Effect of different loading conditions on the accumulation of residual strain in a creep resistant 1%CrMoV steel A neutron and X-ray diffraction study THÈSE NO 5722 (2013) PRÉSENTÉE LE 2 MAI 2013 À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR LABORATOIRE DE MÉTALLURGIE MÉCANIQUE PROGRAMME DOCTORAL EN SCIENCE ET GÉNIE DES MATÉRIAUX ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Michael Andreas WEISSER acceptée sur proposition du jury: Dr S. Mischler, président du jury Prof. H. Van Swygenhoven, Dr S. Holdsworth, directeurs de thèse Prof. A. Jacques, rapporteur Prof. A. Mortensen, rapporteur Prof. M. Seefeldt, rapporteur Suisse 2013 Abstract Plastic deformation of multi-phase materials can generate significant amount of stresses between the microstructural constituents due to their different mechanical properties. In ferritic carbon steels, the main microstructural constituents are the polycrystalline ferritic matrix and the cementite particles. Several X-ray and neutron diffraction studies report on the interplay between the cementite and the ferrite. These studies, however, have been limited to ambient temperatures, where cementite is known to be a hard and brittle phase. Under that condition, large stresses between these two phases are created due to the load-redistribution from the plastifying ferrite to the cementite. The strengthening mechanisms at both ambient and elevated temperatures in creep resistant bainitic 1% CrMoV steels are governed by the interplay between the ductile ferrite matrix and the carbides, among which vanadium carbide and cementite are the main constituents. In this dissertation, the residual stress (actually strain) accumulated during RT tensile deformation is studied and compared to the residual strain accumulated during high temperature (565°C) tensile and creep deformation. A temperature of 565°C was chosen because it is the maximum operating temperature for this material when used as a rotor steel in steam turbines. The complementary use of Time-of-flight (ToF) neutron and synchrotron X-ray diffraction accounts for the inhomogeneous microstructure and the low volume fraction of the second phase particles (3%), respectively. ToF neutron diffraction on pre-deformed samples shows that the accumulation of residual strains strongly depends on the deformation condition: Large interphase strains are created during RT tensile deformation whereas very little strains are created after creep deformation. On the other hand, large intergranular strains are introduced for every deformation sequence but the load- redistribution between the ferrite grain families appears to be different at ambient and elevated temperatures. In situ neutron and X-ray diffraction elucidates that the cementite contributes to the build-up of interphase strain during during deformation at both RT and HT, but only until creep mechanisms become dominating. The intergranular load-redistribution is discussed in terms of the elastic anisotropy of the ferrite grain families, which appears to be more pronounced at elevated temperatures. The small volume fraction of cementite in the 1%CrMoV is responsible for a significant accumulation of residual interphase strain, comparable to the amount in some high-carbon steels. It appears that the microstructure and the morphology of the cementite particles can significantly influence the amount of residual strain. In addition, the cementite characteristics during tensile deformation in the 1%CrMoV have been studied and compared to that of a pearlitic and a spheroidized microstructure with spherical cementite particles. Cementite shows an elastic anisotropy and an extensive diffraction peak broadening during plastic deformation. This broadening is discussed in terms of the range of local stress states, the individual particles experience. Keywords: X-ray and neutron diffraction; Residual intergranular and interphase strain; Ferritic steels; Cementite; Elastic anisotropy; High temperature deformation. Zusammenfassung Plastische Verformung eines Mehrphasenstahls kann zu erheblichen Spannungen zwischen den einzelnen mikrostrukturellen Bestandteilen führen, da diese unterschiedlich mechanische Eigenschaften aufweisen. In ferritischen Kohlenstoffstählen sind die Hauptbestandteile die ferritische Matrix und Zementitpartikel. Einige Studien mittels Röntgen- und Neutronenbeugung berichten über die gegenseitige Einflussnahme zwischen dem Zementit und der ferritischen Matrix. Diese Studien wurden jedoch nur bei Raumtemperatur durchgeführt, wo der Zementit als harte und spröde Phase bekannt ist. Unter diesen Bedingungen können aufgrund der Lastumverteilung von dem plastisch verformenden Ferrit hin zum Zementit grosse Spannungen zwischen den Phase auftreten. Die Festigkeitsmechanismen bei Raum- und erhöhter Temperatur in einem kriechresistentem 1%CrMoV Stahl sind dominiert durch das Zusammenspiel zwischen der duktilen ferritischen Matrix und den Karbiden, welche hauptsächlich aus Vanadiumkarbid und Zementit bestehen. In dieser Dissertation werden die Eigenspannungen (eigentlich Eigendehungen) untersucht, die entstehen, wenn der Stahl verformt wird. Dabei werden drei verschiedene Verformungsbedingungen untersucht: Zugversuch bei Raumtemperatur und bei 565°C und Kriechverformung bei 565°C. Die gewählte Temperatur von 565°C entspricht der maximalen Betriebstemperatur dieses Materials, welches als Rotorenstahl in Dampfturbinen verwendet wird. Ein komplementärer Ansatz von Neutronen- und Röntgenbeugung trägt der inhomogenen Mikrostruktur und dem niedrigen Volumenanteil an Zweitphasenpartikeln (3%) Rechung. Neutronenbeugung an vorverformten Proben zeigt, dass die Anhäufung von Eigendehnungen stark von der Verformungsbedingung abhängt: Grosse Dehnungen zwischen den Phasen entstehen durch Zugverformung bei Raumtemperatur, durch Kriechverformung entstehen hingegen nur kleine Dehnungen. Andererseits werden durch jede Verformungsbedingung grosse Spannungen zwischen den Ferritkörnern erzeugt. Die Lastumverteilung zwischen den verschiedenen Kornorientierungen des Ferrits scheint jedoch temperaturabhängig zu sein. In situ Neutronen- und Röntgenbeugung zeigt, dass der Zementit zum Aufbau der Eigendehnungen nur solange beiträgt, bis Kriechmechanismen die Verformung dominieren. Die Lastumverteilung zwischen den einzelnen Kornorientierungen des Ferrits wird diskutiert mit Blick auf die elastische Anisotropie des Ferrits, die bei hohen Temperatur grösser zu seinen scheint. Der kleine Volumenanteil an Zementit in dem 1%CrMoV Stahl ist verantwortlich für einen beträchtlichen Anteil an Eigendehnungen, vergleichbar mit dem, was in manchen Stählen mit hohem Kohlenstoffanteil auftritt. Es scheint, dass die Mikrostruktur und die Morphologie des Zementits die Grösse der Eigendehnungen erheblich beeinflussen kann. Des Weiteren wurden einige Besonderheiten des Zementits während der Zugverformung des 1%CrMoV Stahls untersucht und verglichen mit Zugverformungen an perlitischem Stahl und einem Stahl mit sphärischen Zementitpartikeln. Der Zementit zeigt eine elastische Anisotropie und während der plastischen Verformung eine extreme Verbreiterung des Beugungsreflexes. Diese Verbreiterung wird diskutiert mit Blick auf die lokalen Spannungszustände der einzelnen Zementitpartikel. Schlüsselwörter: Röntgen- und Neutronenbeugung; Eigendehungen zwischen den Phasen und zwischen den Kornorientierungen; Ferritischer Stahl; Zementit; elastische Anisotropie; Hochtemperaturverformung. List of abbreviations Sample description: FCC, BCC face centred cubic, body centred cubic, RT, HT Room temperature, high temperature (in chapter 3 and 4: 565°C) Cem Cementite Methods: EBSD, EDX Electron backscattered diffraction, Energy Dispersive Xray spectroscopy SEM, TEM Scanning and Transmission electron microscopy XRD, ToF X-ray diffraction, Time-of-Flight EPSC Elasto-plastic self-consistent (modelling) MTM, ETMT Miniaturized Tensile Machine, Electro-Thermal Mechnical Testing device SLS, ESRF Swiss Light Source, European Synchrotron Radiation Facility TTT, CCT Time-temperature- and continuous-cooling transition diagram Units: eV electronvolt (= 1.602 x 10-19 J) με mirostrain (= 10-6) Symbols: σ σ σ Macrostress, Type II microstress, Type III microstress I, II, III σ , ε C Stress tensor, strain tensor,single crystal elastic constants ij ij, mn E, G, ν Young’s modulus, shear modulus, Poisson’s ratio A , S Cubic elastic anisotropy factor, Degree of cubic elastic anisotropy hkl 0 F, A, σ Force, Cross section, Uniaxial tensile stress α, T Thermal expansion coefficient, Temperature T Curie temperature c λ, θ, ε Wavelength, Bragg-angle, elastic lattice strain Table of contents: 1 Introduction ...................................................................1 1.1 Development of residual stress...............................................................................2 1.1.1 Classification of residual stresses...................................................................3 1.1.2 Example of intergranular strains.....................................................................5 1.1.2.1 Single crystal response upon deformation..................................................7 1.1.2.1.1 Single crystal elastic anisotropy...........................................................7 1.1.2.1.2 Single crystal plastic anisotropy.........................................................10 1.1.2.2 Modelling of intergranular strains............................................................13 1.1.3 Example of interphase strains.......................................................................14 1.1.4 Residual strains from thermal expansion.....................................................15 1.2 Microstructure of the tempered bainitic 1%CrMoV steel....................................16 1.2.1 Ferritic microstructures.................................................................................16 1.2.2 Some microstructural characteristics of bainite............................................18 1.2.3 Some microstructural characteristics of a 1%CrMoV steel..........................19 1.2.4 HT deformation mechanisms .......................................................................20 1.2.4.1 Deformation mechanisms.........................................................................20 1.2.4.2 Loading schemes......................................................................................22 1.3 Literature review on Type II microstresses..........................................................23 1.3.1 In carbon steels during deformation at RT...................................................23 1.3.2 Selected studies during deformation at HT in metal matrix composites......26 1.3.3 Potential impact of Type II microstresses....................................................27 1.4 Aim and research outline......................................................................................28 2 Material and experimental description.........................29 2.1 Material.................................................................................................................29 2.1.1 1%CrMoV steel............................................................................................29 2.1.1.1 As-received microstructure......................................................................29 2.1.1.2 Heat treatment of the 1%CrMoV steel.....................................................30 2.1.1.3 Extraction of carbides...............................................................................31 2.1.2 Heat treatment of the high-carbon steel........................................................33 2.2 Experimental method............................................................................................34 2.2.1 Crystal lattice as a strain gauge....................................................................34 2.2.2 Neutron vs. X-ray.........................................................................................36 2.2.2.1 Interaction with matter..............................................................................36 2.2.2.2 Wavelength...............................................................................................37 2.2.2.3 Attenuation...............................................................................................38 2.2.2.4 Radiation sources......................................................................................39 2.2.2.4.1 X-ray...................................................................................................39 2.2.2.4.2 Neutrons.............................................................................................42 2.2.3 Typical beamline and measurement set-up..................................................43 2.2.3.1 Axial and transverse lattice strain.............................................................43 2.2.3.2 X-ray powder diffraction..........................................................................44 2.2.3.3 ToF neutron diffraction............................................................................45 2.2.4 Concluding remarks......................................................................................47 2.2.4.1 Sampling statistics....................................................................................47 2.2.4.2 Counting statistics....................................................................................48 2.3 Experimental tools................................................................................................49 2.3.1 Microscopy...................................................................................................49 2.3.2 Heat treatments.............................................................................................50 2.3.3 Mechanical testing........................................................................................51 2.3.4 Laboratory X-ray diffraction........................................................................51 2.3.5 Experimental set-up at beamlines and data treatment..................................51 2.3.5.1 Materials Science (MS) beamline: synchrotron X-ray diffraction...........51 2.3.5.2 ID15B beamline: synchrotron X-ray diffraction......................................54 2.3.5.3 POLDI beamline: neutron diffraction.......................................................59 2.3.5.4 ENGIN-X beamline: neutron diffraction..................................................60 2.3.5.5 Comparison of the diffraction patterns from all beamlines......................62 2.3.5.6 Chronology of the various beamtimes......................................................63 2.3.5.7 Sample nomenclature...............................................................................64 3 Results .........................................................................67 3.1 Identification of carbides in the as-received 1%CrMoV......................................67 3.2 POLDI beamline: ToF Neutron diffraction..........................................................70 3.2.1 Residual lattice strain measurements on pre-deformed samples..................70 3.2.2 In situ tensile loading at RT..........................................................................76 3.3 Materials Science (MS) beamline: Synchrotron XRD.........................................79 3.3.1 Diffraction pattern the as-received 1%CrMoV............................................79
Description: