ebook img

Ecological Informatics: Scope, Techniques and Applications PDF

508 Pages·2006·8.406 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ecological Informatics: Scope, Techniques and Applications

Friedrich Recknagel (Ed.) Ecological Informatics Scope, Techniques and Applications Friedrich Recknagel (Ed.) Ecological Informatics Scope, Techniques and Applications 2nd Edition With 174 Figures and a CD-ROM EDITOR ASSOCIATE PROFESSOR FRIEDRICH RECKNAGEL SCHOOL OF EARTH AND ENVIRONMENTAL SCIENCES THE UNIVERSITY OF ADELAIDE 5005 AUSTRALIA E-mail: [email protected] ISBN 3-540-43455-0 Springer Berlin Heidelberg New York 1st edition 2003 ISBN 10 3-540-28383-8 Springer Berlin Heidelberg New York ISBN 13 978-3540-28383-6 Springer Berlin Heidelberg New York Library of Congress Control Number: 2005930717 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad- casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable to prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com (cid:148) Springer-Verlag Berlin Heidelberg 2006 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant pro- tective laws and regulations and therefore free for general use. Cover design: E. Kirchner, Heidelberg Production: A. Oelschläger Typesetting: Camera-ready by the Editor Printing: Stürtz AG, Gemany Binding: Stürtz AG, Germany Printed on acid-free paper 30/2132/AO 5 4 3 2 1 0 ToKarina,Melanie,NatalieandPhilipp Preface 2nd Edition Ecological informatics (ecoinformatics) is an interdisciplinary framework for the processing, archival, analysis and synthesis of ecological data by advanced computational technology (Recknagel 2003). Processing and archival of ecological data aim at facilitating data standardization, retrieval and sharing by means of metadata and object-oriented programming (e.g. Michener et al. 1997; Dolk 2000; Sen 2003; Eleveld, Schrimpf and Siegert 2003). Analysis and synthesis of ecological data aim at elucidating principles of information processing, structuring and functioning of ecosystems, and forecasting of ecosystems behaviours by means of bio-inspired computation (e.g. Fielding 1999; Lek and Guegan 2000; Recknagel 2003). Ecological informatics currently undergoes the process of consolidation as a discipline. It corresponds and partially overlaps with the well-established disciplines bioinformatics and ecological modeling but is taking its distinct shape and scope. In Fig. 1 a comparison is made between ecological informatics and bioinformatics. Even though both are based on the same computational technology their focus is different. Bioinformatics focuses very much on determining gene function and interaction (e.g. Overbeck et al. 1999; Wolf et al. 2001), protein structure and function (e.g. Henikoff et al. 1999; Lupas, Van Dyke and Stock 1991) as well as phenotype of organisms utilizing DNA microarray, genomic, physiological and metabolic data (e.g. Lockhardt and Winzeler 2000) (Fig. 1a). By contrast ecological informatics focuses to determine population function and interactions as well as ecosystem structure and functioning by utilizing genomic, phenotypic, community, environmental and climate data (e.g. D’Angelo et al. 1995; Chon et al. 2003; Park et al. 2003, Jeong, Recknagel and Joo 2003) (Fig. 1b). A comparison is made between ecological modeling and ecological informatics in Fig. 2. Even though both rely on similar ecological data they adopt different approaches in utilizing the data. Whilst ecological modeling processes ecological data top down by ad hoc designed statistical or mathematical models (e.g. Straskraba and Gnauck 1985; Jorgensen 1994), ecological informatics infers ecological processes from ecological data patterns bottom up by computational techniques. The cross-sectional area between ecological modeling and ecological informatics reflects a new generation of hybrid models that enable to predict emergent ecosystem structures and behaviours, and ecosystem evolution (e.g. Booth 1997; Downing 1997; Hraber and Milne 1997; Huse, Strand and Giske 1999). Typically those models embody biologically-inspired computation in deterministic ecological models. VIII Preface Figure 1. Ecological informatics versus bioinformatics, a) Scope of bioinformatics (modified from Oltvai and Barabasi (2002)), b) Scope of ecoinformatics Preface IX EEccoollooggiiccaall MMooddeelllliinngg EEEcccooolllooogggiiicccaaalll IIInnnfffooorrrmmmaaatttiiicccsss DDiiffffeerreennttiiaall EEqquuaattiioonnss HHHiiiggghhh PPPeeerrrfffooorrrmmmaaannnccceee CCCooommmpppuuutttiiinnnggg TThheerrmmooddyynnaammiiccss BBBiiiooolllooogggiiicccaaallllllyyy---IIInnnssspppiiirrreeeddd CCCooommmpppuuutttaaatttiiiooonnn MMuullttiivvaarriiaattee SSttaattiissttiiccss OOObbbjjjeeecccttt---OOOrrriiieeennnttteeeddd DDDaaatttaaa HHeeuurriissttiiccss IIInnnttteeerrrnnneeettt HHyybbrriidd AApppprrooaacchh TToopp--DDoowwnn BBoottttoomm--UUpp EEmmppiirriiccaall aanndd NNeeuurraall aanndd DDeetteerrmmiinniissttiicc EEvvoolluuttiioonnaarryy AApppprrooaacchh AApppprrooaacchh EEccoollooggyy BBiioosspphheerree EEccoossyysstteemmss CCoommmmuunniittiieess PPooppuullaattiioonnss OOrrggaanniissmmss CCeellllss GGeenneess Figure 2. Ecological informatics versus ecological modeling The term ecological informatics was suggested at the International Conference on Applications of Machine Learning to Ecological Modelling in 2000 (see Ecological Modelling 2001, 195) when the International Society for Ecological Informatics ISEI (www.waite.Adelaide.edu.au/ISEI) was founded. Since then an increasing number of researchers and research groups identify with this area, and biennial international conferences are organized by the ISEI. Also the new journal Ecological Informatics will be issued by Elsevier in October 2005 (www.elsevier.com/locate/ecolinf). The contents of the 2nd edition of the book Ecological Informatics has been revised and extended. Two new chapters have been added to Part I: Introduction. Chapter 2 by Bredeweg et al. provides an introduction to the novel concept of qualitative reasoning that emerges as an alternative approach to fuzzy logic for automated processing and utilizing of heuristic ecological knowledge. Exemplary applications to population and community dynamics illustrate the potential of the approach. Chapter 7 by Tempesti et al. addresses the novel concept of self- X Preface replicating cellular automata inspired by the nature of the genome as the hereditary information of an organism. The authors demonstrate how self- replicating cellular automata can be explored for the design of nano-scale circuits for computer hardware. The paper contributes to the fast growing research on bio- inspired design of both computer software and hardware. Three new chapters have been added to Part IV: Prediction and Elucidation of Lake and Marine Ecosystems. Chapter 16 by Recknagel et al. presents an integrated approach of super- and non-supervised artificial neural networks (ANN) for understanding and forecasting of phytoplankton population dynamics in limnological time series data. The authors complement qualitative ordination and clustering by non-supervised ANN with sensitivity curves from supervised ANN to reveal complex ecological relationships. They apply recurrent supervised ANN for 7-days-ahead forecasting of algal species abundances and succession. Chapter 17 by Cao et al. introduces hybrid evolutionary algorithms (HEA) as powerful tools for the discovery of predictive rule sets. The underlying algorithms optimize both the rule structures and multiple parameters. The authors demonstrate that the rule sets discovered in complex limnological time series data achieve not only highly accurate 7-days-ahead forecasting of algal species abundances and succession but provide a high degree of explanation by means of THEN- and ELSE-branch specific sensitivity analysis. A CD with a demo version of HEA is attached and instructions for HEA can be found in the Appendix. Chapter 20 by Atanasova et al. demonstrates computational assemblage of ordinary differential equations (ODE) based on an ecological process function library and measured ecological data. The authors document automatically assembled ODE for chlorophyll a in a lake and related validation results that indicate possibilities and limitations of the approach. I want to thank all of the authors who contributed to the book with great enthusiasm and delivered on time. Finally I express my thanks to Dr. Christian Witschel and Agata Oelschlaeger of the Geosciences Editorial Team of the Springer-Verlag for their close collaboration in producing the book References: Booth, G., 1997. Gecko: A continuous 2D world for ecological modeling. Artificial Life 3, 147-163. Chon, T.-S., Park, Y.S., Kwak, I.-S. and E.Y. Cha, 2003. Non-linear approach to grouping, dynamics and organizational informatics of benthic macroinvertebrate communities in streams by artificial neural networks. In: Recknagel, F. (ed.), 2003. Ecological Informatics. Understanding Ecology by Biologically-Inspired Computation. Springer- Verlag, Berlin, Heidelberg, New York, 127-178. D’Angelo, D.J., Howard, L.M., Meyer, J.L., Gregory, S.V. and L.R. Ashkenas, 1995. Ecological uses of genetic algorithms: predicting fish distributions in complex physical habitats. Can.J.Fish.Aquat.Sci. 52, 1893-1908. Dolk, D.R., 2000. Integrated model management in the data warehouse area. European Journal of Operational Research 1222, 1999-218. Downing, K., 1997. EUZONE: Simulating the evolution of aquatic ecosystems. Artificial Life 3, 307-333. Preface XI Eleveld, M.A., Schrimpf, W.B.H. and A.G. Siegert, 2003. User requirements and information definition for the virtual coastal and marine data warehouse. Ocean & Coastal Management 46, 487-505. Fielding, A., 1999. Machine Learning Methods for Ecological Applications. Kluwer, 1-262. Henikoff, S., Henikoff, J.G. and S. Pietrovski, 1999. Blocks+: a non-redundant database of protein alignment blocks derived from multiple compilations. Bioinformatics 15, 471- 479. Hraber, P. and B.T. Milne, 1997. Community assembly in a model ecosystem. Ecological Modelling 103, 267-285. Huse, G., Strand, E. and J. Giske, 1999. Implementing behaviour in individual-based models using neural networks and genetic algorithms. Evolutionary Ecology 13, 469- 483. Jeong, K.-S., Recknagel, F. and G.-J. Joo, 2003. Prediction and elucidation of population dynamics of the blue-green algae Microcystis aeruginosa and the diatom Stephanodiscus hantzschii in the Nakdong River-Reservoir System (South Korea) by a recurrent artificial neural network. In: Recknagel, F. (ed.), 2003. Ecological Informatics. Understanding Ecology by Biologically-Inspired Computation. Springer-Verlag, Berlin, Heidelberg, New York, 195-213. Jorgensen, S.E., 1995. Fundamentals of Ecological Modelling. Elsevier, Amsterdam, 1-628. Lek, S. and J-F. Guegan (eds.), 2000. Artificial Neuronal Networks. Application to Ecology and Evolution. Springer, Berlin, Heidelberg, New York, 1-262. Lockhardt, D. and E. Winzeler, 2000. Genomics, gene expression and DNA arrays. Nature 405, 827-836. Lupas, A., Van Dyke, M. and J. Stock, 1991. Predicting coiled coils from protein sequences. Science 252, 1162-1164. Michener, W.K., Brunt, J.W., Helly, J.J., Kirchner, T.B., and S.G.Stanford, 1997. Nongeospatial metadata for the ecological sciences. Ecological Applications 7, 1, 330- 342. Oltavai, Z.N. and A.-L. Barabasi, 2002. Life’s complexity pyramid. Science 298, 763-764. Overbeck , R., Fonstein, M., D’Souza, M., Pusch, G.D. and N. Maltsev, 1999. The use of gene clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA 96, 2896-2901. Park, Y.-S., Verdonschot, P.F.M., Chon, T.-s., and S. Lek, 2003. Patterning and predicting aquatic macroinvertebrate diversities using artificial neural networks. Water Research 37, 1749-1758. Recknagel, F. (ed.), 2003. Ecological Informatics. Understanding Ecology by Biologically-Inspired Computation. Springer-Verlag, Berlin, Heidelberg, New York. Sen, A., 2003. Metadata management: past, present and future. Decision Support Systems 1043, 1-23 Straskraba, M. and A. Gnauck, 1985. Freshwater Ecosystems: Modelling and Simulation. Elsevier, Amsterdam, 1-302. Wolf, Y.I., Rogozin, I.B., Kondrashov, A.S. and E.V. Koonin, 2001. Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. Genome Research 11, 356-372. Friedrich Recknagel Adelaide, 15 May 2005 Preface XIII Preface 1st Edition In the 50s and 60s cross-sectional data of lake surveys were utilized for steady state assessments of the eutrophication status of lakes by univariate nonlinear regression. This statistical approach (see Table 1) became exemplary for river, grassland and forest models and - because of simplicity - widespread for classification of ecosystems. In the 70s and 80s multivariate time series data were collected from ecosystems such as lakes, rivers, forests and grasslands in order to improve understanding of ecosystem dynamics. Process-based differential equations were used for the computer simulation of food web dynamics and functional group succession. This differential equation approach (see Table 1) is still widely used for scenario analysis. Table 1. Concepts for Ecosystems Analysis, Synthesis and Forecasting SSttaattiissttiiccaall RReeggrreessssiioonn DDiiffffeerreennttiiaall EEqquuaattiioonnss CCoommppuuttaattiioonnaall AApppprrooaacchh AApppprrooaacchh AApppprrooaacchh EEccoossyysstteemm SStteeaaddyy SSttaatteess TTrraannssiittiioonnaall SSttaatteess EEvvoollvviinngg SSttaatteess RReepprreesseennttaattiioonn EEccoossyysstteemm UUnniivvaarriiaattee NNoonnlliinneeaarr // MMuullttiivvaarriiaattee NNoonnlliinneeaarr MMuullttiivvaarriiaattee NNoonnlliinneeaarr AApppprrooxxiimmaattiioonn MMuullttiivvaarriiaattee LLiinneeaarr EEccoossyysstteemm CCrroossss--SSeeccttiioonnaall NNuuttrriieenntt NNuuttrriieenntt CCyycclleess aanndd SSppeecciieess SSuucccceessssiioonn CCoommpplleexxiittyy aanndd AAbbuunnddaannccee MMeeaannss FFoooodd WWeebb DDyynnaammiiccss aanndd EEccoossyysstteemm EEvvoolluuttiioonn AAqquuaattiicc EExxaammpplleess PPhhoosspphhoorruuss--CChhlloorroopphhyyllll AAQQUUAAMMOODD44;; NNoonnlliinneeaarr RReeggrreessssiioonn99;; RReellaattiioonnsshhiipp11,,22;; MMSS--CCLLEEAANNEERR55;; NNoonnlliinneeaarr PPCCAA1100;; EExxtteerrnnaall PP--LLooaaddiinngg BBiieerrmmaann66;; DDEELLAAQQUUAA1111;; AANNNNAA1122;; CCoonncceepptt33 JJoorrggeennsseenn77;; EEvvoollvveedd RRuulleess1133;; SSAALLMMOO88 EEvvoollvveedd EEqquuaattiioonnss1144,,1155;; EECCHHOO1166;; GGEECCKKOO1177 PPootteennttiiaall EEccoossyysstteemm CCllaassssiiffiiccaattiioonn SScceennaarriioo AAnnaallyyssiiss EEccoossyysstteemm FFoorreeccaassttiinngg AApppplliiccaattiioonnss 1Sakamoto M (1966) Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch. Hydrobiol. 62, 1-28 2 Dillon P, Rigler F (1974) The phosphorus-chlorophyll relationship in lakes. Limnol.Oceanogr. 19, 135-148

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.