EECE 574 - Adaptive Control Model-ReferenceAdaptiveControl-AnOverview GuyDumont DepartmentofElectricalandComputerEngineering UniversityofBritishColumbia January2013 GuyDumont(UBCEECE) EECE574:MRAC-1 January2013 1/73 Model-Reference Adaptive Systems TheMRACorMRASisanimportantadaptivecontrolmethodology1 1seeChapter5oftheÅströmandWittenmarktextbook,orH.Butler, ”Model-ReferenceAdaptiveControl-FromTheorytoPractice”,Prentice-Hall,1992 GuyDumont(UBCEECE) EECE574:MRAC-1 January2013 2/73 Model-Reference Adaptive Systems TheMITrule Lyapunovstabilitytheory DesignofMRASbasedonLyapunovstabilitytheory Hyperstabilityandpassivitytheory Theerrormodel Augmentederror Amodel-followingMRAS GuyDumont(UBCEECE) EECE574:MRAC-1 January2013 3/73 MITRule TheBasics The MIT Rule OriginalapproachtoMRACdevelopedaround1960atMITfor aerospaceapplications Withe=y−y ,adjusttheparametersθ tominimize m 1 J(θ)= e2 2 Itisreasonabletoadjusttheparametersinthedirectionofthenegative gradientofJ: dθ ∂J ∂e =−γ =−γe dt ∂θ ∂θ ∂e/∂θ iscalledthesensitivityderivativeofthesystemandisevaluated undertheassumptionthatθ variesslowly GuyDumont(UBCEECE) EECE574:MRAC-1 January2013 4/73 MITRule TheBasics The MIT Rule ThederivativeofJ isthendescribedby dJ ∂e (cid:18)∂e(cid:19)2 =e =−γe2 dt ∂t ∂θ Alternatively,onemayconsiderJ(e)=|e|inwhichcase dθ ∂J ∂e =−γ =−γ sign(e) dt ∂θ ∂θ Thesign-signalgorithmusedintelecommunicationswheresimple implementationandfastcomputationsarerequired,is (cid:18) (cid:19) dθ ∂J ∂e =−γ =−γsign sign(e) dt ∂θ ∂θ GuyDumont(UBCEECE) EECE574:MRAC-1 January2013 5/73 MITRule Examples MIT Rule: Example 1 Process: y=kG(s)whereG(s)isknownbutkisunknown Thedesiredresponseisy =k G(s)u m 0 c Controllerisu=θu c Thene=y−y =kG(p)θu −k G(p)u m c 0 c Sensitivityderivative ∂e k =kG(p)u = y c m ∂θ k 0 MITrule dθ k =γ(cid:48) y e=−γy e m m dt k 0 GuyDumont(UBCEECE) EECE574:MRAC-1 January2013 6/73 MITRule Examples MIT Rule: Example 1 Figure: MITruleforadjustmentoffeedforwardgain(fromtextbook). GuyDumont(UBCEECE) EECE574:MRAC-1 January2013 7/73 MITRule Examples MIT Rule: Example 1 Figure: MITruleforadjustmentoffeedforwardgain: Simulationresults(from textbook). GuyDumont(UBCEECE) EECE574:MRAC-1 January2013 8/73 MITRule Examples MIT Rule: Example 2 Considerthefirst-ordersystem dy =−ay+bu dt Thedesiredclosed-loopsystemis dy m =−a y +b u m m m c dt Applyingmodel-followingdesign(seelecturenotesonpoleplacement) degA ≥0 degS=degR=degT =0 0 GuyDumont(UBCEECE) EECE574:MRAC-1 January2013 9/73 MITRule Examples MIT Rule: Example 2 Thecontrolleristhen u(t)=t u (t)−s y(t) 0 c 0 Forperfectmodel-following dy = −ay(t)+b[t u (t)−s y(t)] 0 c 0 dt =−(a+bs )y(t)+bt u 0 0 c =−a y (t)+b u m m m c Thisimplies a −a m s = 0 b b m t = 0 b GuyDumont(UBCEECE) EECE574:MRAC-1 January2013 10/73
Description: