©EntomologicaFennica.17June2005 Effects of canopy coverage on the immature stages of the Clouded Apollo butterfly [Parnassius mnemosyne (L.)] with observations on larval behaviour PanuVälimäki&JuhaniItämies Välimäki, P. & Itämies, J. 2005: Effects of canopy coverage on the immature stagesoftheCloudedApollobutterfly[Parnassiusmnemosyne(L.)]withobser- vationsonlarvalbehaviour.—Entomol.Fennica16:117–123. The immature stages of the Clouded Apollo (Parnassius mnemosyne) are as- sumed to be thermophilic due to the possible time limitations and variable weatherconditionsduringtheirdevelopment.Thus,thedegreeofcanopycover- agemayaffecthabitatusebythespecies.Weexploredthespatialdistributionof larvaeandthedevelopmenttimeofpupaeundervariablecanopycoveragecondi- tions. Larvae were most abundant in the areas exposed to direct sunlight, al- thoughthelastinstarlarvaearemobile.Larvaealsobaskedunderlitterbetween theirforagingperiods,probablytoenhancedigestionandthefoodintakerate. Moreover,pupaldevelopmentwasretardedbyincreasingcanopycoverage.Pro- longedpupaldevelopmentandlarvalavoidanceofCorydalisgrowthsundertree canopiesindicatethatthespeciessuffersfromovergrowingandconsequentlyin- creasingcanopycoverage. P.Välimäki&J.Itämies,UniversityofOulu,DepartmentofZoology,P.O.Box 3000, FI-90014 University of Oulu, Finland; E-mail: [email protected], [email protected] Received28May2003,accepted13February2004 1.Introduction natureconservationactin1976[Maa-jametsä- talousministeriö (1976), see also Mikkola & The Clouded Apollo butterfly [Parnassius Häkkinen(1977)].However,effectiveconserva- mnemosyne(L.)]isconsideredathreatenedspe- tionisnotpossibleifthebiologyofthespeciesis ciesinnorthernandcentralEurope(Heath1981, notadequatelyknown. Aagaard et al. 1997, Konvicka & Kuras 1999, Adults prefer to breed and forage on open Rassietal.2001).Itsdistributionhasdeclinedre- meadows with abundant larval food plant and markablyinFinlandsincetheearly20thcentury nectar sources (Luoto et al. 2001). Larvae are (Mikkola 1979, Väisänen & Somerma 1985). mostlyfoundatthesunnymarginsofhumidde- Thistrendhasbeenrelatedtochangesinagricul- ciduousforests(Megléczetal.1999).Although tural practices and, consequently, to decreasing thelarvalfoodplantsvaryspatially,theClouded areaanddeterioratingqualityofformerlyhabit- Apolloislocally monophagous.InFinland,lar- ablemeadows(Väisänen&Somerma1985).The vae feed only on Corydalis solida (Somerma CloudedApollowasprotectedinFinlandbythe 1997), butinNorway andHungary, larvaefeed 118 Välimäki&Itämies (cid:127) ENTOMOL.FENNICAVol.16 on Corydalis intermedia (Aagaard & Hanssen andtobefoundonlyontheopenandsunnyparts 1989)andCorydaliscava(Megléczetal.1999), ofCorydalisgrowths.Ifdecreasingtemperature respectively. delays pupal development as well, increasing Corydalissolidagrowsinatleasttwodiffer- canopycoveragemaydecreasetheeffectivepo- enthabitatsinSWFinland.Itisabundantinde- pulationsize.Thus,theCloudedApollomaysuf- ciduousforestsdominatedbyAlnusspp.,Prunus ferfromovergrowing. padusorBetulaspp.alongtheseashore.Onthe other hand, it also grows on open or semi-open 2.Materialandmethods mesic meadows, pastures and abandoned fields (Välimäkietal. 2000, Luoto etal. 2001). Alo- callymonophagousspecies,theCloudedApollo 2.1.Studyarea isobligatorilydependentonC.solidathatflow- ersveryearlyinthespring.Larvaemustdevelop ThestudyareaislocatedinSWFinland(61°13’ fastbecausetheirhostisavailableforonlyafew N,21°31’E).ThelandscapeistypicalofFinnish weeksbeforesenescence.However,theweather agriculturalareas–mostlydenseNorwayspruce isusuallyquiteunpredictableandcoldinFinland (Piceaabies)forestorverydryScotspine(Pinus atthetimeofthelarvaldevelopment,whichre- sylvestris) heath forest fragmented by small tardslarvalgrowth. meadows and cultivated fields. In spring 1999, Inaddition,Corydalisspeciescontainawide wesurveyedthewholestudyarea(2.7km2)inde- rangeofsecondarymetabolites,suchasalkaloids tail to map the distribution and location of C. (Naruto & Kaneko 1972, Naruto et al. 1972, solidagrowths(Välimäkietal.2000). Siegler1998).Theseplantcompoundsmayactas a defence mechanism against herbivores (Fraenkel 1959), and they may result in a plant 2.2.Distributionoflarvae becominginadequateasfood(Scoble1995).The effectsofsecondarymetabolitesonspecialisther- Theeffectofcanopycoverageonthespatialdis- bivores are, nevertheless, not necessarily detri- tribution of larvae was studied in 2000 (18–19 mental(Maceletal.2002).Thisindicatesthatthe May)inalarge(ca.6,700m2)continuousCory- evolutionofdefensivecompoundsmayratherbe dalisgrowthwithcanopycoveragebytreesand drivenbygeneralistherbivores,whichalsosuffer bushes [mostly birches (Betula spp.) and hag- most, as suggested by Hägele & Rowell-Rahier berry(Prunuspadus)]varyingfrom0%to100%. (2000). Although Corydalis is available for lar- Atfirst,wedividedthestudypatchinto10mx10 vaeonlyephemerally,itmaybeaveryprofitable m squares that were classified according to the host, because the detrimental secondary sub- canopycoveronascaleof1–3[1=<10%(open), stances may create an almost competition-free 2 = 20–59% (semi-open), 3 = >60% (over- spaceforaspeciesadaptedtothechemicalcom- grown)].Birchleaveshadreachedapproximately positionoftheplant. three-fourth of their final size, and hagberry Theaimofthispaper istwofold. (a) Firstly, leaveswerealmostfullygrownatthattime.Most we study the effects of canopy coverage on the oftheCloudedApollolarvaecollectedforrearing spatialdistributionoflarvaeandpupaldevelop- wereintheirfinalinstarandpupatedwithinthe ment. (b) Secondly, we present observations on nextweek. larvalbehaviourinthenaturalenvironment.Lar- Toexplorethedistributionoflarvae,wecal- val development is not only affected by food culatedtherelativenumberofeatenshootsfrom quality,butalsobytemperatureandtheinterac- 16 randomly-chosen squares in each coverage tionsofthesetwofactors(Stamp&Yang1996). class.Bitingmarkswererecordedas1(detectable Thus, overgrowing by trees and bushes and the bites)or0(nodetectablebites).Markswerere- consequentlydecreasingdaytimetemperaturein cordedfromthe20shootsgrowingclosesttothe thegroundlayerusuallyretardlarvalgrowth.If centrepointofeachsquare.Weassumedthatthe thetimeavailableforlarvaldevelopmentisacru- relative number of eaten shoots would indicate cialfactor,larvaeareexpectedtobethermophilic the relative abundance of larvae in each square ENTOMOL.FENNICAVol.16 (cid:127) DistributionandbehaviourofP.mnemosynelarvae 119 with reasonable accuracy. Biting marks were 2.4.Larvalbehaviour countedduringtwosuccessivedaystoensurethat the ratio of eaten to intact shoots would not Observations on larval behaviour were made in changeasthecountingproceeded. 2000 and 2002 in the natural environment. In ThelarvalbitingmarksoftheCloudedApollo 2000, we made only subjective notes while are species-specific and therefore easily distin- searchingforlarvaefortherearingexperiment(n guishablefromothercausesofdefoliation,such =13).Themainaimwastoexploretheparasitoid asdeerbites.Toexcludethepossibilityofother pressuretowardstheCloudedApolloinourstudy insectherbivores,weexaminedcarefullythevi- area.Onthe14thofMay2002,westudiedlarval cinityofhundredsofeatenCorydalisshoots,but behaviour in a more detailed way by observing didnotfindanylarvaeofotherinsectspecies.The thefeedingbehaviourofthelastinstarlarvae(n= onlyotherlepidopteranspeciesfoundfeedingon 10)onawarmandsunny day.Werecordedthe C. solida was a polyphagous tortricoid moth, timespentbylarvaeinforaging,afterwhichwe Cnephasiaasseclana(D.&S.).Thelarvaeofthis continuedtofollowlarvalbehaviourforanother moth,unlikethoseoftheCloudedApollo,always 30minutes.Toexplainlarvalbehaviour,wemea- spinafewleafletstogether.Althoughwecannot suredthetemperaturebothaboveandunderthe be absolutely sure that all of the counted biting surface ofthe litter layer where the larvae were markshadbeencausedbylarvaeoftheClouded hiding.Theaccuracy ofthesetemperaturemea- Apollo,itseemsunlikelythatanyotherherbivore surementswas0.1degreesofcentigrade. couldhavebeenresponsibleforthedefoliationof C.solidainourstudyarea. Temperaturemeasurementsinthethreecan- 2.5.Dataanalysis opy-coverageclasseswerecarriedoutonthe14th ofMayin2002.Temperatureinthegroundlayer Variation in therelativenumber ofeaten shoots wasmeasuredat12randomlychosensites(4in among canopy coverage classes was compared eachclass).Measurementswererepeatedatinter- with non-parametric Kruskal-Wallis one-way valsof15minutesfrom10:00AMto12:10PM. ANOVA and non-parametric Tukey’s post hoc Corresponding ambient temperatures were re- test.Theeffectofcanopycoverageonpupalde- cordedattheheightof1.5maboveeachmeasure- velopmenttimewasexploredwithparametrict- mentsite. test. Temperature comparisons among canopy coverage classes were made with ANOVA and LSDposthoctest.Thedifferencesintemperature 2.3.Developmenttime onandunderthesurfaceofthelitterlayerwere tested with paired samples t-test. All statistical Theeffectofcanopyshadingonpupaldevelop- analyses, excluding Tukey’s post hoc test, were menttimewasstudiedin2002byrearingindivid- conductedwiththeSPSSforWindows10.0sta- uals under different kinds of canopy coverage. tisticalsoftware. Larvae(n=17)werecollectedonthe14thofMay 2002fromthestudyareaandrearedintopupaeon 3.Results freshC.solida.Afterpupation,theoffspringwere randomly divided into two treatments. Group 1 wasplacedonanopenfieldexposedtodirectsun- 3.1.Distributionoflarvae shine.Group2wasplacedundertreeswith50% canopy coverage to simulate an overgrown The relative number of eaten shoots varied meadow. During the study, temperature in the amongcanopycoverageclasses(¤2=9.594,df= ground layer was recorded continuously with 2,p=0.008)(Fig1).Inthesquaresclassifiedas thermometers.Fromthermometerdata,wecalcu- open,11%oftheshootsweredefoliatedtosome latedthecumulativeheatsummationrequiredfor extent by larvae, while only 7% and 3% of the thedevelopmentofpupaeintoadults.Theresults shoots in thesemi-open and overgrown squares arereportedasmeans±1S.E. wereeaten,respectively.Thisvariationwasnon- 120 Välimäki&Itämies (cid:127) ENTOMOL.FENNICAVol.16 Fig.2.Averagetemperature(°C)inthegroundlayer atopen,semi-openandovergrownsites,andcorre- spondingambienttemperature1.5mabovethe groundbeforenoonon14thofMay2002. significant between the open and semi-open squares(q=2.189,p>0.05),butsignificantbe- tween the open and overgrown squares (q = 4.214,p<0.05). Averagetemperatureinthegroundlayervar- ied among the canopy coverage classes (F = 3,12 65.699, p <0.001) and was evidently higher at openthansemi-openandovergrownsites(LSD posthoctest:p<0.001)(Fig.2).Althoughtheav- erage temperature in the ground layer in semi- opensiteswasconsistentlyhigherthantheambi- ent temperature, the difference was non-signifi- cant(LSDposthoctest:p=0.06). 3.2.Developmenttimeofpupae Theaveragerequiredheatsummationfrompupa- tion to the emergence of adults was 300° C (±85.6)intreatment2(shade)and286°C(±42.0) intreatment1(sunshine).Therewasnovariation inthisrespectbetweenthetreatments(t=0.394, df = 11, p = 0.701). However, it took longer to reach the required heat summation under trees thanonopenfield(Fig3).Consequently,thepu- palstagewassignificantlylongerinshadethanin sunshine(t=3.784,df=11,p=0.003)(Fig.4). Fig.1.Distributionoftherelativenumbersofeaten Butterflieshatchedafteranaverageof16.5(±2.6) Corydalissolidashootsundervariablecanopycover- and26.8(±7.2)daysafterpupationonopenfield age. exposed to direct sunshine and under trees, re- spectively.Inaddition,pupalsurvivalseemedto belessgoodintheshadycomparedtothesunny environment(62%vs.100%). ENTOMOL.FENNICAVol.16 (cid:127) DistributionandbehaviourofP.mnemosynelarvae 121 Fig.3.Cumulativeheatsummationatasiteexposed todirectsunshine(treatment1)andasitewith50% canopycoverage(treatment2)16.V.–27.VI.2002. Fig.4.Averagepupaldevelopmenttimeofthe CloudedApollo(Parnassiusmnemosyne)atasiteex- 3.3.Larvalbehaviour posedtodirectsunshine(treatment1)andasitewith 50%canopycoverage(treatment2).Asterisksshow Larvaestartedtheirfeedingperiodatabout11:00 statisticalsignificancebetweentreatments(***=p AM,whenambienttemperatureat1.5mheight <0.01). was18°C.Atthesametime,theaveragetemper- atureinthegroundlayeratopensiteswas26°C. 4.Discussion Larvae in that particular patch started feeding quitesimultaneuosly,indicatingthattheremight be a threshold temperature that needs to be ex- Canopycoverageaffectssignificantlythespatial ceededforefficientforaging.Larvaeforagedfor distribution of Clouded Apollo larvae within a anaverageof10minutes(9.7±2.07),afterwhich continuous Corydalis growth, with most larvae theydroppedtotheground.Whendonewiththeir inhabitingtheopenpartsofthemeadow,where feeding, they crawled rapidly 10–30 cm away the average temperature in the ground layer is fromtheeatenshoot.Theyusuallybaskedindi- higherthanintheshadyparts.Thelarvaldistribu- rectsunshineforafewminutesandthenhidun- tionandbehaviouraswellastheretardedpupal der detritus (usually old brownish leaves of de- developmentduetoincreasingshadingbyleaves ciduoustrees)justbeneaththesurfaceofthelitter, indicatethatthespeciesisthermophilicandthere- wheremoultingandpupationalsotakeplace.The foresuffersfromovergrowingofitshabitats.Asa temperatureofthehidingplaceswasconsistently consequence,Corydalisshootsgrowingindense higher (10% on average) than the ambient tem- deciduous forest are not of great value for the peraturejustabovethelitterlayer(t=–4.164,df= CloudedApollo. 10,p=0.002).Larvaealwayshidformorethan The distribution of biting marks suggested 30 minutes between successive foraging ses- thatlarvaearemostabundantinareasexposedto sions.Thenextforaginghardlyevertakesplace directsunlight.Therewerepracticallynosignsof on the same plant as the previous session, but larvaein themostovergrown parts ofthestudy ratheronarandomlychosenshootnearthehiding patch, although some mated females were ob- place.Feedingwentonuntilthelateafternoonin servedtherein1999and2000.Thepatternmay sunny weather. Early in the morning and in arise fromoffspring preference or performance, cloudyweather,larvaewerefoundtoremainhid- but also from the oviposition behaviour of fe- ingamonglitter. males.Femalesmaydeterminethehostusebythe Larvaefedonleaves,flowersandfreshcores speciesiflarvaearerelativelyimmobileandcon- ofC.solida,butseemedtoavoidseeds.Usually, sequently restricted to the resources and place the whole leaflet and the attached petiole were chosen by the ovipositing female (Singer et al. eaten, which made the biting marks less detect- 1991,Janz&Nylin1997).Nevertheless,thelast able. instar larvae of the Clouded Apollo moved re- 122 Välimäki&Itämies (cid:127) ENTOMOL.FENNICAVol.16 peatedlyamongC.solidashoots,suggestingthat egy that maximizes the food intake rate. In that larvae may be capable of moving, even quite sense, the short foraging sessions and the rela- freely, within their habitat. However, the food tively long hiding phases seem quite peculiar. plantsgrowingundertreesandbusheswerestill Several reasons may explain this larval behav- mostly intact. This indicates that larvae may iour.Larvaemayhideinordertoavoid(a)preda- avoidshadyCorydalisgrowths.Eveniffemales torsand(b)parasitoidattacks,or(c)theymayac- did not lay any eggs on Corydalis growths in celeratetheirdigestionandincreasetheirfoodin- overgrown areas, mobile larvae could be ex- takeefficiencybybaskingunderlitter. pectedtocolonizethisresourcebeforeleafburst, Inthefirsttwocases,thereareapparentcosts whenovergrownareasarepracticallyassunnyas intermsofincreasedmortalityrelatedtofeeding openones.However,theearlylarvalinstarsmay visible to enemies. However, many papilionid notbeequally mobilethanthelasttwo.Habitat larvae, including the Clouded Apollo, are dis- useby CloudedApollolarvaemay thereforebe tasteful and aposematically patterned (Scoble initially determined by the ovipositing female, 1995).Aposematismusually reducestheriskof butbecauseoftheincreasinglarvalmobility,the predationorthedetrimentaleffectsofpredatorat- observeddistributionmaylateractuallyrepresent tacksonlarvalsurvivalsignificantly(Wiklund& larvalhabitatpreferenceaswell. Sillén-Tullberg 1985, Roper & Redston 1987, Whatever the reason for this larval distribu- Tullrot & Sundberg 1991). The secretory prod- tion,itisevidentthatopenareasareessentialfor ucts of the specialized defensive organs of thespecies.Duetotheincreasingcanopycover- papilionid butterflies, the osmeteria, may affect age, cumulative heat summation accumulates not only predators, but also parasitoids (Scoble moreslowlyinovergrownthaninopenhabitats, 1995). In accordance, out of 30 reared larvae, which explains the observed variation in pupal nonewereparasitized,indicatinglowparasitoid development times between the two treatments. pressuretowardstheCloudedApollobutterflyin Ourresultssuggestthata50%increaseincanopy our study area. Thus, predation pressure and coveragedoesnotonlyincreasethepupaldevel- parasitoidattackshaveprobablyonlyaminoref- opmenttime1.5-fold,butmayalsodecreasesur- fectonlarvalbehaviour. vivalbyover30%.Theprolongedpupaldevelop- Theextenttowhichlarvalbehaviourwasaf- mentpersemightnotbeanoverwhelmingpro- fectedbyavoidanceofnaturalenemiesneverthe- blemforthespeciesbecausethelarvalhostplant lessremainswithoutfinalelucidation.Generally, has already wilted before females begin to lay however,thefoodintakerateandthegrowthrate eggs. However, the variable pupal development of the immature stages of ectothermic animals timeduetounequally increasingcanopy cover- usually increase along with rising temperature age decreases effective population size by de- (Heinrich1973).Becausetemperaturewascon- creasingthenumberofcontemporarilyflyingin- sistentlyhigherjustbeneaththanabovethesur- dividuals,whichmay alsoaffectpopulationdy- faceofthelitterlayer,theneedforincreasedfood namicsbydecreasingthematingsuccessofindi- digestion seems the most plausible explanation viduals[seeKuussaarietal.(1998)fortheeffects forthelarvalbehaviourobservedhere.Thedif- ofdensity-dependentmatingsuccessonpopula- ference in temperature may be even more pro- tionsurvival].Moreover,duetothelarvalavoid- nounced,especiallyincoastalareas,wherewind anceofshadyhabitats,anincreasingproportion coolsambienttemperatureeffectively inspring. offoodresourcesbecomesuselessduringlatelar- Inadditiontothepossibilityofmoreeffectivedi- val development, when the food intake rate is gestion, larvaemay alsobenefitfromareduced usually highest. Therefore, overgrowing might riskofdesiccationbyhidingamongthelitterwith alsoincreaselarvalmortality,atleastifCorydalis highrelativehumidity.Thus,behaviourthatmay isscarce. atfirstsightseemmaladaptivecouldactuallyturn Theearlysenescenceofthehostisprobably outtomanifestadaptationtotheshortseasonof the most evident problem faced by larvae. Fast thehostandtheunstablethermalconditionsdur- developmentrequiresaneffectiveforagingstrat- inglarvaldevelopment. ENTOMOL.FENNICAVol.16 (cid:127) DistributionandbehaviourofP.mnemosynelarvae 123 Acknowledgements.WethankOlaviHelminenforhelpin Meijden,E.2002:Diversityofpyrrolizidinealkaloids thefieldandMarkoMutanenforvaluablecommentson inSeneciospeciesdoesnotaffectthespecialistherbi- themanuscript.ThetownofRauma,TeollisuudenVoima voreTyriajacobaeae.—Oecologia133:541–550. OYandSouthwestFinlandRegionalEnvironmentCentre Meglécz,E.,Néve,G.,Pecsenye,K.&Varga,Z.1999:Ge- financiallysupportedthisstudy.Thepermissiontocollect netic variations in space and in time in Parnassius and rear larvae was granted by Southwest Finland Re- mnemosyne(L.)(Lepidoptera)populationsinnorth- gionalEnvironmentCentre[permissionno.0299LO386- eastHungary:implicationsforconservation.—Bio- 254,0200LO221-254(ProjectB2017)]. logicalConservation89:251–259. Mikkola, K. 1979: Vanishing and declining species of FinnishLepidoptera.—NotulaeEntomologicae59: References 1–9. Mikkola,K.&HäkkinenS.-L.1977:Minneovatapollo- perhosethävinneet?—SuomenLuonto36:35–38.[In Aagaard,K.&Hanssen,O.1989:Populationstudiesof Finnish.] Parnassiusmnemosyne(Lepidoptera)inSunndalen, Maa- ja metsätalousministeriö [Ministry of Agriculture Norway.—In:Paulicek-vanBeek,T.,Ovaa,A.H., andForestry]1976:Asetus(N:o440)eräidenharvi- vanderMade,J.(eds.),FutureofbutterfliesinEurope: naisteneläintenrauhoittamisesta.—Baptria1:43.[In strategiesforsurvival:160–166.AgriculturalUniver- Finnish.] sity,Wageningen. Naruto,S.&Kaneko,H.1972:ConstituentsofCorydalis Aagaard, K., Hindar, K., Hanssen, 0., Balstad, T. & stewartii.—Phytochemistry11:2644. Fjellstad,W.1997:Populationstructureandgenetic Naruto,S.,Namba,K.&Kaneko,H.1972:Alkaloidsfrom diversity of Norwegian populations of Parnassius several tuberous Corydalis species. — Phyto- mnemosyneandParnassiusapollo(Lepidoptera).— chemistry11:2642–2643. NINAOppdragsmelding462:1–20. Rassi,P.,Alanen,A.,Kanerva,T.&Mannerkoski,I.(eds.) Fraenkel,G.S.1959:Theraisond’êtreofsecondaryplant 2001: Suomen lajien uhanalaisuus 2000. — Ympä- substances.—Science129:1466–1470. ristöministeriö&Suomenympäristökeskus,Helsinki Heath, J. 1981: Threatened Rhopalocera (butterflies) in [InFinnishwithEnglishsummary]. Europe.—CouncilofEurope,EnvironmentalSeries Roper,T.J.&Redston,S.1987:Conspicuousnessofdis- 23:1–157. tastefulpreyaffectsthestrengthanddurabilityofone- Heinrich, B. 1973: Mechanisms of insects thermo- trial avoidance learning. — Animal Behaviour 35: regulation.—In:Weiser,W.(ed.),EffectsofTempera- 739–747. ture on Ectothermic Organism; Ecological Implica- Scoble.M.J.1995:TheLepidoptera:form,function,and tions and Mechanisms of Compensation: 139–150. diversity.—OxfordUniversityPress,Oxford.404pp. Springer-Verlag,Berlin. Siegler, D. S. 1998: Plant Secondary Metabolism. — Hägele,B.F.&Rowell-Rahier,M.2000:Choice,perfor- KluwerAcademicPublishers,London.759pp. mance and heritability of performance of specialist Singer,M.C.,Ng,D.&Moore,A.1991:Geneticvariation andgeneralistinsectherbivorestowardscacaloland in oviposition preference between butterfly popula- seneciphylline, two allelochemicals of Adenostyles tions.—JournalofInsectBehaviour4:531–535. alpina(Asteraceae).—JournalofEvolutionaryBio- Somerma,P.1997:ThreatenedLepidopterainFinland.— logy13:131–142. EnvironmentalGuide22:1–336. Janz,N.&Nylin,S.1997:Theroleoffemalesearchbe- Stamp,N.E.&Yang,Y.1996:Responseofinsectherbi- haviourindetermininghostplantrangeinplantfeed- vorestomultipleallelochemicalsunderdifferentther- inginsects:atestoftheinformationprocessinghy- malregimes.—Ecology77:1088–1102. pothesis.—ProceedingsoftheRoyalSocietyofLon- Tullrot,A.&Sundberg,P.1991:Theconspicuousnudi- donB264:701–707. branch Polycera quadrilineata: a aposematic color- Konvicka,M.&Kuras,T.1999:Populationstructure,be- ationandindividualselection.—AnimalBehaviour haviourandselectionofovipositionsitesofanendan- 4:175–176. geredbutterfly,Parnassiusmnemosyne,inLitovelske Väisänen, R. & Somerma, P. 1985: The status of Par- Pomoravi,CzechRepublic.—JournalofInsectCon- nassius mnemosyne (Lepidoptera, Papilionidae) in servation3:211–223. Finland.—NotulaeEntomologicae65:109–118. Kuussaari,M.,Saccheri,I.,Camara,M.&Hanski,I.1998: Välimäki,P.,Itämies,J.&Helminen,O.2000:[Theoccur- AlleeeffectandpopulationdynamicsintheGlanville renceoftheCloudedapollo(Parnassiusmnemosyne) fritillarybutterfly.—Oikos82:384–392. aroundRauma,SWFinlandin1999.]—Babtria25: Luoto,M.,Kuussaari,M.,Rita,H.,Salminen,J.&von 61–69.[InFinnishwithEnglishabstract]. Bonsdorff,T.2001:Determinantsofdistributionand Wiklund,C.&Sillén-Tullberg,B.1985:Whydistasteful abundance in the Clouded apollo butterfly: a land- butterflies have aposematic larvae and adults, but scape ecological approach. — Ecography 24: 601– crypticpupae:evidencefrompredationexperiments 617. onthemonarchandtheEuropeanswallowtail.—Evo- Macel,M.,Klinkhamer,P.G.L.,Vrieling,K.&vander lution39:1155–1158.