ormacroscale,andoffers possible applications in quite diverse fields. Thisbookseriesaddressesthefundamentalrelationshipbetweenmaterialsandtheir structure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc.) and applications. The topics of Advanced Structured Materials include but are not limited to (cid:129) classical fibre-reinforced composites (e.g. class, carbon or Aramid reinforced plastics) (cid:129) metal matrix composites (MMCs) (cid:129) micro porous composites (cid:129) micro channel materials (cid:129) multilayered materials (cid:129) cellular materials (e.g. metallic or polymer foams, sponges, hollow sphere structures) (cid:129) porous materials (cid:129) truss structures (cid:129) nanocomposite materials (cid:129) biomaterials (cid:129) nano porous metals (cid:129) concrete (cid:129) coated materials (cid:129) smart materials Advanced Structures Material is indexed in Google Scholar and Scopus. More information about this series at http://www.springer.com/series/8611 Sorin Vlase Marin Marin (cid:129) Ö Andreas chsner Eigenvalue and Eigenvector Problems in Applied Mechanics 123 Sorin Vlase Andreas Öchsner Department ofMechanical Engineering Fakultät Maschinenbau Transilvania University of Braşov Esslingen University of Applied Sciences Braşov,Romania Esslingen, Germany Marin Marin Department ofMathematics andComputer Science Transilvania University of Braşov Braşov,Romania ISSN 1869-8433 ISSN 1869-8441 (electronic) AdvancedStructured Materials ISBN978-3-030-00990-8 ISBN978-3-030-00991-5 (eBook) https://doi.org/10.1007/978-3-030-00991-5 LibraryofCongressControlNumber:2018957055 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface This volume presents, in a unitary way, some problems of applied mechanics, analyzed using the matrix theory and the properties of eigenvalues and eigenvec- tors.Problemsandsituationsofdifferentnaturearestudied.Differentproblemsand studies inmechanical engineeringleadtopatternsthataretreatedinasimilarway. Thesamemathematicalapparatusallowsthestudyofmathematicalstructuressuch as the quadratic forms but also mechanical problems such as multibody rigid mechanics, continuum mechanics, vibrations, elastic and dynamic stability or dynamic systems. A substantial number of engineering applications illustrate this volume. Braşov, Romania Sorin Vlase Braşov, Romania Marin Marin Esslingen, Germany Andreas Öchsner v Contents 1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Vectors. Fundamental Notions. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Vector Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Addition of Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Dot Product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2.3 Cross Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.2.4 Scalar Triple Product . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.2.5 Vector Triple Product. . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.2.6 Applications of Vector Calculus . . . . . . . . . . . . . . . . . . . 24 1.3 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.1 Fundamental Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2 Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.1 Addition ðþMm(cid:2)n (cid:2) Mm(cid:2)n !Mm(cid:2)nÞ. . . . . . . . . . . . 45 2.2.2 Scalar Multiplication ð(cid:3)R (cid:2) Mm(cid:2)n ! Mm(cid:2)nÞ. . . . . . . . 46 2.2.3 Matrix Multiplication ð(cid:3)Mm(cid:2)p (cid:2) Mp(cid:2)n ! Mm(cid:2)nÞ . . . . 47 2.2.4 Inverse Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.2.5 Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.2.6 Transposed of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.2.7 Trace of a Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.2.8 Matrix Representation of the Cross Product. . . . . . . . . . . 52 2.3 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.4 Ortogonal Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.5 Some Properties of Matrix Operations . . . . . . . . . . . . . . . . . . . . . 55 2.6 Block Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 vii viii Contents 2.7 Matrix Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.7.1 General Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.7.2 Diagonalization of Symmetric Matrices. . . . . . . . . . . . . . 59 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3 Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2 Extreme Values of a Real Function of Two Variables. . . . . . . . . . 63 3.3 Conics and Quadrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4 Quadratic Forms in a n-Dimensional Space . . . . . . . . . . . . . . . . . 65 3.5 Eigenvalues and Eigenvectors for Quadratic Forms. . . . . . . . . . . . 67 3.5.1 The Conditions for a Quadratic Form to Be Positive . . . . 67 3.5.2 Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.5.3 Fundamental Theorems of Quadratic Forms. . . . . . . . . . . 69 3.5.4 Schur’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.6 Orthogonal Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.7 Invariants of Quadratic Forms. . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.8 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4 Rigid Body Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.1 Finite Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.1.1 Defining the Position of a Rigid Body . . . . . . . . . . . . . . 87 4.1.2 Euler Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.1.3 Bryan (Cardan) Angles. . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.1.4 Finite Rotations and Commutativity . . . . . . . . . . . . . . . . 97 4.2 Moment of Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2.1 Fundamental Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2.2 Moment of Inertia; Definitions . . . . . . . . . . . . . . . . . . . . 105 4.2.3 Rotation of the Coordinates System . . . . . . . . . . . . . . . . 108 4.2.4 Moment of Inertia of a Body Around an Axis. . . . . . . . . 110 4.2.5 Directions of Extremum for the Moments of Inertia. . . . . 111 4.2.6 A Property of the Principal Direction of Inertia . . . . . . . . 113 4.2.7 Inertia Ellipsoid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.2.8 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.2.9 Geometrical Moments of Inertia . . . . . . . . . . . . . . . . . . . 136 4.2.10 Moment of Inertia of Planar Plates . . . . . . . . . . . . . . . . . 137 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5 Strain and Stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.1 Strain Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.1.1 Deformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.1.2 Lagrangian and Eulerian Description. . . . . . . . . . . . . . . . 142 5.1.3 Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Contents ix 5.1.4 Infinitesimal Deformation. . . . . . . . . . . . . . . . . . . . . . . . 149 5.1.5 Eigenvalues and Eigenvectors. . . . . . . . . . . . . . . . . . . . . 150 5.1.6 The Physical Significance of the Components of the Strain Tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 5.1.7 Transformation Induced by the Strain Tensor . . . . . . . . . 153 5.1.8 Local Rigid Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.2 Stress Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.2.1 Stress State in a Point . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.2.2 Transformation of the Stress Tensor to Axis Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 5.2.3 Normal Stress Corresponding to an Arbitrary Direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.2.4 Extremal Conditions for Normal Stress . . . . . . . . . . . . . . 158 5.2.5 Invariants of the Reduced Stress. . . . . . . . . . . . . . . . . . . 161 5.2.6 Conic of Normal Stress . . . . . . . . . . . . . . . . . . . . . . . . . 162 5.2.7 Quadric of Normal Stress. . . . . . . . . . . . . . . . . . . . . . . . 163 5.2.8 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 164 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 6 Modal Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6.2 Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6.2.1 Eigenvalues—Natural Frequencies . . . . . . . . . . . . . . . . . 168 6.2.2 Properties of the Eigenvalues . . . . . . . . . . . . . . . . . . . . . 170 6.2.3 Orthogonality Properties. . . . . . . . . . . . . . . . . . . . . . . . . 171 6.2.4 Rayleigh’s Quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 6.2.5 Generalized Orthogonality Relationships . . . . . . . . . . . . . 172 6.2.6 Definition of Relationships for the Damping Matrix. . . . . 174 6.2.7 Normalized Vibration Modes . . . . . . . . . . . . . . . . . . . . . 174 6.2.8 Decoupling the Motion Equations. . . . . . . . . . . . . . . . . . 175 6.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 6.4 Vibration of Continuous Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 6.4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 6.4.2 Transverse Vibration of a Bar. . . . . . . . . . . . . . . . . . . . . 221 6.4.3 Eigenvalues and Eigenmodes in Transverse Vibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 6.4.4 Axial Vibrations of Bars . . . . . . . . . . . . . . . . . . . . . . . . 226 6.4.5 Eigenvalues and Eigenfunction in Axial Vibration. . . . . . 227 6.4.6 Torsional Vibration of the Bar . . . . . . . . . . . . . . . . . . . . 231 6.4.7 Eigenvalues and Eigenfunctions in Torsional Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 x Contents 7 Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 7.2 Linear Systems with Two Degrees of Freedom . . . . . . . . . . . . . . 240 7.3 Free Vibration of a Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Description:
This book presents, in a uniform way, several problems in applied mechanics, which are analysed using the matrix theory and the properties of eigenvalues and eigenvectors. It reveals that various problems and studies in mechanical engineering produce certain patterns that can be treated in a similar
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.