ebook img

EECE 574 - Adaptive Control - Model-Reference Adaptive Control PDF

73 Pages·2013·0.79 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview EECE 574 - Adaptive Control - Model-Reference Adaptive Control

EECE 574 - Adaptive Control Model-ReferenceAdaptiveControl-AnOverview GuyDumont DepartmentofElectricalandComputerEngineering UniversityofBritishColumbia January2013 GuyDumont(UBCEECE) EECE574:MRAC-1 January2013 1/73 Model-Reference Adaptive Systems TheMRACorMRASisanimportantadaptivecontrolmethodology1 1seeChapter5oftheÅströmandWittenmarktextbook,orH.Butler, ”Model-ReferenceAdaptiveControl-FromTheorytoPractice”,Prentice-Hall,1992 GuyDumont(UBCEECE) EECE574:MRAC-1 January2013 2/73 Model-Reference Adaptive Systems TheMITrule Lyapunovstabilitytheory DesignofMRASbasedonLyapunovstabilitytheory Hyperstabilityandpassivitytheory Theerrormodel Augmentederror Amodel-followingMRAS GuyDumont(UBCEECE) EECE574:MRAC-1 January2013 3/73 MITRule TheBasics The MIT Rule OriginalapproachtoMRACdevelopedaround1960atMITfor aerospaceapplications Withe=y−y ,adjusttheparametersθ tominimize m 1 J(θ)= e2 2 Itisreasonabletoadjusttheparametersinthedirectionofthenegative gradientofJ: dθ ∂J ∂e =−γ =−γe dt ∂θ ∂θ ∂e/∂θ iscalledthesensitivityderivativeofthesystemandisevaluated undertheassumptionthatθ variesslowly GuyDumont(UBCEECE) EECE574:MRAC-1 January2013 4/73 MITRule TheBasics The MIT Rule ThederivativeofJ isthendescribedby dJ ∂e (cid:18)∂e(cid:19)2 =e =−γe2 dt ∂t ∂θ Alternatively,onemayconsiderJ(e)=|e|inwhichcase dθ ∂J ∂e =−γ =−γ sign(e) dt ∂θ ∂θ Thesign-signalgorithmusedintelecommunicationswheresimple implementationandfastcomputationsarerequired,is (cid:18) (cid:19) dθ ∂J ∂e =−γ =−γsign sign(e) dt ∂θ ∂θ GuyDumont(UBCEECE) EECE574:MRAC-1 January2013 5/73 MITRule Examples MIT Rule: Example 1 Process: y=kG(s)whereG(s)isknownbutkisunknown Thedesiredresponseisy =k G(s)u m 0 c Controllerisu=θu c Thene=y−y =kG(p)θu −k G(p)u m c 0 c Sensitivityderivative ∂e k =kG(p)u = y c m ∂θ k 0 MITrule dθ k =γ(cid:48) y e=−γy e m m dt k 0 GuyDumont(UBCEECE) EECE574:MRAC-1 January2013 6/73 MITRule Examples MIT Rule: Example 1 Figure: MITruleforadjustmentoffeedforwardgain(fromtextbook). GuyDumont(UBCEECE) EECE574:MRAC-1 January2013 7/73 MITRule Examples MIT Rule: Example 1 Figure: MITruleforadjustmentoffeedforwardgain: Simulationresults(from textbook). GuyDumont(UBCEECE) EECE574:MRAC-1 January2013 8/73 MITRule Examples MIT Rule: Example 2 Considerthefirst-ordersystem dy =−ay+bu dt Thedesiredclosed-loopsystemis dy m =−a y +b u m m m c dt Applyingmodel-followingdesign(seelecturenotesonpoleplacement) degA ≥0 degS=degR=degT =0 0 GuyDumont(UBCEECE) EECE574:MRAC-1 January2013 9/73 MITRule Examples MIT Rule: Example 2 Thecontrolleristhen u(t)=t u (t)−s y(t) 0 c 0 Forperfectmodel-following dy = −ay(t)+b[t u (t)−s y(t)] 0 c 0 dt =−(a+bs )y(t)+bt u 0 0 c =−a y (t)+b u m m m c Thisimplies a −a m s = 0 b b m t = 0 b GuyDumont(UBCEECE) EECE574:MRAC-1 January2013 10/73

Description:
Jan 1, 2013 Model-Reference Adaptive Control - An Overview. Guy Dumont. Department of Electrical and Computer Engineering. University of British
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.