ebook img

Efficient Structural Optimization of Aircraft Wings Aerospace Engineering PDF

116 Pages·2017·1.75 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Efficient Structural Optimization of Aircraft Wings Aerospace Engineering

Efficient Structural Optimization of Aircraft Wings Tiago Alexandre Reis Ramalho Moutinho Freire Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisor: Prof. André Calado Marta Examination Committee Chairperson: Prof. Filipe Szolnoky Ramos Pinto Cunha Supervisor: Prof. André Calado Marta Member of the Committee: Prof. Aurélio Lima Araújo February 2017 ii Acknowledgments Iwouldliketothankmysupervisor,ProfessorAndre´ CaladoMarta,forallhissupportandguidance throughout the development of this thesis. His vast knowledge in engineering and wise advice on how totackleproblemswereessentialtoproducethiswork. IwishtoexpressmygratitudetomyfriendsJoa˜oAlmeida,fortakingthetimetoexplainthestructure of the original framework he developed and for always being there to clarify my doubts, and to Duarte Ronda˜oforproofreadingthisdissertationandgivinginsightfuladvice. I would also like to thank the amazing people I met during my studies in Lisbon, Delft and Victoria, andtoexpressmygratitudeforhavingthemaroundingoodandbadmoments. Last but not least, I would like to thank my family, specially my mother, for always believing in my abilitiesandencouragingmetofollowmydreams. iii iv Resumo Actualmente,osme´todosdegradienteconstituemumadasferramentasmaisutilizadasnaoptimizac¸a˜o multidisciplinar de aeronaves. No entanto, estes me´todos necessitam de calcular a sensibilidade das func¸o˜es de interesse em relac¸a˜o a`s varia´veis de projecto, constituindo uma das etapas de maior exigeˆncia computacional no processo de optimizac¸a˜o, uma vez que estas sa˜o frequentemente obtidas por me´todos de aproximac¸a˜o altamente dependentes da dimensa˜o do problema. Assim, este trabalho tem como objectivo desenvolver uma ferramenta de optimizac¸a˜o eficiente, para uma fase preliminar do projecto de uma asa, com a utilizac¸a˜o da informac¸a˜o exacta do gradiente. Primeiramente, e´ real- izado um levantamento dos va´rios me´todos de ana´lise de sensibilidade existentes com exemplos de aplicac¸a˜oaoprojectodevigasmodeladascomelementosfinitos. Posteriormente,umaferramentapara arepresentac¸a˜oestruturaldeumaasatridimensionale´ adaptadaemtreˆsblocoscomodesenvolvimento dosrespectivosmo´dulosparaoca´lculodassensibilidades,utilizandoosme´todosdediferenciac¸a˜oau- toma´tica, derivac¸a˜o simbo´lica e adjunto. Um estudo parame´trico e´ apresentado com base numa asa de refereˆncia e as sensibilidades totais sa˜o calculadas com a ferramenta desenvolvida e verificadas com o me´todo das diferenc¸as finitas. Por fim, sa˜o apresentados exemplos de optimizac¸a˜o estrutu- ral partindo do caso de refereˆncia. O objectivo de minimizac¸a˜o da massa total da asa e´ alcanc¸ado, sendonota´veloaumentodaeficieˆncianoprocessodeoptimizac¸a˜ocomautilizac¸a˜odaferramentade- senvolvida, traduzido pela reduc¸a˜o dos tempos de computac¸a˜o para, aproximadamente, metade e um terc¸o, quando comparados com os me´todos das diferenc¸as finitas progressivas e centradas, respecti- vamente. Palavras-chave: optimizac¸a˜o estrutural, me´todos de gradiente, ana´lise de sensibilidade, me´todoadjunto,diferenciac¸a˜oautoma´tica,me´tododoselementosfinitos. v vi Abstract Nowadays,gradient-basedmethodsareoneofthemostwidelyusedtoolsinaircraftMultidisciplinary DesignOptimization. However,thesemethodsrequirethecomputationofthesensitivitiesoftheinterest functions with respect to the design variables, representing one of the most computationally expensive steps in the optimization process, since these are frequently obtained by approximation methods that are highly dependent on the number of design variables. Therefore, the main objective of this work is to develop an efficient optimization tool for wing preliminary design, using exact gradient information. Firstly, a survey on the existent sensitivity analysis methods is conducted, with the application to a beam design problem modeled with finite elements, providing valuable insight in the implementation process and advantages of each method. Subsequently, a tool to represent a 3D wing structure is adapted into three blocks and the correspondent modules for sensitivity computation are developed, with the application of the automatic differentiation, the symbolic derivative and the adjoint methods. A parametricstudyispresentedforareferencewingcaseandthetotalsensitivitiesarecomputedwiththe developedframeworkandverifiedwiththefinitedifferencemethod. Lastly,structuraloptimizationtests, usingthereferencecaseastheinitialdesignpoint,areperformed. Theobjectiveofminimizingthewing mass is achieved with a remarkable increase in computational efficiency in the optimization process, translatedinareductionofthecomputationaltimeto,roughly,halfandonethirdwhencomparedtothe forwarddifferenceandcentraldifferencemethods,respectively. Keywords: structuraloptimization,gradient-basedmethods,sensitivityanalysis,adjointmethod, automaticdifferentiation,finiteelementmethod. vii viii Contents Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 AeroelasticToolBackground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 ThesisOutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 OptimizationMethods 7 2.1 OptimizationBackground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 GradientBasedMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 UnconstrainedOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 ConstrainedOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Gradient-FreeMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 ChoiceoftheMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 SensitivityAnalysis 13 3.1 SymbolicDifferentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 FiniteDifferenceMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 ComplexStepMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.1 FiniteDifferenceandComplexMethodsComparison . . . . . . . . . . . . . . . . . 15 3.4 AlternativeAnalyticMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4.1 DirectSensitivityMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4.2 AdjointSensitivityMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5 AutomaticDifferentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.6 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.6.1 ModelDefinition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.6.2 SensitivityAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ix 4 StructuralFramework 33 4.1 EquivalentCross-sectionalProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1.1 Thin-WallAssumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1.2 ImplementationProcedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.1.3 ApplicationExample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 EquivalentBeamElementProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3 FiniteElementModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3.1 ConstitutiveEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3.2 3DFiniteElementModelDefinition . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3.3 StrongandWeakformulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3.4 DomainDiscretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3.5 ShapeFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.6 ElementStiffnessMatrixFormulation. . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3.7 ForceVectorDetermination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3.8 BondaryConditionsApplicationandGlobalSystemofEquationsSolution . . . . . 50 5 ParametricStudy 51 5.1 WingBaselineConfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2 FunctionsofInterest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3 InternalParametersInfluence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3.1 SparsLocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3.2 SparandSkinThickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.4 MaterialParametersInfluence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.5 SummaryofResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6 SensitivityAnalysisFramework 61 6.1 AutomaticDifferentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.2 SymbolicDifferentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.3 AdjointSensitivityModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3.1 VerticalTipDisplacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.3.2 TipRotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.4 TotalSensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7 WingStructuralOptimization 75 7.1 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.2 BoundConstrainedOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.3 FullyConstrainedOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 8 Conclusions 83 8.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 8.2 FutureWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 x

Description:
Thesis to obtain the Master of Science Degree in .. NLP. Nonlinear Programming is the process of ob- taining the solution of an optimization problem the aviation market, new aircraft need to be introduced, keeping in mind the ing a constraint lumping strategy, named the Kreisselmeier–Steinhause
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.