ebook img

Econometrics of panel data : methods and applications PDF

417 Pages·2017·3.212 MB·English
by  BiørnErik
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Econometrics of panel data : methods and applications

OUPCORRECTEDPROOF–FINAL,19/9/2016,SPi Econometrics of Panel Data OUPCORRECTEDPROOF–FINAL,19/9/2016,SPi OUPCORRECTEDPROOF–FINAL,19/9/2016,SPi Econometrics of Panel Data Methods and Applications Erik Biørn 1 OUPCORRECTEDPROOF–FINAL,19/9/2016,SPi 3 GreatClarendonStreet,Oxford,ox26dp, UnitedKingdom OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©ErikBiørn2017 Thefindings,interpretations,andconclusionsexpressedinthisworkareentirely thoseoftheauthorsandshouldnotbeattributedinanymannertotheWorldBank, itsBoardofExecutiveDirectors,orthegovernmentstheyrepresent. Themoralrightsoftheauthorhavebeenasserted FirstEditionpublishedin2017 Impression:1 Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicence,orundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData Dataavailable LibraryofCongressControlNumber:2016937737 ISBN 978–0–19–875344–5 PrintedinGreatBritainby ClaysLtd,StIvesplc LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork. OUPCORRECTEDPROOF–FINAL,19/9/2016,SPi PREFACE Panel data is a data type used with increasing frequency in empirical research in eco- nomics, social sciences, and medicine. Panel data analysis is a core field in modern econometricsandmultivariatestatistics,andstudiesbasedonsuchdataoccupyagrowing part of the field in all the mentioned disciplines. A substantial literature on methods and applications has accumulated, also synthesized in survey articles and a number of textbooks.Whythenwriteanotherbookonpaneldataanalysis?Ihopethatsomeofmy motivationandpartoftheanswerwillbegiveninthefollowingparagraphs. Thetextcollectedinthisbookhasoriginated,andbeenexpandedthroughseveralyears, partly in parallel with courses I have given at the University of Oslo for master’s and doctoral students of economics. I have been interested in the field, both its models and methodsandapplicationstosocialsciences,formorethanfortyyears.Thefirstdraftswere lecturenotes,laterexpandedandsynthesizedintocoursecompendia,firstinNorwegian, later in English. In compiling the text, I have had no ambition of giving an account of thehistoryofpaneldataanalysisanditsvarioussubfields,someofwhichhavealonger historythanothers.Withinsome350pagesitisimpossibletogiveacompletecoverage, andthechoiceoftopics,andthedepthofdiscussionofeachofthem,tosomeextentreflect mypreferences.Somereadersmaymisstopicslikecross-section-time-seriesanalysisin continuoustime,durationanalysis,andanalysisofnon-linearpaneldatamodels(outside thelimiteddependentvariablesfield).TopicsIgivespecificattentionto,morethanmany comparabletexts,Ithink,arecoefficientidentificationofmodelsmixingtwo-dimensional andindividual-specificvariables,regressionmodelswithtwo-wayrandomeffects,models and methods for handling random coefficients and measurement errors, unbalanced paneldata,andpaneldatainrelationtoaggregation.Problemsattheinterfacebetween unbalanceandtruncation,andbetweenmicro-econometricsandpaneldataanalysis,are alsodiscussed. Itgoeswithoutsayingthatinabookdealingwithdatashowingtemporal–spatialvari- ation,matrixalgebraisunavoidable.Althoughpaneldatahaveamatrixstructure,such algebrashouldnotbeacorematter.Ihaveexperiencedthatmanystudentsstartingonthe topicfeelpartsofthematrixalgebra,especiallywhenwritteninadense,compactstyle, tobeanobstacle.Ithereforesetouttoexplainmanyofthemodelsandmethodsinsome detailtoreaderscomingtopaneldataanalysisforthefirsttime,includingstudentsfamil- iarwithbasicstatisticsandclassicalmultipleregressionanalysis,andappliedresearchers. Sometechnicalmaterialisplacedinappendices.Yetsomeadvancedand‘modern’topics arediscussed.Sinceoneofmyintentionsisthatstudentsshouldbegiventhechanceto OUPCORRECTEDPROOF–FINAL,19/9/2016,SPi vi PREFACE getanacceptablegraspofbasicideaswithouthavingtobeinvolvedinextensivematrix- algebraic exercises, most chapters start with a simple example in scalar (or elementary vector)notation,andthenattempttotakethereadergraduallytomorecomplexcasesin fullermatrixnotation,evenifthisnecessitatessomerepetition. Thefirstchapterssurveyratherelementarymaterials.Ibelievethattheinitialsections ofthefirsteightchaptersmaybeusefulforbachelorstudents,providedtheirknowledge ofmultipleregressionanalysisandbasicmathematicalstatisticsissufficient.Chapters1–3 and5containmostlybasictopics,Chapters4and6–10containintermediateleveltopics, andChapters11and12containsomewhatadvancedtopics.Ihave,asfaraspossible,tried tokeepeachchapterself-contained.Yetsomeconnectionsexist.Itmayalsobehelpfulto notethatChapter6buildsonChapters2,3,and5,thatChapters6and7expandtopicsin Chapters2–4,thatChapters7and8aremethodologicallyrelated,thatChapter11builds onChapters9and10,andthatChapter12buildsonChapters3and6.Eachchapterhas aninitialsummary,somealsohaveaconcludingsection. Somereadersmaymissexerciseswithsolutions,whichwouldhaveexpandedthesize ofthebook.Ontheotherhand,examplesofapplications,somefrommyownresearch, orexperiments,andillustrationsutilizingpubliclyavailabledataareincludedinseveral chapters.Myviewofthepaneldatafieldisthatthecoretopicshave,tosomeextent,the characterofbeingbuildingblockswhichmaybecombined,andthenumberofpotential combinationsislarge.Notmanycombinationsarediscussedexplicitly.Certainpotential combinations—forexample,dynamicequationswithrandomcoefficientsforunbalanced panel data and random coefficients interacting with limited dependent variables with measurementerrors—have(tomyknowledge)hardlybeendiscussedinanyexistingtext. Althoughprimarilyaimingatstudentsandpractitionersofeconometrics,Ibelievethat mybook,orpartsofit,maybeusefulalsoforstudentsandresearchersinsocialsciences outsideeconomicsandforstudentsandresearchworkersinpsychology,politicalscience, andmedicine,providedtheyhaveasufficientbackgroundinstatistics.Myintention,and hope, is that the book may serve as a main text for lecturing and seminar education at universities.Ibelievethatpartsmaybeusefulforstudents,researchers,andotherreaders workingontheirown,interalia,withcomputerprogrammingofmodulesforpaneldata analysis. Duringthework,Ihavereceivedvaluablefeedbackfrommanycolleaguesandstudents, notleastPhDstudentswritingtheirtheses,partlyundermysupervision,onappliedpanel datatopics.Questionsfrequentlyposedduringsuchdiscussionshaveundoubtedlymade their mark on the final text. I want to express my gratitude to the many students who haveread,commentedon,andinotherswaysbeen‘exposedto’mynotes,sketches,and chapter drafts. Their efforts have certainly contributed to eliminate errors. I also thank goodcolleaguesformanylongandinterestingdiscussionsorforhavingwillinglyspent their time in reading and commenting on drafts of preliminary versions of the various sectionsandchapters,sometimesmorethanonce.IregretthatIhavebeenunabletotake OUPCORRECTEDPROOF–FINAL,19/9/2016,SPi PREFACE vii alltheiradviceintoaccount.Ispecificallywanttomention(inalphabeticalorder)Jørgen Aasness, Anne Line Bretteville-Jensen, John K. Dagsvik, Xuehui Han, Terje Skjerpen, Thor Olav Thoresen, Knut R. Wangen, and Yngve Willassen. Needless to say, none of themaretobeheldresponsibleforremainingerrorsorshortcomings.Thetexthasbeen prepared by the author in the Latex document preparation software, and I feel obliged totheconstructorsofthisexcellentscientifictextprocessor.Last,butnotleast,Iexpress mysinceregratitudetoOxfordUniversityPress,inparticularAdamSwallowandAimee Wright,fortheirbeliefintheprojectandforsupport,encouragement,andpatience. ErikBiørn Oslo,March2016 OUPCORRECTEDPROOF–FINAL,19/9/2016,SPi OUPCORRECTEDPROOF–FINAL,19/9/2016,SPi CONTENTS LISTOFTABLES xvii 1 Introduction 1 1.1 Typesofpanelvariablesanddata 1 1.2 Virtuesofpaneldata:Transformations 3 1.3 Paneldataversusexperimentaldata 8 1.4 Othervirtuesofpaneldataandsomelimitations 9 1.5 Overview 11 2 Regressionanalysis:Fixedeffectsmodels 14 2.1 Simpleregressionmodel:One-wayheterogeneity 15 2.1.1 Individual-specificinterceptsandcoefficients 15 2.1.2 Individual-specificintercepts,commoncoefficient 16 2.1.3 Homogeneousbenchmarkmodel 19 2.1.4 Howaretheestimatorsrelated? 21 2.2 Multipleregressionmodel:One-wayheterogeneity 23 2.2.1 Individual-specificinterceptsandcoefficients 23 2.2.2 Individual-specificintercepts,commoncoefficients 25 2.2.3 Homogeneousbenchmarkmodel 27 2.2.4 Howaretheestimatorsrelated? 30 2.3 Simpleregressionmodel:Two-wayheterogeneity 33 2.3.1 Individual-andperiod-specificintercepts 33 2.3.2 Homogeneousbenchmarkmodel 36 2.3.3 Howaretheestimatorsrelated? 39 2.4 Multipleregressionmodel:Two-wayheterogeneity 41 2.4.1 AnexcursionintoKronecker-products:Definition 41 2.4.2 MatrixformulaewithKronecker-products:Examples 42 2.4.3 Paneldata‘operators’:Bilinearandquadraticforms 43 2.4.4 Individual-andperiod-specificintercepts 46 2.4.5 Homogeneousbenchmarkmodel 49 2.4.6 Howaretheestimatorsrelated? 50 2.5 Testingforfixedheterogeneity 53 2.5.1 One-wayinterceptandcoefficientheterogeneity 54 2.5.2 Two-wayinterceptheterogeneity 55

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.