ebook img

ECG arrhythmia classification based on optimum-path forest PDF

13 Pages·2013·0.97 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ECG arrhythmia classification based on optimum-path forest

ExpertSystemswithApplications40(2013)3561–3573 ContentslistsavailableatSciVerseScienceDirect Expert Systems with Applications journal homepage: www.elsevier.com/locate/eswa ECG arrhythmia classification based on optimum-path forest Eduardo José da S. Luza, Thiago M. Nunesb, Victor Hugo C. de Albuquerquec, João P. Papad, David Menottia,⇑ aUniversidadeFederaldeOuroPreto,ComputingDepartment,OuroPreto,MG,Brazil bUniversidadeFederaldoCeará,TeleinformaticEngeneeringDepartment,Fortaleza,CE,Brazil cUniversidadedeFortaleza,Post-GraduatePrograminAppliedInformatics,Fortaleza,CE,Brazil dUniversidadeEstadualPaulista,ComputerScienceDepartment,Bauru,SP,Brazil a r t i c l e i n f o a b s t r a c t Keywords: Animportanttoolfortheheartdiseasediagnosisistheanalysisofelectrocardiogram(ECG)signals,since ECGclassification thenon-invasivenatureandsimplicityoftheECGexam.Accordingtotheapplication,ECGdataanalysis Featureextraction consists of steps such as preprocessing, segmentation, feature extraction and classification aiming to Optimum-pathforest detectcardiacarrhythmias(i.e.,cardiacrhythmabnormalities).Aimingtomadeafastandaccuratecar- Supportvectormachine diacarrhythmiasignalclassificationprocess,weapplyandanalyzearecentandrobustsupervisedgraph- Bayesian basedpatternrecognitiontechnique,theoptimum-pathforest(OPF)classifier.Tothebestofourknowl- Multilayerartificialneuralnetwork edge,itisthefirsttimethatOPFclassifierisusedtotheECGheartbeatsignalclassificationtask.Wethen comparetheperformance(intermsoftrainingandtestingtime,accuracy,specificity,andsensitivity)of theOPF classifier to the onesofother threewell-known expertsystem classifiers, i.e.,support vector machine(SVM),Bayesianandmultilayerartificialneuralnetwork(MLP),usingfeaturesextractedfrom sixmainapproachesconsideredinliteratureforECGarrhythmiaanalysis.Inourexperiments,weuse theMIT-BIHArrhythmiaDatabaseandtheevaluationprotocolrecommendedbyTheAssociationforthe AdvancementofMedicalInstrumentation.AdiscussionontheobtainedresultsshowsthatOPFclassifier presentsarobustperformance,i.e.,thereisnoneedforparametersetup,aswellasahighaccuracyat anextremelylowcomputational cost.Moreover, inaverage, theOPFclassifier yieldedgreaterperfor- mancethantheMLPandSVMclassifiersintermsofclassificationtimeandaccuracy,andtoproducequite similar performance to the Bayesian classifier, showing to be a promising technique for ECG signal analysis. (cid:2)2012ElsevierLtd.Allrightsreserved. 1.Introduction sultinseriouscardiacissues.Somegroupofarrhythmiasarelife- threateningandrequireimmediatecareandoftenanintervention Theelectrocardiogram(ECG)isthemostwidelyusednon-inva- withdefibrillator.Othertypesofarrhythmias,thosethatdonotre- sivetechniqueinheartdiseasediagnoses.Sinceitreflectstheelec- quire instantaneous attention, may require treatment to prevent trical activity within the heart during contraction, the time it further problems, and should be detected as well (University of occurs as well as it shape provide much information about the MarylandMedicalCenter,2012). state of the heart. (Fig. 1 shows a schematic record of a normal There are several methods proposed in the literature for the heartbeat, in which we can observe the fiducial points P, Q, R, T purpose of automatic arrhythmia classification in ECG signals, andU).TheECGisfrequentlyusedtodetectcardiacrhythmabnor- and a complete system for such an aim can be divided into four malities,alsoknownasarrhythmias,whichcanbedefinedintwo subsequent categories (preprocessing, segmentation, feature ways:(i)asauniqueirregularcardiacbeator(ii)asasetofirreg- extraction,andclassification)asshowninFig.2,inwhichA,B,C ularbeats.Arrhythmiascanberareandharmless,butmayalsore- andDillustratefictitiousheartbeatclassestobeanalyzed. Thepreprocessingphaseconsistsmainlyindetectingandatten- uatingfrequenciesoftheECGsignalrelatedtoartifacts.Thosearti- ⇑ Correspondingauthor.Address:UniversidadeFederaldeOuroPreto,Computing facts can be from a biological source, like muscular activity, or Department,35.400-000OuroPreto,MG,Brazil.Tel.:+553135591692;fax:+5531 originatedfromanexternalsource,suchas50/60Hzelectricnet- 35591660. workfrequency.Itisalsodesired,inthepreprocessing,toperform E-mailaddresses:[email protected](EduardoJosédaS.Luz),[email protected] asignalnormalizationandcomplexQRS(wave)enhancement(the com(T.M.Nunes),[email protected](VictorHugoC.deAlbuquerque), mostsalientpartofaheartbeat),inordertohelpthesegmentation [email protected](J.P.Papa),[email protected],[email protected](D.Me- notti). process. 0957-4174/$-seefrontmatter(cid:2)2012ElsevierLtd.Allrightsreserved. http://dx.doi.org/10.1016/j.eswa.2012.12.063 3562 E.J.S.Luzetal./ExpertSystemswithApplications40(2013)3561–3573 cated computational methods have been considered in order to find features less sensitive to noise, such as the autoregressive model coefficients (Llamedo & Mart´ınez, 2011), higher-order cumulant(higherorderstatistics) (Mehmet,2004)and variations ofwavelettransform(Addison,2005;Özbay,2009;Sayadi&Sham- sollahi,2007). Thisworkfocusesmainlyonthelaststepofcardiacarrhythmia analysis, i.e., ECG signal classification. A large number of ap- proaches have been proposed for this task, and the popular ones are statistical approaches based on Linear Discriminants (Chazal, O’Dwyer,&Reilly,2004),k-NearestNeighbors(kNN)(Lanatá,Val- enza,Mancuso,&Scilingo,2011),Bayesianprobabilities(Wiggins, Saad,Litt,&Vachtsevanos,2008),artificialneuralnetworks(ANNs) (Ceylan&Özbay,2007;Korürek&Dogan,2010;Özbay,2009;Yu& Chen, 2007; Yu & Chou, 2008), support vector machines (SVMs) (Lin,Ying,Chen,&Lee,2008b;Moavenian&Khorrami,2010;Song, Fig.1. AnormalheartbeatECGsignal. Lee, Cho, Lee, & Yoo, 2005; Ye, Coimbra, & Kumar, 2010; Yu & Choua,2009),amongothers.Wealsofindintheliteratureworks based on ECG signal clustering analysis (Ceylan, Özbay, & Karlik, 2009; Korürek & Nizam, 2008; Özbay, Ceylan, & Karlik, 2011; Yeh, Chiou, & Lin, 2012), instead of classification. Once the algo- rithm is run, the clusters are then manually or automatically classified. However,accordingtoChazaletal.(2004),Ince,Kiranyaz,and Gabbouj (2009), Llamedo and Mart´ınez (2011) few researchers haveusedstandardprotocolstoevaluatetheirexpertsystemclas- sifiers,establishinglearningandtestingstrategieswithbiastheir resultsneartheoptimalones(i.e.,theperfectclassification).Other workshaveconsiderednotpubliclyavailabledataset(Özbayetal., 2011;Yehetal.,2012)whichbecomesdifficultanykindofcom- parison.Themajorityofthoseresearchersarefavoredbyabiased trainingset(i.e.,theheartbeatsfromthesamepatientareusedfor bothtrainingandtestingtheclassifiers,whichmakesafaircom- parison among methods difficult) to train their classifiers. With such strategy, the classifiers know particularities of the patients’ heartbeatwhichisanonrealisticsituation.Usuallytheresultsof these works report effectiveness in average near 100% for heart- beats classification. When the constraint of heartbeat from the samepatientindatadivisionfortrainingandtestingclassifiersis imposed, it noticeable that their achieved effectiveness drop a lot.Theseclassificationissuesareintensivelydiscussedon(Luz& Menotti, 2011) showing that there is still to much room for improvement. Inordertostandardizecomparisonandovercomesuchdifficul- ties,TheAssociationfortheAdvancementofMedicalInstrumentation (AAMI) has developed a standard (ANSI/AAMI/ISO EC57, 1998- R2008)fortestingandreportingperformanceresultsofcomputa- tional techniques aiming at arrhythmia classification. The AAMI also recommends the use of the MIT-BIH Arrhythmia Database (Mark& Moody,1990) for performanceevaluationof arrhythmia systems. THE MIT-BIH Arrhythmia Database is the most widely useddatabaseforevaluationoftheaccuracy/sensitivity/specificity Fig.2. Adiagramofaclassificationsystemofarrhythmia. (from now on performance) of arrhythmia classification systems. This database was the first available for such a purpose and it hasgonethroughseveralimprovementsovertheyearstoencom- ECG signals segmentation consists in delimitating the part of pass the broadest possible range of waveforms Moody and Mark thesignalofmoreinterest,theQRScomplex,sinceitreflectsthe (2001). Here, we perform experiments following the AAMI stan- majorpartoftheelectricalactivityoftheheart(seeFig.1).Once dardandsolelyusetheentireMIT-BIHArrhythmiaDatabase. the segmentation of QRS complex is done one can obtain many Inthe context, arecent and powerful expertsystem classifier, physiological information, such as, for example, heart rate signal proposed in Papa, Falcão, and Suzuki (2009) and customized in acquisition,inwhichwillbeusedtechniquestofeatureselection Papa, Falcão, de Albuquerque, and Tavares (2012), named opti- inordertoeliminateredundantfeaturesfromtheprimaryfeature mum-pathforest(OPF) classifier, arises for the automated detec- set. tion of specific problems and has been shown to be very Feature extraction is the key point for the final classification effective,withexcellentresultscomparedtoANNandSVM(Papa performance. Features can be extracted directly from ECG wave- etal.,2009).TheOPFclassifierhasbeenusedinsomeapplications form morphology in time or frequency domain. Many sophisti- as, for example, petroleum well drilling monitoring (Guilherme E.J.S.Luzetal./ExpertSystemswithApplications40(2013)3561–3573 3563 et al., 2011), characterization of graphite particles in metallo- graphic images (Papa, Nakamura, de Albuquerque, Falcão, & Tav- ares, 2013), classification of remote sensing images (Santos, Gosselin, Philipp-Foliguet, Torres, & Falcão, 2012), nontechnical losses detection (Ramos, Souza, Papa, & Falcão, 2011), segmenta- tionandclassificationofhumanintestinalparasitesfrommicros- copy images Suzuki, Gomes, Falcão, Papa, and Shimizu (2012), among others, achieving promising results due to its advantages on other classifiers regarding efficiency (mainly computational cost),whichisanimportantfactorinECGarrhythmiasignalclassi- fication. In the hospitals, the equipments used to accomplish the arrhythmia signal classification task, such as bed side monitors and defibrillators, often have limited resources. Despite of that OPF classifier has shown effectiveness compatible, and faster for trainingthanotherclassifiers(Papaetal.,2012). The aim of this work is to evaluate the OPF classifier perfor- mancefocusingmainlyonthelaststepofthecardiacarrhythmia analysis,i.e.,ECGsignalclassification,consideringmainlythecom- putational cost, accuracy, sensitivity, and specificity. The perfor- mance is compared to the ones of three other well-known Fig. 3. Fiducial points and important interval of a cardiac heartbeats. Extracted classifier algorithms widely used in the pattern recognition and from(Cliffordetal.,2006,Chapter3). machine learning literature (i.e, SVM with radial basis-function kernel,multi-layerperceptronneuralnetwork(MLP)andBayesian expertsystemclassifiers).BesidesfollowingtheAAMIrecommen- dationandusingtheMIT-BIHArrhythmiaDatabaseforproducing ture.Exceptforpatientswhousepacemakers,theperceivedvaria- resultsreliabletoclinicanalysis,inordertoperformourcompari- tionsintheRRintervalwidtharecorrelatedwithvariationsinthe son,onnonnormalizeddatasets,were-implementsixapproaches morphologyoftheECGsignalcurve,usuallycausedbyarrhythmias (Chazal et al., 2004; Güler & Übeyli, 2005; Song et al., 2005; Ye (Clifford,Azuaje,&McSharry,2006).FeaturesfromtheRRinterval etal.,2010;Yu&Chen,2007;Yu&Chou,2008)weconsiderquite reveal great discriminatory capabilities for heartbeat classes and representativeoftheECGsignalfeatureextractiondomain.These havebeenusedinseveralworksintheliterature,speciallyinCha- featureselectionprocessesarereproducedasfaithfullyaspossible zaletal.(2004). to their description using Matlab. Each feature extraction set is From the RR interval, we can extract four features which are thensubmittedtoeachconsideredexpertsystemclassifier. usedin Chazaletal. (2004):theRR intervalbetweenthe current Theremainderofthisworkisorganizedasfollows.Thefeature anditspredecessorheartbeat(RR-predecessor),theRRintervalbe- extractionapproachesusedinthisworkarebrieflysummarizedin tweenthecurrentanditssuccessorone(RR-posterior),theaverage Section2.TheOPFclassifierandtheotherthreeexpertsystemclas- of all RR interval containing in a full record (e.g., 30min for in- sifiers are described in Section 3. The experimental results are stance)andalsotheaverageoftenRRintervalaroundthecurrent showninSection4,anddiscussedinSection5.Finally,inSection6, heartbeat. theconclusionsarepointedout. Otherfeaturesextractedfromthecardiacbeatintervalsarealso used in em (Chazal et al., 2004). These features are composed of distancesbetweenfiducialpointsinaheartbeat,aswecanseein 2.Featureextraction Fig.3.Amongthem,theQRSinterval,ortheQRS-complexduration, is quite popular in the literatureand also is use in (Chazal et al., Inthissection,thesixfeatureextractionapproachesusedinthis 2004). Besides thelengthofQRS-complex,anothertime segment workforthecomparisonofclassifiersaredescribed.Observethat isusedasfeatureinthatwork,i.e.,theTwavelength.Theauthor each approach comes from a work/paper which was used for alsousedtheinformationaboutthepresence/absenceofP-wave. arrhythmia classification, obviously using a classifier algorithm The algorithm used for fiducial point extraction in Chazal et al. which is disregarded here. These approaches are chosen because (2004)isproposedinLaguna,Jané,andCaminal(1994)andisalso theybringtechniqueswidelyusedinliteratureandyet,thevalues usedinthisworkhere. ofaccuracy,sensitivity,sensibilityreportedarehighcomparedto Nonetheless,thebestclassificationresultsachievedintheliter- otherpublishedmethods. aturehaveusedfeaturesextractedfromtheRRintervalandtime Notice that the six methods described here and used in our segments of the heartbeat along with features extracted in the experiments and discussion are re-implemented as faithfully as time/frequencydomain(Chazaletal.,2004;Llamedo&Martınez, possibletotheirdescriptionusingMatlab.1 ´ 2011). The simplest form to extract features in the time domain fromtheECGsignalcurveisusingitsownsampledpointsasfea- 2.1.Chazaletal.(2004) tures (Wen, Lin, Chang, & Huang, 2009; Özbay & Tezel, 2010) (seeFig.4).However,usingsamplesfromtheECGcurveasfeatures ThemostcommonfeaturefoundintheliteratureforECGsignal isnotasucheffectivetechnique,duetoboth(1)thedimensionof classification is computed from the cardiac rhythm (heartbeat thefeaturevectorproducedishigh(itdependsontheamountof interval) a.k.a. RR interval. The RR interval is the time between samplesusedtorepresenttheheartbeat),(2)itsufferswithseveral theheartbeatRpeak(themostimportantfiducialpoint)regarding problemsregardingscaleanddisplacementrelatedtothecentral anotherRpeak,whichcanbeitspredecessororsuccessor.InFig.3, point (the R peak). In order to decrease the feature vector size itisillustratedtheRRintervalandothersalsousedinthelitera- and avoid the aforementioned problems, in Chazal et al. (2004), the authors used the interpolation of the ECG signal such that 1 Thesourcecodeofimplementationsareavailableathttp://code.google.com/p/ thefinaltimerepresentationiscomposedof18and19samplesob- eswa-arrhythmia-classification/. tained from 250 samples (approximately 600ms of curve/signal 3564 E.J.S.Luzetal./ExpertSystemswithApplications40(2013)3561–3573 standard deviation of the coefficients in each wavelet sub-band, andalsotheratiooftheabsolutemeanvaluesofadjacentofsub- bands.Theauthorshighlightedthatthechoiceofthemotherwave- letfunctionusedinthefeatureextractionprocessiscriticaltothe final effectiveness of the classification. As a consequence of this claim,allthefeatureextractionprocessesusingthewavelettrans- form studied in the work here were carefully reproduced taking intoaccountthemotherwaveletfunctionsuggestedbytheauthors ofeachwork. 2.4.YuandChen(2007) Fig.4. ECGsignalextractedfromMIT-BIHARdatabase,sampledat360Hz. IntheworkproposedinYuandChen(2007),theauthorsused statistical techniques directly on heartbeat samples and, also, in threewaveletsub-bands:detailsofthefirstlevelofwavelettrans- formdecompositionandapproximationanddetailsofthesecond level one. It is also used the AC power of the original signal, the ACpowerofeachwaveletsub-band,theACpoweroftheautocor- relationfunctionofthecoefficientsofeachsub-band,andtheratio between the maximum and minimum values in each sub-band, addingupto10features.Besidesthese10statisticalfeatures,the authorsalsousedtheRRinterval(RR-predecessor). 2.5.YuandChou(2008) In Yu and Chou (2008), the independent component analysis (ICA)isusedtoextract100coefficientsfromaheartbeatcomposed of 200 samples centered at the R peak. The ICA coefficients are computed using the Fast-ICA algorithm, proposed in Hyvärinen (1999),andonlythefirst33coefficientsarefinallyused.According to the authors, the ICA is used to decomposethe ECG signal in a Fig.5. Reductionofthenumberofsamples/featuresusinginterpolation.Extracted weightedsumofthebasiccomponentswhicharemutuallystatis- fromChazaletal.(2004). ticallyindependent.Tothesecoefficients,theRRinterval(RR-pre- decessor)isadded. initiallysampledat360Hz–seeFig.5).Thisprocessisappliedin thetwoleadsavailableinthedatasetused.Then,forthatwork,a 2.6.Yeetal.(2010) featurevectorcomposedofthe52bestfeaturesreportedisused. Yeetal.(2010)combinedseveralfeatureextractiontechniques 2.2.Songetal.(2005) presented in the literature to generate their feature vector. Their featuresareextractedfrom300samplessurroundingtheR peak, InSongetal.(2005),insteadofinterpolatingtheECGsignalas being100beforeand200aftertheRpeak.Thewavelettransform done in Chazal et al. (2004), the authors used the wavelet trans- isappliedtothesampledECGsignaland118coefficientsareex- formtoextract15featuresfromtheheartbeat.Itisimportantto tracted from detail sub-bands of the third and fourth levels and notethat,themajorityofworksintheliteratureusethewavelet approximationsub-bandofthefourthlevelofthewaveletdecom- transforminthefeatureextractionprocess,becauseitallowsthe position.Alongwiththesefeatures,eighteencoefficientsextracted extractionofinformationinbothtimeandfrequencydomain.Also, using the ICA (also using the algorithm proposed in Hyvärinen several works supports that this method is the best for feature (1999)). This set of feature is named as morphological by the extractionfromECGsignals(Güler&Übeyli,2005;Lin,Du,&Chen, authors. 2008a;Mehmet,2004). FourfeaturesextractedfromtheRRinterval,namedasdynam- Inthatwork(Songetal.,2005),theheartbeatisrepresentedasa ical by the authors, are also used: RR-predecessor, RR-posterior, 400mssampledwindowoftheECGsignalcenteredattheRpeak theaverageofallRRintervalsofarecordofapatient,andtheaver- (144 samples). These samples are decomposed into seven levels ageofthe10RRintervalssurrounding(andcenteredto)thecur- using the wavelet transform, however only the detail coeffi- rent heartbeat. In order to reduce the dimension of the obtained cients/sub-bands are used. Along with these feature, RR interval morphologicalfeaturevectorto26,theauthorsemployedtheprin- features(RR-predecessorandRR-posterior)areincludedinthefi- cipalcomponentsanalysis(PCA)technique.Thisprocessisapplied nalfeaturevector. to the two ECG leads available on the MIT-BIH heartbeat record dataset, producing a final feature vector in which its dimension istwicethanforasinglelead. 2.3.GülerandÜbeyli(2005) InGüler and Übeyli(2005), the authors alsoused thewavelet 3.Expertsystemclassifiers transform to decompose the ECG signal (approximately 700ms aroundtheRpeak)into256coefficientsofthefourfirstlevelscom- Inthissection,thefourlearningalgorithmsusedinourcompar- bining247fromdetailsand18fromapproximationsub-bands.In isonarepresented.SpecialattentionisgiventotheOPFclassifier ordertoreducethefeaturevectordimensionality,theauthorsused sincetothebestofourknowledgeitisthefirsttimethatsuchalgo- simplestatisticalmeasures:theaveragepower,themean,andthe rithmisusedforarrhythmiaclassificationinECGsignals. E.J.S.Luzetal./ExpertSystemswithApplications40(2013)3561–3573 3565 3.1.Optimum-pathforestclassifier Z andthearcsareundirectedandweightedbythedistancesdbe- 1 tweenadjacentsamples(Fig.6b).Thespanningtreeisoptimumin Theoptimum-pathforest(OPF)isaframeworktothedesignof thesensethatthesumofitsarcweightsisminimumascompared pattern classifiers based on optimal graph partitions Papa et al. toanyotherspanningtreeinthecompletegraph. (2009,2012),inwhicheachsampleisrepresentedasanodeofa completegraph,and thearcsbetweenthemare weightedbythe Algorithm1. OPFtrainingalgorithm distance of their corresponding feature vectors. The idea behind OPF is to rule a competition process between some key samples (prototypes) in order to partition the graph into optimum-path trees(OPTs),whichwillberootedateachprototype.Wehavethat samplesthatbelongtothesameOPTaremorestronglyconnected to their root (prototype) than to any other one in the optimum- pathforest.Prototypesassigntheircosts(i.e.,theirlowestweight path or the maximum arc-weight along a path) for each node, andtheprototypethatofferedtheoptimumpath-costwillconquer thatnode,whichwillbemarkedwiththesameprototype’slabel. LetZ=Z [Z beadatasetlabeledwithafunctionk,inwhichZ 1 2 1 andZ are,respectively,atrainingandtestsetssuchthatZ isused 2 1 totrainagivenclassifierandZ isusedtoassessitsaccuracy.Let 2 S # Z a set of prototype samples. Essentially, the OPF classifier 1 createsadiscreteoptimalpartitionofthefeaturespacesuchthat anysamples2Z canbeclassifiedaccordingtothispartition.This 2 partitionisanoptimumpathforest(OPF)computedinRn bythe imageforestingtransform(IFT)algorithm(Falcão,Stolfi,&Lotufo, 2004). The OPF algorithm may be used with any smooth path-cost functionwhichcangroupsampleswithsimilarproperties(Falcão et al., 2004). Particularly, we used the path-cost function f , max whichiscomputedasfollows: (cid:2)0 if s2S; f ðhsiÞ¼ max þ1 otherwise; f ðp(cid:2)hs;tiÞ¼maxff ðpÞ;dðs;tÞg; ð1Þ max max inwhichd(s,t)meansthedistancebetweensamplessandt,anda path p is defined as a sequence of adjacent samples. In such a way, we have that f (p) computes the maximum distance be- max IntheMST,everypairofsamplesisconnectedbyasinglepath tweenadjacentsamplesinp,whenpisnotatrivialpath. which is optimum according to f . That is, the minimum-span- The OPF algorithm assigns one optimum path P⁄(s) from S to max ning tree contains one optimum-path tree for any selected root everysamples2Z ,forminganoptimumpathforestP(afunction 1 node. The optimum prototypes are the closest elements of the withnocycleswhichassignstoeachs2Z nSitspredecessorP(s)in 1 MSTwithdifferentlabelsinZ (i.e.,elementsthatfallinthefrontier P⁄(s) or a marker nil when s2S). Let R(s)2S be the root of P⁄(s) 1 oftheclasses).Algorithm1implementsthetrainingprocedurefor whichcanbereachedfromP(s).TheOPFalgorithmcomputesfor OPF. each s2 Z , the cost C(s) of P⁄(s), the label L(s)=k(R(s)), and the 1 predecessorP(s). The time complexity for training is h(jZ1j2), due to the main TheOPFclassifieriscomposedoftwodistinctphases:(i)train- (lines 7–15) and inner loops (lines 10–15) in Algorithm 1, which ing and(ii) classification.Theformerstepconsists,essentially,in runh(jZ1j)timeseach. finding the prototypes and computing the optimum-path forest, Afterthat,wehaveacollectionofOPTs,eachoneofthemrooted whichistheunionofallOPTsrootedateachprototype.Then,we ateachprototype,asonecanseeinFig.6c.Thisgeometryofthe take a sample from the test sample, connect it to all samples of featurespacegivesthenametotheclassifier. the optimum-path forest generated in the trainingphase and we evaluate which node offered the optimum path to it. Notice that 3.1.2.Classification thistestsampleisnotpermanentlyaddedtothetrainingset,i.e., For any sample t2Z , we consider all arcs connecting t with 2 it is used only once. The next sections describe in details this samples s2Z , as though t were part of the training graph 1 procedure. (Fig. 6d). Considering all possible paths from S⁄ to t, we find the optimum path P⁄(t) from S⁄ and label t with the class k(R(t)) of 3.1.1.Training its most strongly connected prototype R(t)2S⁄. This path can be WesaythatS⁄isanoptimumsetofprototypeswhentheOPF identifiedincrementallybyevaluatingtheoptimumcostC(t)as algorithm minimizes the classification errors for every s2Z . S⁄ 1 CðtÞ¼minfmaxfCðsÞ;dðs;tÞgg; 8s2Z : ð2Þ canbefoundbyexploitingthetheoreticalrelationbetweenmini- 1 mum-spanningtree(MST)andoptimum-pathtreeforf (Allène, Letthenodes⁄2Z betheonethatsatisfiesEq.(2)(i.e.,thepre- max 1 Audibert, Couprie, Cousty, & Keriven, 2007). The training essen- decessorP(t)intheoptimumpathP⁄(t)).GiventhatL(s⁄)=k(R(t)), tiallyconsistsinfindingS⁄andanOPFclassifierrootedatS⁄. theclassificationsimplyassignsL(s⁄)astheclassoft(Fig.6e).An BycomputingaMSTinthecompletegraph(Z ,A)(Fig.6a),we error occurs when L(s⁄)–k(t). Algorithm 2 implements this 1 obtain a connected acyclic graph whose nodes are all samples of procedure. 3566 E.J.S.Luzetal./ExpertSystemswithApplications40(2013)3561–3573 Algorithm2. OPFclassificationalgorithm InAlgorithm2,themainloop(lines1–9)performstheclassifi- cationofallnodesinZ .Theinnerloop(lines4–9)visitseachnode 2 kiþ12Z01; i¼1;2;...;(cid:3)(cid:3)Z01(cid:3)(cid:3)(cid:3)1untilanoptimumpathpkiþ1(cid:2)hkiþ1;ti isfound. Fig. 6. OPF pipeline: (a) complete graph, (b) MST and prototypes bounded, (c) 3.2.Bayesianclassifier optimum-path forest generated at the final of training step, (d) classification processand(e)thetrianglesampleisassociatedtothewhitecircleclass.Thevalues abovethenodesaretheircostsaftertraining,andthevaluesabovetheedgesstand Letp(x—x)betheprobabilityofagivenpatternx2Rn tobe- i forthedistancebetweentheircorrespondingnodes. long to class x, i=1,2,...,c, which can be defined by the Bayes i Theorem(Jaynes,2003): pðxjxÞPðxÞ l ¼ 1 Xx; ð7Þ pðxjxÞ¼ i i ; ð3Þ i N i pðxÞ ix2xi wherep(xjx)istheprobabilitydensityfunctionofthepatternsthat and i compose the class x, and P(x) corresponds to the probability of theclassxiitself. i i Ci¼N1 X(cid:6)xxT(cid:3)lilTi(cid:7); ð8Þ ABayesianclassifierdecideswhetherapatternxbelongstothe ix2xi classx when: i inwhichN meansthenumberofsamplesfromclassx. i i pðxjxÞ>pðxjxÞ; i;j¼1;2;...;c; i–j; ð4Þ i j whichcanberewrittenasfollowsbyusingEq.(3): 3.3.Supportvectormachinesclassifier pðxjxÞPðxÞ>pðxjxÞPðxÞ; i;j¼1;2;...;x; i–j: ð5Þ i i j j Oneofthefundamentalproblemsofthelearningtheorycanbe As one can see, the Bayes classifier´s decision function d(x)= statedas:giventwoclassesofknownobjects,assignoneofthem i p(xjx)P(x) of a given class x strongly depends on the previous toanewunknownobject.Thus,theobjectiveinatwo-classpat- i i i knowledgeofp(xjx)andP(x),"i=1,2,...,c.Theprobabilityval- ternrecognitionistoinferafunction(Schölkopf&Smola,2002): i i uesofP(x)arestraightforwardandcanbeobtainedbycalculating i f :X!f(cid:4)1g; ð9Þ thehistogramoftheclasses.However,themainproblemistofind theprobabilitydensityfunctionp(xjxi),giventhattheonlyinfor- regardingtheinput–outputofthetrainingdata. mationavailableisasetofpatternsanditscorrespondinglabels. Based on the principle of structural risk minimization (Vapnik, Acommonpracticeistoassumethattheprobabilitydensityfunc- 1999), the SVM optimization process is aimed at establishing a tionsareGaussianones,andthusonecanestimatetheirparame- separating function while accomplishing the trade-off that exists tersusingthedatasetsamples(Duda,Hart,&Stork,2000).Inthe betweengeneralizationandover-fitting. n-dimensionalcase,aGaussiandensityofthepatternsfromclass Vapnik(1999)consideredtheclassofhyperplanesinsomedot x canbecalculatedusing: i productspaceH, 1 (cid:4) 1 (cid:5) pðxjxÞ¼ exp (cid:3) ðx(cid:3)lÞTC(cid:3)1ðx(cid:3)lÞ ; ð6Þ hw;xiþb¼0; ð10Þ i ð2pÞn=2jCj1=2 2 i i i i wherew;x2H;b2R,correspondingtodecisionfunction: inwhichl andC correspondtothemeanandthecovariancema- i i trix of class xi. These parameters can be obtained by considering fðxÞ¼sgnðhw;xiþbÞ; ð11Þ each pattern x that belongs to class x using the following i equations: and, based on the following two arguments, the author proposed theGeneralizedPortraitlearningalgorithmforproblemswhichare separablebyhyperplanes: E.J.S.Luzetal./ExpertSystemswithApplications40(2013)3561–3573 3567 1. Aunmiqounegoapltlimhaylpheyrppelarpnleasnesdeipsatirnagtiunigshtehdebydathtae,mthaexrime uemxismtsara- IJj ¼XNK wjkOJk(cid:3)1 ð16Þ gin of separation between any training point and the k¼1 hyperplane. and 2. The over-fitting of the separating hyperplanes decreases with (cid:8) (cid:9) increasingmargin. OJ(cid:3)1¼/ IJ(cid:3)1 ; ð17Þ k k Thus, to construct the optimal hyperplane, it is necessary to wherej=1,2,...,NJ,beingNJandNKtheamountofneuronsatthe solve: layer J and J(cid:3)1, respectively, and wjk stands for the weightsthat modifythekthoutputoflayerJ(cid:3)1,i.e.,OJ(cid:3)1. 1 k minimize sðwÞ¼ kwk2; ð12Þ The backpropagation algorithm is usually employed to train w2H;b2R 2 MLP(Russell&Norvig,2009).Thisalgorithmminimizesthemean squarederrorbetweenthedesiredoutputsr andtheobtainedout- subjectto: q putsU ofeachnodeoftheoutputlayerQ.Therefore,theideaisto q yiðhw;xiiþbÞP1 forall i¼1;...;m; ð13Þ minimizetheequationbellow: (cid:3)w1ithfotrhyei=co(cid:3)n1s,traanidnta(ls1o3)fiexninsgurtihnegstchaaletfo(fxiw)w.Aildlebtea+il1edfodrisyciu=s+si1onanodf EQ ¼N1 XNQ ðrq(cid:3)UqÞ2; ð18Þ theseargumentsisprovidedbySchölkopfandSmola(2002). Q q¼1 The function s in (12) is called the objective function, while in inwhichN isthenumberofneuronsattheoutputlayerQ. Q (13) the functions are the inequality constraints. Together, they form a so-called constrained optimization problem. The separating 4.Experimentsandresults functionisthenaweightedcombinationofelementsofthetrain- ingset.Theseelementsarecalledsupportvectorsandcharacterize Inthiswork,weproposetheuseofarecentandpowerfulpat- theboundarybetweenthetwoclasses. tern recognition technique, the OPF classifier, for heartbeat ECG The replacement referred to as the kernel trick (Schölkopf & signalclassification.InSection2,wesurveyedsixfeatureselection Smola,2002)isusedtoextendtheconceptofhyperplaneclassifi- approacheswidelyusedintheliteratureforthispurpose,inwhich erstononlinearsupportvectormachines.However,evenwiththe allwerere-implemented.InSection3,wedescribedtheOPFclas- advantageof‘‘kernelizing’’theproblem,theseparatinghyperplane sifier along with the other three classifiers, i.e., SVM, MLP, and maystillnotexist. Bayesian,whichwillbeusedinourexperimentspresentedinthis Inordertoallowsomeexamplestoviolate(13),theslackvari- section. These features extraction approaches and classifier algo- ablesnP0areintroduced(Schölkopf&Smola,2002),whichleads rithmsarecombinedtoyieldintelligentsystemswithhighaccu- totheconstraints: racyandlowcomputationalcost. yiðhw;xiiþbÞP1(cid:3)ni forall i¼1;...;m: ð14Þ The experiments works as follows. Initially we describe the dataset used, the suggestedrecommendations by the AAMI stan- Aclassifierthatgeneralizesefficientlyisthenfoundbycontrol- dardstoanalyzeandclassifycardiacarrhythmiausingECGsignals lingboththemargin(throughkwk)andthesumoftheslackvari- ables Pn. As a result, a possible accomplishment of such a soft whichrecommends,and,finally,anexplanationonhowtheMIT- i i BIH Arrhythmia Dataset is divided for creating the training marginclassifierisobtainedbyminimizingtheobjectivefunction: (denominated in this work as DS1) and testing (denominated of sðw;nÞ¼1kwk2þCXm n; ð15Þ DS2) sets as suggested in Chazal et al. (2004). After, we present 2 i themeasuresusedtoevaluatetheeffectivenessoftheexpertsys- i¼1 temclassifiersproposedinthiswork. subject to the constraint in (14), where the constant C >0 deter- minesthebalancebetweenover-fittingandgeneralization.Dueto 4.1.DatabasedescriptionandAAMIstandards thetuningvariableC,thesekindsofSVMbasedclassifiersarenor- mallyreferredtoasC-SupportVectorClassifiers(C-SVC)(Cortes& The MIT-BIH Arrhythmia Database contains 48 half-hour Vapnik,1995). recordings, sampled at 360Hz, and eighteen types of heartbeats areclassifiedandlabeled.TocomplywiththeAAMIrecommenda- 3.4.Multi-layerperceptronneuralnetworkclassifier tions, only 44 recordingsfrom the MIT-BIH Arrhythmia Database shouldbeusedforevaluationofcardiacarrhythmiasignalclassifi- Inthisworkweusedanmulti-layerperceptronneuralnetworks cationmethods,excludingthefourrecordingsthatcontainpaced (ANN-MLP) from fast artificial neural network library (FANN), in beats. The ANSI/AAMI EC57:1998/(R)2008 standard AAMI (2008) Nissen (2003), which is a free open source ANN library, which recommends to group those heartbeatsintofive classes: (1) nor- implements ANN-MLP in C and supports both fully and sparsely mal beat (N), (2) supraventricular ectopic beat (SVEB, here just connectednetworks.TheANN-MLPisacombinationofPerceptron S),(3)ventricularectopicbeat(VEB,herejustV),(4)fusion(F)of layers aiming to solve multi-class problems Haykin (2007). The aVandaN,and(5)unknownbeattype(Q),asshowninTable1. neural network architecture is composed of neuron layers, such Recently, in Llamedo and Mart´ınez (2011), it is proposed a that each output feeds the input neurons at the follows layer. shortergroupofclasses.SincetheAAMIQclass(unclassifiedand The first layer, denoted by A, has N neurons, where N has the pacedheartbeats)ismarginallyrepresentedinthedatabase(corre- A A samedimensionalityofthefeaturevector,whilethelastlayer,de- spondingto0.015%ofalldatabase),itisdiscarded.Also,duetoits noted by Q, has N neurons, which stands for the number of the morphologic similarity to the V AAMI class, the fusion (F) AAMI Q classes. This neural network assigns a pattern vector x to a class class, instead of being discarded, are merged together creating a x ifthemthoutputneuronachievesthehighestvalue. newventricularclass,hererepresentedasV0.Thismodificationis m Eachinputlayercorrespondstoaweightedsumoftheprevious referredasAAMI2labeling.Itisimportanttonotethatthisreduc- layer.LetJ(cid:3)1bethepreviouslayerofJ,suchthateachinputIJinJ tioninthegroupofclassesismainlymotivatedbythenonrepre- j isgivenby sentative amount of samples of the AAMI Q and the featureless 3568 E.J.S.Luzetal./ExpertSystemswithApplications40(2013)3561–3573 Table1 MappingtheMIT-BIHArrhythmiatypestotheAAMIclasses. TheAAMIheartbeat N SVEB VEB F Q class Description AnyheartbeatnotintheS, Supraventricularectopic Ventricularectopicbeat Fusionbeat Unknownbeat V,F,orQclass beat MIT-BIHheartbeat Normalbeat(N) Atrialprematurebeat(A) Prematureventricular Fusionofventricularand Pacedbeat(P) types(code) contraction(V) normalbeat(F) Leftbundlebranchblock Aberratedatrial Ventricularescapebeat Fusionofpacedand beat(L) prematurebeat(a) (E) normalbeat(f) Rightbundlebranchblock Nodal(junctional) Unclassifiedbeat(U) beat(R) prematurebeat(J) Atrialescapebeat(e) Supraventricular prematurebeat(S) Nodal(junctional)escape beat(j) Table2 (2008). Moreover, analyzing the experiments performed on the MIT-BIHArrhythmiaDatasetdivisionschemeoftheheartbeats. sixworkswestudiedhereusedforcollecttheirfeaturerepresenta- tion(presentedinSection2),(Chazaletal.,2004)istheonetofol- Dataset N S V F Q Total #Rec lowstheAAMIstandards,whiletheothersusedifferentheartbeats DS1 45,844 943 3788 415 8 50,998 22 ofasamepatienttobeusedintrainingandtestingduetothehigh DS2 44,238 1836 3221 388 7 49,690 22 Totals 90,082 2779 7009 803 15 100,688 44 effectivenesstheyreportintheirworks.ThisclaimisshowinLuz andMenotti(2011). The two partitions should be composed of the records of pa- Table3 tients’heartbeatsshowninTable3,inwhichthenumbersindicate Thedivisionofrecordsofpatients’heartbeatsoftheMIT-BIHArrhythmiaDatasetfor a code for the recording of 30min of heartbeat of each patient. training(DS1)andtesting(DS2). Chazal et al. (2004) claims that the record numbered 1## and Record(patientnumber)ofheartbeats 2## belongs to two class of patients (Mark & Moody, 1990), i.e. the first range are intended to serve as a representative sample DS1 DS2 ofroutineclinicalrecordings,whilethesecondonecontainscom- 101 114 122 207 223 100 117 210 221 233 plex ventricular, junctional, and supraventricular arrhythmias, so 106 115 124 208 230 103 121 212 222 234 108 116 201 209 105 123 213 228 theydecidedtobalancethepresenceoftheserecordsineachset 109 118 203 215 111 200 214 231 suchthattheclassifierhasthelargerdiversityaspossibleforboth 112 119 205 220 113 202 219 232 training and testing, making these datasets the less biased as possible. Observethatinsuchdatadivisionschemeheartbeatsofasame patient are not present in both datasets, complying to the AAMI valuesachievedbytheAAMIFclassintheworksreportedinthe standards. Thatmeansthattheheartbeartsofasamepatientare literature (Chazal et al., 2004; Llamedo & Martınez, 2011; Mar, ´ solelyusedtoeither(andnotboth)trainortestthesystems.The Zaunseder,Martínez,Llamedo,&Poll,2011)andalsointhiswork. reasonsforthisconstraintistoreportthepredictiveeffectiveness Also observe that the N AAMI class is dominant representing of ECG signal classification systems compatible in a real clinical 89.46% of all heartbeats’ dataset. So attention has to be given in trial. the effectiveness analysis of the results related to N AAMI class, Allcompositionoffeatureextractionapproachesandclassifier since an optimal performance in only in that class means a final algorithmsaretraininginDS1datasetandtestedinDS2following accuracy of almost 90%. Sensibility and specificity are measures theschemeproposedinChazaletal.(2004). that can capture the effectiveness performance of each class and areexplainedfurtherinthissection. The AAMI standards also recommend dividing the recordings 4.2.Performanceevaluationmeasures intotwodatasets:onefortrainingandanotherfortestingsuchthat heartbeats from one recording (patient) are not used simulta- Inordertoanalyzetheexpertsystemclassifiers,wepresentthe neouslyforbothtrainingandtestingtheclassifier.Asclaimedbe- threemeasuresemployed:accuracy,sensitivity,andspecificity. foreandshowninLuzandMenotti(2011),whenthisconstraintis Accuracy (Acc) is defined as the ratio of total beats correctly notimposedforbuildingthedatasetsfortrainingandtestingthe classifiedandthenumberoftotalbeats, classifiersachieveveryhighperformance.However,suchpractice beatscorrectlyclassified isnotvalidforconsideringrealisticclinicalresults,sincetheclas- Accuracy¼ : ð19Þ sifierisnottrainedwiththedataheartbeatofapatienttobeana- number of totalbeats lyzed.Usuallytheheartbeatsofanewpatientdoesnotbelongto Sensitivity(Se)canbedefinedastheratioofcorrectlyclassified thetrainingset,requiringtheuseofexpertsystemclassifiersmore beatsofoneclassandthetotalbeatsclassifiedasthatclass,includ- robust. ingthemissedclassificationbeats, Then train (DS1) and test (DS2) sets are created, in order to accomplishAAMIrecommendationsandapproximatetorealworld truepositives Sensitivity¼ ð20Þ situation.AsonecanseefromthevaluesinTable2anefforttobal- truepositivesþfalsenegatives ancetheamountofsamples/heartbeatperclassinthedatasetsis alsonoticedinsuchdivision.Notethat#Recstandsforthenumber inwhichtruepositivesandfalsenegativesstandforthenumberof ofrecords(patients)andDS1andDS2aresuggestedinChazaletal. heartbeats of a given class correctly and incorrectly classified, (2004) and not in ANSI/AAMI EC57:1998/(R)2008 standard AAMI respectively. E.J.S.Luzetal./ExpertSystemswithApplications40(2013)3561–3573 3569 Table4 Computingtheclassifierseffectivenessfromtheconfusionmatrix.ThisschemeisextractedfromChazaletal.(2004)andadapted. Abbreviation:Acc:Accuracy,F:FAAMIclass,N:NAAMIClass,Q:QAAMIClass,Se:Sensitivity,Sp:Specificity,S:SAAMIclass,V:VAAMIclass. Specificity(Sp)standsfortheratioofcorrectlyclassifiedbeats Se(cid:5)Sp HM¼2(cid:5) : ð22Þ amongallbeatsofaspecificclass, SeþSp truenegatives These measures can be computed from a confusion matrix Specificity¼ ð21Þ truenegativesþfalsepositives which can be obtained by comparing the expected classification (reference data) which the ones predicted by a classifier. Table 4 in which true negatives stands for number of the heartbeats not shows in details how to compute these measures, obtained and belongingtoagivenclassclassifiedasnotbelongingtotheconsid- firstly discussed by Chazal et al. (2004). In Table 4(a) and (b), in eredclass,whilefalsepositivesstandsforthenumberofheartbeats darkgray(verticalhighlightedlines),weillustratehowtocompute incorrectly classified as belonging to a given class. Observe that thefalsepositivesforVandSAAMIclasses,respectively,whilein theselasttwomeasuresarebasedonthedataofeachclass. gray (horizontalhighlightedlines), we illustrate how to compute Furthermore,wealsoproposetheuseofaHarmonicmean(Hm) thefalsenegativeforVandSAAMIclasses,respectively.Tocom- betweensensitivityandspecificity,mathematicallyexpressby: puteSe’seSp’sforN,F,andQAAMIclasswecanproceedinasim- ilarwaytotheonesofVandSAAMIclasses. Table5 Trainingandtestingtime(inseconds)forMIT-BIHArrhythmiaDatasetfollowingAAMIrecommendations(5classes). Features Classifiers SVM OPF Bayesian MLP Train Test Total Train Test Total Train Test Total Train Test Total Chazaletal.(2004) 192.92 181.08 374.00 609.71 895.78 1505.49 90.79 2324.32 2415.11 3838.67 0.22 3838.89 GülerandÜbeyli(2005) 078.01 059.99 138.00 216.69 220.87 0437.56 18.80 0352.53 0371.33 1923.06 0.13 1923.19 Songetal.(2005) 095.07 057.75 152.81 205.64 229.02 0434.66 18.24 0375.44 0393.68 1942.65 0.13 1942.78 YuandChen(2007) 107.38 069.65 177.02 250.40 222.31 0472.71 22.80 0500.50 0523.29 2078.85 0.14 2078.99 YuandChou(2008) 066.00 049.02 115.01 187.80 176.81 0364.61 14.47 0278.40 0292.87 1846.67 0.13 1846.80 Yeetal.(2010) 162.12 130.51 292.63 450.53 586.49 1037.02 62.35 1572.71 1635.06 3083.42 0.18 3083.61 Table6 Trainingandtestingtime(inseconds)forMIT-BIHArrhythmiaDatasetfollowingthelabelingsuggestionfromLlamedoandMart´ınez(2011)(AAMI2-3classes). Features Classifiers SVM OPF Bayesian MLP Train Test Total Train Test Total Train Test Total Train Test Total Chazaletal.(2004) 190.36 173.56 363.92 609.98 891.14 1501.12 90.17 1393.75 1483.92 3682.04 0.21 3682.25 GülerandÜbeyli(2005) 077.90 058.93 136.83 205.76 216.58 0422.34 18.75 0209.50 0228.25 1790.11 0.13 1790.24 Songetal.(2005) 101.63 057.27 158.90 216.65 228.14 0444.78 18.16 0226.17 0244.33 1794.33 0.13 1794.46 YuandChen(2007) 115.23 068.12 183.35 249.83 224.41 0474.24 22.60 0302.08 0324.69 1947.38 0.14 1947.51 YuandChou(2008) 068.37 049.81 118.18 188.00 177.98 0365.98 14.41 0168.84 0183.25 1700.25 0.12 1700.37 Yeetal.(2010) 158.11 129.90 288.02 443.63 581.69 1025.32 62.24 0944.93 1007.17 2951.61 0.18 2951.78 3570 E.J.S.Luzetal./ExpertSystemswithApplications40(2013)3561–3573 Althoughtheaccuracyisthemostimportantmeasurefordecid- ing the choice of an expert system classifier, the sensitivity and 00 0000 00 0000 0j0j 0j0j0j0j 0j0j 0j0j0j0j specificity are measures quite important as well in this context, 0000 00000000 0000 00000000 11 1111 11 1111 since the number of heartbeats for each class in the MIT-BIH Q 0j0j 0j0j0j0j 0j0j 0j0j0j0j Arrhythmia Database is very imbalanced and a single class (e.g., thenormalbeats)couldrepresentmostofthetotalaccuracy,while M 10 9648 00 4038 the sensitivity and specificity directly depend on the number of p/H 455j501j 513j728j107j930j 000j000j 622j000j109j427j stiavmeBnpeelsesidssepfoserrthfeoearscmehamcnlecaaesssou.frtehsefoerxpeveartlusaytsitnegmacnldascsoifimepras,riwnegathlseoecfofemc-- FHMSe/S 38497j00598j 07597j16896j03999j18396j 000100j000100j 126097j000100j049099j162097j putethetrainingandtestingtime,whicharealsoveryimportant M 63 1658 60 1892 measures in ECG arrhythmia signal classification depending on H 8356 84758490 6551 89768970 theapplication. VSe/Sp/ 777905jj408905jj 778914jj618974jj747971jj855968jj 522881jj349950jj 830962jj643952jj830982jj543996jj 5.Discussion M 06 6906 02 3030 Ouranalysisanddiscussionoftheresultsreportedinthiswork H 0204 30053021 0000 14000700 aredividedintotwoparts:efficiencyandeffectiveness.Notethat Sp/ 71j71j 54j78j88j94j 99j00j 66j00j95j00j all experiments reported here used a PC Intel i7 at 2.8GHz and Se/ 109j239j 839j309j779j219j 009j110j 709j010j809j010j 4GbofRAMonaLinuxUbuntuoperationalsystem. S 00 1011 0000 07000300 5.1.Efficiency HM 656497 741646732743 537370 735575703532 p/ 7j9j 8j7j3j8j 6j0j 8j2j2j6j S 34 5991 83 1156 TheruntimesobtainedbytheECGsignalexpertsystemalgo- Se/ 55j43j 86j54j75j26j 33j02j 86j34j15j13j rithms for learning the model from the entire training set (DS1) N 8486 84929593 8895 90959797 and for classifying the testing set (DS2) using the AAMI protocol (five classes) following the scheme proposed in Chazal et al. M 76 2571 18 6001 H 8079 81869089 8286 86899290 (2004) and the AAMI protocol with the shorter groups of classes p/ (threeclasses)suggestedbyLlamedoandMart´ınez(2011)arere- es). OPF AccSe/S MLP portedinTables5and6,respectively. ass Regardingthetrainingtime,inaverage,theBayesianclassifiers cl 5 M 00 0000 00 0000 aaOcvPheFrieacvgleeadsasltimfiheeorsbtpefsroteustreinmtitmee,defostlhllooewwteehrdirthdbaynbtethsheteStBiVmaMyeescbilaeanisnscigfilaeisnrsibfiaeevirne.rgTahginee dations( QSe/Sp/H 01000jj01000jj 01000jj01000jj01000jj01000jj 01000jj01000jj 01000jj01000jj01000jj01000jj n e around 10 times greater than the one of the Bayesian classifier. m m Imnoadveelsra,gdeu,ethteoMcoLnPvecrlagsesnificeercirsitethrieonslosewteurp.onHeowfoervelera,rtnhiengSVthMe reco p/HM 8655j0000j 0000j0000j0000j0000j 4551j5010j 5134j2708j2074j9308j c(tbalanosttshtifiofeonrroatthecehtihfeeavatettsuhrteehsgereihxditgsrhaecaetrsectdhtibtmiymeSefoofnorgrletehateranlSi.Vn(gM20i’s0n5ct)wa).noIdtsiCistupimaatrpiaoomnrs-- wingAAMI FHMSe/S 487099j000100j 000100j000100j000100j000100j 38497j00598j 07297j15796j03999j18396j o ectbrheatueaentrccsbhthhedinaeenngfioMgnateiLicsttPeiiimodncnelttsahrsaaaasbritineofifiuoennrtrogt8toht%tibematfktaaeheisnnrwteeeieedrnrctfeaoolanrassoistcghticfinorseeiiufigrenscn,tcaiSlfinianVctsaMsttnher,staeOifctnoPrliraaFnsi3agnsniiofisndrpcgB5eapetacihdyolaeangsss.eaisae.innIst,,, miaDatasetfoll VSe/Sp/HM 4800995648jj0800999148jj 0481000092jj0001000000jj4010996572jj4760992643jj 778905837jj409902562jj 781914843jj621975759jj757972851jj859968910jj h Analyzingthetestingtime,duetoitsnature,aswecanobserve yt h fsotrhenotedm.Btphetliiharndcegesfefafoostutarrborolnuerensd,ebotrehnsienotghfMmeiLntaPeagscvntleiiatnrsuagsdgifideeeasortlnaoi.ewsTotehhrred,eteOhfraePsoFStfeVcmsMltaaosgasnnpiefiipteueorandraestrhsiisnleoesswteeaecss-rt MIT-BIHArr Se/Sp/HM 010000jj010000jj 010000jj010000jj010000jj010000jj 11971022jj23972046jj 83955306jj27978053jj71989291jj20994214jj thanSVM,andtheslowerclassifierforthetestingdatainthemost for S 0 1011 oofsnatoiiffnumgfrlemtnmyehcibtfieeuiedncmpcraatnttoohshotsefertst4ecetl0eoiesas%ftssei.ttsanxiheAnlgpleslgesttoBorihtmifaameoytsebhekeBssednaefietayarAscvnseArtes(eeMciTaatrlahasnIbt2siahnsltcedaiglfitnaah6cestea)rast.huistfiteIesehteetsesrOdit.siPnsBbTipFgamhyeyictepsteilhdmaosreisireanestdrnaigffieunodeccutrurltpat,itcoohsdtisneituniosfiefsoneeettatreeeootsmfuptttthirenhhetarogees-t ndspecificities(in0.1%) Classifiers SVM AccNSe/Sp/HM 9220996345512jj8940999048092jj 8931000030057jj8901000000000jj9150998254405jj9190998336503jj Bayesian 807845537657jj795862350498jj 814849659742jj868928494645jj910959592732jj891932619744jj a etttachohoxnraestdCrtndaSoM(itcVCmnotLM)ceeoPe=dntrch5cnsbllieiaayoanrssnngsfsCdaeiihtfifilahiGaetteeuyzrarasrmfoie.ulsfsmlHel.fttaoTahrsuwhia(tsnilcees.f)rvae(c,=e2vaabrte00n,eur0.0iatbr4nheg0e)gee1refeftxtowopiiprmmlralleoasaeesilwnnlettaoneeotkdthdtaedecdtbneoiucyofinilennnsati.tsehdooseueittfirhrhBeeeeeadrxys.phpeTaiiesgshrirhaaeigmemnsrre,eeevaOvtneetaPtecrlsFs-r-, Table7Accuracies,sensitivities Features Chazaletal.(2004)GülerandÜbeyli(2005)Songetal.(2005)YuandChen(2007)YuandChou(2008)Yeetal.(2010) Chazaletal.(2004)GülerandÜbeyli(2005)Songetal.(2005)YuandChen(2007)YuandChou(2008)Yeetal.(2010)

Description:
mance than the MLP and SVM classifiers in terms of classification time and accuracy, . Except for patients who use pacemakers, the perceived varia-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.