ebook img

Dysconnectivity of neurocognitive networks at rest in very-preterm born adults☆. PDF

1.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dysconnectivity of neurocognitive networks at rest in very-preterm born adults☆.

NeuroImage:Clinical4(2014)352–365 ContentslistsavailableatScienceDirect NeuroImage: Clinical journal homepage: www.elsevier.com/locate/ynicl Dysconnectivity of neurocognitive networks at rest in very-preterm ☆ born adults ThomasP.Whitea,IonaSymingtona,NazarethP.Castellanosa,PhilipJ.Brittaina,SeánFroudistWalsha, Kie-WooNama,JoãoR.Satob,MatthewP.G.Allina,SukhiS.Shergilla,RobinM.Murraya, SteveC.R.Williamsc,ChiaraNosartia,⁎ aDepartmentofPsychosisStudies,InstituteofPsychiatry,King'sCollegeLondon,deCrespignyPark,LondonSE58AF,UK bCentreofMathematics,ComputationandCognition,UniversidadeFederaldoABC,Av.dosEstados,5001BairroBangu,SantoAndré,SPCEP09210-580,Brazil cDepartmentofNeuroimaging,InstituteofPsychiatry,King'sCollegeLondon,deCrespignyPark,LondonSE58AF,UK a r t i c l e i n f o a b s t r a c t Articlehistory: Advancesinneonatalmedicinehaveresultedinalargerproportionofpreterm-bornindividualsreachingadult- Received23September2013 hood.Theirincreasedliabilitytopsychiatricillnessandimpairmentsofcognitionandbehaviourintimatelasting Receivedinrevisedform28November2013 cerebralconsequences;however,thecentralphysiologicaldisturbancesremainunclear.Offundamentalimpor- Accepted12January2014 tancetoefficientbrainfunctionisthecoordinationandcontextually-relevantrecruitmentofneuralnetworks. Availableonline18January2014 Large-scaledistributednetworksemergeperinatallyandincreaseinhierarchicalcomplexitythroughdevelop- ment.Preterm-bornindividualsexhibitsystematicreductionsincorrelationstrengthwithinthesenetworksdur- Keywords: inginfancy.Here,weinvestigateresting-statefunctionalconnectivityinfunctionalmagneticresonanceimaging Pretermbirth Resting-state datafrom29very-preterm(VPT)-bornadultsand23term-borncontrols.Neurocognitivenetworkswereidenti- Functionalconnectivity fiedwithspatialindependentcomponentanalysisconductedusingtheInfomaxalgorithmandemployingIcasso Neurocognitivenetworks procedurestoenhancecomponentrobustness.Networkspatialfocusandspectralpowerwerenotgenerallysig- Executivefunction nificantlyaffectedbypretermbirth.Bycontrast,Granger-causalityanalysisofthetimecoursesofnetworkactiv- ityrevealedwidespreadreductionsinbetween-networkconnectivityinthepretermgroup,particularlyalong pathsincludingsalience-networkfeatures.ThepotentialclinicalrelevanceoftheseGranger-causalmeasure- mentswassuggestedbylineardiscriminantanalysisoftopologicalrepresentationsofconnectionstrength, whichclassifiedindividualsbygroupwithamaximalaccuracyof86%.Functionalconnectionsfromthestriatal saliencenetworktotheposteriordefaultmodenetworkinformedthisclassificationmostpowerfully.Inthe VPT-borngroupitwasadditionallyfoundthatperinatalfactorssignificantlymoderatedtherelationshipbetween executivefunction(whichwasreducedintheVPT-bornascomparedwiththeterm-borngroup)andgeneralised partialdirectedcoherence.Togetherthesefindingsshowthatresting-statefunctionalconnectivityofpreterm- bornindividualsremainscompromisedinadulthood;andpresentconsistentevidencethatthestriatalsalience networkispreferentiallyaffected.Therapeuticpracticesdirectedatstrengtheningwithin-networkcohesion andfine-tuningbetween-networkinter-relationsmayhavethepotentialtomitigatethecognitive,behavioural andpsychiatricrepercussionsofpretermbirth. 1.Introduction disorders(Boyleetal.,2011;Dalzieletal.,2007;Hacketal.,2004; Nosartietal.,2012;Walsheetal.,2008;Wilesetal.,2005). Infants born at or before a gestational age of 33weeks (very- OurunderstandingofthecerebralsequelaeofVPT-birthisconsider- preterm;VPT)arelikelytoexhibitcognitive,educationalandbehav- ableforearlystagesoflife.ThebrainsofVPT-borninfantsoftenexhibit iouralproblemsinchildhood(Boyleetal.,2011;JohnsonandMarlow, haemorrhagicandhypoxic–ischaemicdamageleadingtoventriculardi- 2011),whichpersistthroughadolescenceintoadulthood(Allinetal., latation,whitematterabnormality,anenlargedsubarachnoidspace 2008;Hack,2009;Hilleetal.,2007;SaigalandDoyle,2008).Preterm (Inderetal.,2003)andregionalmyelindamage(Sieetal.,1997).Fur- birthhasfurtherbeenassociatedwithanincreasedriskofpsychiatric ther,itappearsthatratesofcorticalgrowthandrelatedmicrostructure developmentarereducedduringinfancyinlinewithprematurity(Ball etal.,2013).Anatomicalabnormalitiesobservedduringchildhoodin- ☆ Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommons cludehemispherically-asymmetricreductionsingrey-mattervolume AttributionLicense,whichpermitsunrestricteduse,distribution,andreproductionin intemporalandperi-Rolandiccortex(Petersonetal.,2000),increases anymedium,providedtheoriginalauthorandsourcearecredited. ⁎ Correspondingauthorat:DepartmentofPsychosisStudies,InstituteofPsychiatry,de inparietalandfrontalcorticeswhicharepredictedbygestationalage CrespignyPark,LondonSE58AF,UK.Tel.:+442078480133;fax:+442077019044. atbirth(Kesleretal.,2004);andbilateralincreasesingyrificationin 2213-1582/$–seefrontmatter http://dx.doi.org/10.1016/j.nicl.2014.01.005 T.P.Whiteetal./NeuroImage:Clinical4(2014)352–365 353 thetemporalcortex(Kesleretal.,2006).Togetherthesefindingssug- stronglywarranted.Here,weapplyspatialindependentcomponent gestwidespreaddisruptiontoprototypicpatternsofcerebraldevelop- analysis(ICA)(BellandSejnowski,1995)–adata-drivenblind-source ment.Similarly,inadolescence,intricateanddistributedanomaliesof separationmethodthatidentifiesspatialpatternsonthebasisoftheir grey-mattervolumeareexhibitedbyVPT-bornindividuals.Inaddition maximalspatialindependence–toresting-statefMRIdatacollectedin tovolumedecreasesinregionsincludingthefrontal,temporal,insular VPT-born adults and in term-born controls. In line with Menon's andoccipitalcortices,caudatenucleusandputamen,increasesarealso (2011) unifying triple-network model of psychopathology and the seeninfrontalandtemporalregions,cerebellumandcingulategyrus established cognitive impairments demonstrated by preterm-born (Nosartietal.,2008).Thesefindingsarecompatiblewithasystematic adults,thisinvestigationisfocusedonthreeneurocognitiveRSNs:the andfunctionally-influentialstructuralremodellingofcerebralarchitec- defaultmodenetwork(DMN)(Raichleetal.,2001),whichcomprises tureinassociationwithprematurebirth(Allinetal.,2010).Consistent themedialprefrontal,posteriorcingulate,precuneusandbilateralangu- withtheanatomicalliteraturearereportsthatbloodoxygenation-level largyrus,andwhoseactivityiselevatedduringintrospectivetasks dependent(BOLD)activationresponsesduringlanguage,inhibitory (Gusnardetal.,2001);thecentralexecutivenetwork(CEN),whichin- control,attentionallocationandassociativelearningimplythatVPT- cludesdorsolateralprefrontalandparietalregions,andisactivatedby bornadolescentsadoptpossiblycompromisedandalternativefunction- tasksinvolvingexternally-focusedattention,workingmemoryandre- alpathways(Gimenezetal.,2005;Kalpakidouetal.,2012;Lawrence sponseselection(Corbettaetal.,2002;Hesteretal.,2007;Medaetal., etal.,2009;Petersonetal.,2002). 2008);andthesaliencenetwork(SN),whichisfocusedinfrontoinsular AccordingtoHebbianprinciples,itislikelythattheseobserveddis- cortex,dorsalanteriorcingulatecortex(ACC)andsubcorticalstructures turbancesofneuronalinfrastructureareatleastinpartfunctionally includingthestriatum(Seeleyetal.,2007),andwhoseactivityisdriven driven. Sinceboth endogenous and event-related neural activity is bycognitive,emotionalorhomeostaticsalience. vitalfortherefinementofnervous-systemcircuitry(PennandShatz, Theprincipalaimsofthisworkarethreefold:first,toinvestigate 1999),theemergenceofneuralnetworksislikelytoplayacriticalrole whetherVPTbirthisassociatedwithsystematicchangesinthespatial incorticaldevelopment;andrelatedalterationisimpliedinthepreterm andspectralcharacteristicsoftheselarge-scaleneurocognitivenet- brain.Thestudyofresting-statefunctionalconnectivity(RSFC)has worksinearlyadulthood;second,toevaluatewhetherthecausalrela- demonstratedintrinsicandcoherentBOLDsignalfluctuationsindisso- tionshipsbetweenthetimecoursesofthesenetworksarealteredin ciable networks involving large-scale, spatially-disparate regions VPT-borncomparedtoterm-bornindividualsusingGrangercausality; (Damoiseauxetal.,2006).Thefunctionalrelevanceoftheseresting- andthird–inordertotestthepotentialclinicalrelevanceoftheseindi- statenetworks(RSNs)canbeinferredfromtheirspatialcongruence ces–toexaminetheextenttowhichthesenetwork-focusedmeasures withnetworksofregionsco-activatedinassociationwithspecificcogni- areassociatedwithfunctionalalterationsobservedinVPTsamples. tiveandsensorytasks(Biswaletal.,1995;Foxetal.,2005;Hampson etal.,2002);aswellasinter-regionanatomicalpathways(Greicius 2.Method etal.,2009;Skudlarskietal.,2008;Vincentetal.,2007). Animportantdevelopmentwasmarkedbyrecentstudiesoftheon- 2.1.Participants tologicaldevelopmentofRSNs.Inapioneeringstudy,Franssonetal. (2007)demonstratedthatRSNsareevidentatterm-equivalentage 29VPT-bornindividuals(b33weeksofgestation)wererecruitedto (around40weeksofgestation)inVPT-borninfants,albeitwithlesser takepartinthisstudyfromalargecohortofindividualswhohadbeen complexitythanadultnetworks;term-equivalentnetworksarefewer admittedtotheNeonatalUnitatUniversityCollegeHospital,London in number, non-lateralised and restricted to hemispherically- between1979and1984,whohavebeenfolloweduptoinvestigate homologousstructures.Doriaetal.(2010)furtherdemonstratedthat thelong-termconsequencesofprematurebirth.VPT-bornparticipants' evencomplexRSNs,suchastheexecutivecontrolnetwork,arealso neonatalultrasound(US)scanswereclassifiedas:normal(n=16); presentatterm,andbeforetheacquisitionofrelatedcognitivefunctions exhibiting uncomplicated periventricular haemorrhage (n = 4); laterinchildhood.Supekaretal.(2009)complementarilyobservedthat orexhibitingperiventricularhaemorrhageandventriculardilatation thehierarchicalorganisationofRSNsincreasesfromchildhoodtoyoung (n=9).PleaserefertoNosartietal.(2008)forfurtherdetailsonUS adulthood;andsuggestedthatwhilsthighly-hierarchicalbrainsafford classification. benefitsintermsofmaximisingrapidtop-downcommunicationand 23age-matchedterm-bornindividuals(37–42weeksofgestation) minimisingwiringcostsinadults,theless-hierarchicalarrangementin were also assessed. The inclusion criterion for this group was full- childrenmayservetoprotectfromthepotentialofpervasiveeffects termbirth(37–42completedweeksofgestation);exclusioncriteria resultingfromdamagetohubs.Together,thesefindingsillustratethe werebirthcomplications(forexample,lowbirthweightdefinedas non-stationarityofRSNsthroughdevelopment. b2500 g, endotracheal mechanical ventilation, prolongedgestation ThereisdirectevidencethatpretermbirthisassociatedwithRSN (N42weeks)). abnormality.Smyseretal.(2011)investigatedRSFCinVPT-andterm- Exclusioncriteriaforallparticipantswereseverehearingandmotor borninfantsusingseed-regionconnectivityandacrosswide-ranging impairment,oranymentalretardation.Twoparticipantsfromeach seedsfoundconsistentlylowercorrelations,amorelimiteddistribution grouphadapersonalhistoryofpsychiatricillness(VPT-borngroup:bi- ofsignificantcorrelationanddecreasedlong-rangefunctionalconnec- polardisorder(n=1);borderlinepersonalitydisorder(n=1);term- tivityinVPT-borninfants.Furthermore,longitudinalinvestigationin born group: depression (n = 2)). One member of the term-born the same group revealed age-dependent increases in correlation group was prescribed an antidepressant medication (sertraline) at strength.ThesefindingsdemonstratetheadvantageouseffectsofRSN timeofstudy.AllparticipantswereEnglishnativespeakers.Allpartici- developmentinthesheltereduterineenvironmentduringthefinalges- pantsgaveinformedwrittenconsentandwerereimbursedfortravel tationalweeks;andareconsistentwithstructuralobservationsthat expensesandreceivedanominalremunerationforparticipationinthe therearesignificantincreasesinlong-rangecortico-corticalconnectivi- study.ThestudywasgivenethicalapprovalbytheSouthLondonand tyandnoteworthyresolutionofdistinctcorticallaminainthisperiod MaudsleyResearchandEthicsCommitteeandbythePsychiatry,Nurs- (KostovicandJovanov-Milosevic,2006). ingandMidwiferyResearchEthicsSubcommittee(PNMRESC),King's SincelargecohortsofVPT-bornindividualsarenowreachingadult- CollegeLondon. hood,inlightofsubstantialimprovementsinneonatalcareoverthe Intelligencequotient(IQ)wasassessedforeachindividualbyarater pastthreedecades,ithasbecomemorefeasibletoinvestigatethelast- blindtogroupmembershipusingtheWechslerAbbreviatedScaleofIn- ingeffectsofVPT-birthontheadultbrain.Furthermore,inviewofthe telligence (WASI) (Wechsler, 1999); and the Hayling sentence observedeffectsoninfantbrains,studyofRSFCinVPT-bornadultsis completion test (Burgess and Shallice, 1997) was used to measure 354 T.P.Whiteetal./NeuroImage:Clinical4(2014)352–365 executivefunction.Table1displayssamplecharacteristicsforboth 2.4.Between-groupdifferencesinheadmotion studygroups.Chi-squaredtestingdemonstratedthatthegroupsdid notdifferbysex.IndependentsampleT-testsshowednon-significant Inlightofrecentreportsthatheadmotioncaninfluencepatternsof between-group differences in age and IQ, although the VPT-born intrinsicfunctionalconnectivityasmeasuredbyfMRI(Poweretal., group exhibited significantly reduced executive function scores 2012),possiblesystematicbetween-groupdifferencesinheadmotion (Haylingscaledvalues)ascomparedwiththeterm-bornindividuals inthecurrentdatasetwerecalculatedusingthetechniquessetoutby (T(46)=2.12,P=.032).WithintheVPT-borngroup,aSpearman's vanDijketal.(2012),whichexaminethemovementparameterscalcu- ranktestperformedtoinvestigatetherelationshipbetweengestational latedduringrealignment.Fourmetricswerecalculatedforeachstudy age(GA)atbirthandneonatalUSclassification(codedasnormal(0), participant:meanmotion;maximummotion;numberofmovements; uncomplicatedperiventricularhaemorrhage(1),andperiventricular androtation.Meanmotionrepresentedthemeanabsolutedisplace- haemorrhage and ventricular dilatation (2)) revealed a significant mentofeachbrainvolumeascomparedwithitsprecedingvolume negativerelationshipbetweentheseperinatalriskfactors(Spearman's andusedthetranslationparametersinthex,yandzplanes.Displace- ρ=−.545,P=.002). mentwascomputedastherootmeansquareofthesevalues.Maximum motionwasthegreatestdisplacementvalueacrossthedataset.Number 2.2.fMRIdatacollection ofmovementswascalculatedbyevaluatingthenumberofbrainvol- umesinwhichdisplacementexceeded0.1mm,andwasthusbounded 256gradient-echoecho-planar images(TR/TE:2000/30ms, flip betweenaminimumvalueof0andamaximumvalueofn−1wheren angle:75°,matrix:64×64)wereacquiredona3TeslaGESignaMR was the number of brain volumes in the time series. Rotation was scanner(GEHealthcare,USA)attheMaudsleyHospital,London.Each calculatedaccordingtoEuler'srotationtheoremthatexpressesany whole-brain image contained 37 non-contiguous slices of 2.4-mm three-dimensionalrotationasasingleangleandcorrespondingaxisof thicknessseparatedbyadistanceof1mm,andwithin-planeisotropic rotation,andcomputedforeachbrainvolumeincomparisonwithits voxelresolutionof3.4mm.Participantswereinstructedtoremainstill precedingvolume.TheEuleranglewascomputedusingthefollowing withgazefixedonacentralcrossforthedurationofthisnine-minute formula:arccos((cos(phi)cos(theta)+cos(phi)cos(psi)+cos(theta) resting-statescan. cos(psi)+sin(phi)sin(psi)sin(theta)−1)/2),wherephi,theta,and psi are the respective rotational parameters around the x, y and z 2.3.fMRIpreprocessingandindependentcomponentanalysis axes.Between-groupdifferencesinthesemetricswereassessedusing independentsampleT-testson1000bootstrappedsamples,withthe fMRIdatawerepreprocessedusingSPM8(StatisticalParametric α-threshold for the bootstrapped P-value Bonferroni corrected to Mapping,WellcomeDepartmentofImagingNeuroscience,University .0125toreflecttheexaminationofthefourhead-motioncharacteristics. ofLondon,UK).Datawerespatiallyrealignedtothefirstimageofthese- Theapproachofcombiningleave-one-outpermutationwithBonferroni ries,time-correctedtothefirstsliceofeachimage,normalisedtoastan- correction of the significance threshold was used where feasible dardtemplateoftheMontrealNeurologicalInstitute(MNI)brain,and throughoutthisworkasameansofenhancingthedependabilityofre- smoothedusingan8-mmfull-widthathalf-maximumGaussiankernel. portedfindings. SpatialICAwasperformedonthepreprocesseddatausingtheGroup ICAfMRIToolbox(GIFT;http://icatb.sourceforge.net)withinMATLAB 7.8(MathWorks,USA).GIFTusesatemporalconcatenationapproach, 2.5.Componentselection duringwhichdatareductionisperformedviamulti-stagedprincipal component analysis and aggregation to generate common-group Agoodness-of-fit(GOF)procedurewasusedtoassessthespatial maps.Thesecomponentsarethenback-projectedontoeachindividual's correspondence between each of the 44 whole-sample component datatocreatesubject-specificspatialmapswithcorrespondingtime mapsandbinarymasksconstructedfrompreviousworktocharacterise courses(Calhounetal.,2008;Calhounetal.,2009). featuresofthethreenetworksuponwhichthisworkisfocused(http:// PriortoICA,datadimensionalitywasestimated(usingMinimum findlab.stanford.edu/research;Shireretal.,2012).Eachnetworkwas DescriptionLengthcriteria)tobe44.Sincemodel-orderdetermines splitintotwosubnetworkstopermitinvestigationofregion-specific networkspatialcharacteristicsincludingsubnetworkparcellation,ICA phenomena.ThesemasksaredepictedinFig.1.Thesaliencenetwork wasconstrainedtoproduce44components.ICAwasperformedusing maskscomprised:(i)bilateralanteriorinsulaanddorsalanteriorcingu- the Infomax algorithm (Bell and Sejnowski, 1995), and repeated 5 latecortex;and(ii)basalgangliaregions.Itisreasonabletodissociate timeswithIcasso(Himbergetal.,2004)tomaximisethestabilityof thelatteronaccountofthefundamentalrolethatthestriatumisbe- thederivedcomponents.Componentswerealsoscaledaccordingto lievedtoplayinsalienceassignmentandtheinclusionofstriataland percentsignalchangetofacilitateinter-subjectcomparisonsoftheir thalamicstructuresintheoriginaldescriptionofthisnetwork(Seeley timecourses.Back-reconstructionwascarriedoutusingGICA3onthe etal.,2007).TheCENmaskssplittheCENintoitsleftandrighthemi- basisofpreviousempiricalsupportfortheaccuracyofthismethod sphericnodes(asperpreviousfMRIinvestigationsofthisnetwork; (Erhardtetal.,2011). Sridharanetal.,2008;Whiteetal.,2010).TheDMNmasksincluded: (i)theanteriormedialprefrontalcortexnodeoftheDMN;and(ii)the posterior midline structures of the posterior cingulate gyrus and Table1 Samplecharacteristics.Frequenciesandmeanvalueswithbracketedstandarddeviations. precuneus.Again,thesesub-featureswereinvestigatedindependently inthecurrentstudyonthebasisoftheirdivisioninpreviousICAinves- Term-borngroup VPT-borngroup tigations(forexample,Sridharanetal.,2008;Whiteetal.,2010).GOF (N=23) (N=29) scoreswerecalculatedbyZ-scoringeachcomponentmapandthen Demographicinformation subtracting the mean voxel value outside a binary mask from the Ageattesting(years) 27.55(2.22) 28.59(2.04) Sex(males/females) 10/13 12/17 meanvoxelvaluewithinit(Seeleyetal.,2007;Whiteetal.,2013).Com- ponentselectionwasperformedaccordingtorankedGOFscores. Cognitiveassessment OnesampleT-testswereconductedonback-reconstructedimages Full-scaleIQ 116.00(12.20) 106.25(11.59) VerbalIQ 114.70(12.16) 105.90(12.74) ofcomponentloadingsforeachcomponentofinteresttoassesscompo- PerformanceIQ 114.70(13.06) 105.35(12.45) nentspatialrobustnesswithinthesampleasawhole.Clustersofsignif- Executivefunction(Haylingscaled) 6.60(1.05) 5.78(1.40) icantpositivitywereascribedforeachcomponentusingafamily-wise VPT,verypreterm;IQ,intelligencequotient. errorcorrectedP-thresholdof.05onthebasisofthenumberandspatial T.P.Whiteetal./NeuroImage:Clinical4(2014)352–365 355 Fig.1.Rankedgoodness-of-fit(GOF)scoresforeachcomponentwithpre-specifiedfunctionally-derivedmasks,for:(A)insularsaliencenetwork;(B)striatalsaliencenetwork;(C)left centralexecutivenetwork;(D)rightcentralexecutivenetwork;(E)frontaldefaultmodenetwork;and(F)posteriordefaultmodenetwork.Ineachsub-figure,thecomponentchosen forsubsequentextendedanalysisisdepictedbyablackcircleandallothercomponentsarerepresentedbywhitecircles.Theinsetsdepictthebinarymaskforeachnetworkinyellow overlaidonsectionsofastandardisedT1-weightedimage. extent of significant voxels at an uncorrected P-threshold of .001 evaluatedacrossthewholebrain.Asinthepreviousanalysis,thesignif- (Fristonetal.,1994). icanceofbetween-groupdifferenceswasascribedaccordingtoavoxel- levelinclusionofPb.001uncorrectedandacluster-levelsignificanceof Pb.05family-wiseerrorcorrected(Fristonetal.,1994). 2.6. Spatial differences between VPT-born and term-born group components 2.7.Assessingbetween-groupdifferencesincomponentpowerspectra To assess between-group differences in the whole-brain spatial focus,extentandamplitudeofeachcomponent,twosampleT-tests Toinvestigatebetween-groupdifferencesinthespectralcharacter- wereconductedontheback-reconstructedcomponentloadingmaps. isticsofactivity,powerspectraldensity(PSD)wasevaluatedforthe Effects were investigated in all six components independently and individual-specifictimecoursesforthesixcomponentsofinterest. 356 T.P.Whiteetal./NeuroImage:Clinical4(2014)352–365 MeanPSDwasthencalculatedbetween0.05and0.15Hzinlinewith andtheelementa(l)(i=1,…,k;j=1,…,k)isthecausalitycoeffi- ij subsequentGranger-causalitymeasures.Foreachcomponentapermu- cientfromthetimeseriesy totheseriesy .Thevectorε hasaco- jt it t tationanalysiswasconductedinwhichbetween-groupeffectswere variancematrixgivenby testedusingmultipleKruskal–Wallistestsandaleave-one-outstrategy 2 3 forallpossiblecombinationsofparticipants,withbetween-groupef- σ2 σ2 ⋯ σ2 6 11 12 1k7 fectsjudgedsignificantinthisanalysisifreliableinmorethan99.17% X 6σ2 σ2 ⋯ σ2 7 ofpermutations.ThisthresholdrepresentsBonferroni-correctionof ¼666σ221 σ222 ⋯ σ22k777: ð4Þ theconventional95%thresholdonaccountofthesixtestsperformed. 4 ⋮31 ⋮32 ⋱ ⋮3k5 Kruskal–Wallis tests were used as a non-parametric alternative σ2 σ2 ⋯ σ2 k1 k2 kk hereandinallotheranalyseswhereskewnessandkurtosisoftherele- vantdatafeaturesprecludedtheassumptionofnormality.Cut-offsof2 Undertheassumptionthatε iszero,usingallinformationuntiltime t and7wereusedforskewnessandkurtosisrespectively(Curranetal., (t−1),Y canbepredictedby t 1996). Xp 2.8.Granger-causalityanalysisandclassification Y^t¼vþ AlYt−1: ð5Þ l¼1 Causalrelationshipsbetweentimeseriescanbeinferredfromtheir Inthisvectorautoregressivemodel,y canbeconsideredtoGranger- jt temporalrelationships(Granger,1969).Ifpastvaluesofonetimeseries causey ifthecoefficienta(l)isnonzeroforaparticularvalueofl. it ij improvepredictionsofcurrentandfuturevaluesofanother,thereis GPDCisthefrequencydomainrepresentationofGrangercausality Grangercausality(GC)fromthefirsttimeseriestothesecond.Itisim- (BaccalaandSameshima,2001;Takahashietal.,2010),whichincorpo- portanttonotethatsignificantcausalityinonedirectiondoesnotassure ratesvariancestabilisationwiththeeffectofimprovingthedecision causalityintheother. errorrateofclassifiedcausalinfluence(Baccalaetal.,2006;Satoetal., WhilstGCisprimarilyatime-domainconcept(Goebeletal.,2003), 2009).GPDCfromtimeseriesjtotimeseriesiatfrequencyλisdefined assessingconnectivityinthefrequencydomainhasseveraladvantages: by: physiologicalandnon-physiologicalnoisefactorshavecharacteristic spectralcharacteristicswhoseeffectscanbeminimised;andendog- 1 a ðλÞ enous BOLD oscillations are maximal within distinct frequency ij σ bands(Cordesetal.,2000).Withthisinmind,thetimeseriesofall πijðλÞ¼sffiXffiffiffiffiffiffiffiffiffiffiffiffi(cid:3)ffiffiffiffiffiffiffiffiffiffiiffiffiffi(cid:3)ffiffiffiffiffiffiffiffiffiffi ð6Þ six components of interest were bandpassed between 0.05 and k (cid:3)(cid:3)a ðλÞ(cid:3)(cid:3)2 1 i¼1 ij σ2 0.15Hz. i Generalisedpartialdirectedcoherence(GPDC)isafrequency-based where measureoffunctionalconnectivity,whichhasrecentlybeenappliedto fMRIdata(Havliceketal.,2010;Satoetal.,2009;Shimetal.,2013; (cid:4) (cid:5) Silfverhuthetal.,2011).GPDCcanevaluatethedirectionofinformation a ðλÞ¼δ −Xp aðlÞexp − 2pπffiffiffi ð7Þ flowsimilarlytoalternativefrequency-basedapproaches,suchasthe ij ij l¼1 ij λ 1 directedtransferfunctionandrelativepowercontribution,andisequiv- alenttothesemeasuresinbivariatecases,butholdsasignificantadvan- forδ =1ifi=jand0otherwise.ThesquaremodulusoftheGPDC ij tage when assessing multivariate data, as it can discern directand valuefromthej-thtimeseriesbythei-thseriescanbeunderstoodas indirectinfluencesoncausalrelationshipsbypartiallingouttheeffects theproportionofthepowerspectraofthej-thtimeseriessenttothe ofadditionaltimeseries(Satoetal.,2009). i-th series after accounting for the effects of the other series (Sato TheformaliseddescriptionoftheGPDCapproachbelowfollows et al., 2009). GPDC is bounded between 0 and 1, with the former the elegant previous conceptualisations laid out elsewhere representinganabsenceoffunctionalconnectivityfromthej-thtime (Baccala and Sameshima, 2001; Sato et al., 2009). Inferences of seriestothei-thtimeseriesandthelatterindicatingstrongconnectivity Grangercausalityaremadeusingvectorautoregressivemodelling. betweenthesesignals. SupposingY isamultidimensionaltimeseriesmadeupofksignals Here,GPDCwasevaluatedbetweenall-pairwisecomponenttime t suchthat coursesusingtheFunctionalNetworkConnectivitytoolbox(FNC;ver- sion2.3;http://mialab.mrn.org/software/fnc/).Crucialtotheaccuracy ⌊ ⌋ y ofmultivariateautoregressiveprocedures,suchasGCanalysisusing 1t y GPDC,isthegenerationofthetransfermatrixtowhichthedataisfitted Y ¼ 2t ; t¼1;2;…T ð1Þ t ⋮ (Bianchietal.,2013).Inlightofrecentdemonstrationsofadvantagesfor ykt BayesianInformationCriterion(BIC)overAkaikeInformationCriterion (AIC)approaches(Hemmelmannetal.,2009;Porcaroetal.,2009)due toorder-overestimationinAICmodels,modelorderwasestimatedin thevectorautoregressivemodelcanbecalculatedby thecurrentanalysisusingagroup-levelBICestimate. X This analysis produced bi-directional indices of GPDC for each Yt¼vþ pt¼1AlYt−1þεt ð2Þ pairwisecombinationofcomponentsin0.002Hzfrequencybinsbe- tween0.05and0.15Hz,withthisbinresolutiondeterminedbyFNC inwhichvisavectorofconstantsandεtisavectorofrandomdistur- toolboxalgorithmsonaccountoftherepetitiontimeofthefMRIdata bances.ThematricesAl(l=1,…,p)inturnrepresent andtheextentofthefrequencybandofinterest.Decomposingthe datainthiswaywasdonetoaffordgreaterspectralspecificitytothere- 2aðlÞ aðlÞ ⋯ aðlÞ3 sultsinlightofpreviousobservationsthatfMRIfunctionalconnectivity 6 11 12 1k7 varies across frequencies (Salvador et al., 2005). To investigate Al¼6666aað2ðll1ÞÞ aað2ðll2ÞÞ ⋯⋯ aað2ðllkÞÞ7777 ð3Þ bmeutwltiedeimn-egnrsoiuonpadlisfefetroefnicnetesridnepGePnDdCenincieasm,saenvenrearlwanhailcyhseustwiliesreedctohnis- 4 31 32 3k5 ⋮ ⋮ ⋱ ⋮ ducted.Inaninitialexploratoryanalysis,Kruskal–Wallistestswerecon- aðkl1Þ aðkl2Þ ⋯ aðklkÞ ductedusinga95%thresholdtoassessbetween-groupdifferencesin T.P.Whiteetal./NeuroImage:Clinical4(2014)352–365 357 GPDCmagnitudeforeachpairwisecombinationofcomponentswithin pathsastheindependentvariable.Next,toinvestigatetheputativerela- eachfrequencybin.Aspectral-clusteringcriterionwasusedtominimise tionshipbetweenthesevariablesinVPT-bornindividuals,acorrespond- Type-1errors,wherebybetween-groupdifferenceswerereportedas inglinearregressionanalysiswasconductedinthisgroup.Finally,to significantonlywhendifferencesatthe95%thresholdwereobserved testthehypothesisthatperinatalfactorsplayamodulatoryroleon forfiveneighbouringfrequencybins. thestrengthofthisrelationship,themoderatingeffectsofGAandneo- ToassesswhetheroverallGPDC-connectionstrengthdistribution natalUSclassificationonthepathwayfromGPDCtoexecutivefunction differedbystudygroup,thepercentageofconnectionswascalculated wereassessedusingthePROCESSmacroexpansion(Hayes,2013)for asafunctionofGPDCmagnitudeforVPT-bornindividualsandcontrols SPSS(SPSSInc.,USA).ThereportedcollinearitybetweenGAandUSclas- independently.Onthebasisoftheresultanthistograms(seeResults), sificationprecludedconcomitantinvestigationoftheireffectsusingre- connectionswerecategorisedinthreeconnectivitywindows(CWs) gression. Instead, two independent moderation analyses were as:lowstrength(0.05bGPDCb0.20); mid-strength(0.20 bGPDC therefore performed. Moderation analysis within PROCESS utilises b0.35);orhighstrength(GPDCN0.35).Between-groupdifferences ordinary-leastsquaresregressionandpermitstheflexibleevaluation werethenevaluatedusingaleave-one-outpermutationapproachby ofdiversestatisticalinterdependencies.Here,thepredictiveeffectson whichmultipleKruskal–Wallistestswereusedtoassessdifferencesin executivefunctionof:(i)GPDC(theindependentvariable);(ii)USclas- percentageofconnectionsandmeanGPDCateachconnectionstrength. sificationorGA(themoderatingvariable);and(iii)theinteractionof Effectsreliableinmorethan98.3%ofpermutationswereconsideredsig- GPDCandtheperinatalmoderatorweremodelled.Hypothesistesting nificant;thisthresholdsignifiesBonferronicorrectionoftheconven- wasperformedonthebasisofeachregressioncoefficientanditsstan- tional 95% threshold, to take into account the three windows of darderrorcalculatedover1000randomlybootstrappedsamples,with investigation. significanceascribedusingpercentile-basedbootstrapconfidenceinter- Toinvestigatebetween-groupdifferencesinthetopologyofthenet- valsandrelatedα-levelsBonferronicorrectedto.025toreflectthe workofneurocognitivenetworks,lineardiscriminantanalysis(LDA) numberofperinatalfactorsinvestigated. wasconducted.LDAcanbeusedtoidentifyfeaturesetswhichpermit (Inanattempttoelucidatetheprimacyoftheseperinatalfactorson categoricaldissociationbydefiningalinearsummaryofmultidimen- GPDC-derivednetworktopologyaseriesofcomplementaryLDAinves- sionaldata,andhasbeenusedpreviouslytoclassifyindividualsonthe tigationswereconductedwiththerationalethatthefactorshowntobe basisoftraumaticbraininjury(Castellanosetal.,2010).Here,LDA associatedwiththemostrobustdeviationfromthenormativedata wasconductedonbinarisedmatricesdenotingconnectiontopologyac- could be reasonably adjudged to exert the most deleterious effect. cordingtothresholdedGPDC.Eachmatrixfeaturedbi-directionalcon- TheseanalysesarepresentedasAppendixB.) nections between all components. Accuracy of this procedure at classifyingindividualsbystudygroupwasassessedatvaryingGPDC 3.Results thresholds, with the rationale that the identification of a GPDC thresholdwhichsuccessfullyclassifiesindividualsbygroupdenotesa 3.1.Headmovement clinicallyusefulmarkerofVPT-birthassociateddysfunction.Correct classificationonthebasisofFisherdiscriminantvaluecomparedto Table2presentsthegroup-averagedhead-movementcharacteris- theprojectedhyperplanewascalculatedforeachparticipant;andvali- tics.Thedegreeofheadmovementdidnotsignificantlydifferbetween datedusingaleave-one-outstrategyforallpossibleparticipantpermu- thestudygroupsinanycalculatedmetric. tations. Discriminant accuracy is defined here as the product of population accuracy and Mahalonobis distance (Castellanos et al., 3.2.Components 2010).Theprojectionweightscanbereasonablyinterpretedastherel- ativecontributionofeachpathtothediscriminantfunctionthatbest Fig.1illustratesGOFscoresforall44componentswitheachofthe separates the groups (Ecker et al., 2010), permitting us to identify sixsubnetworksofinterest.Forfiveofthese,thecomponentwiththe pathsparticularlycontributingtothediscriminationofthephysiology greatestGOFscorewasselectedforsubsequentconnectivityanalysis. of term-born and VPT-born individuals. However, it should be Visualinspectionofthebest-fitstriatalsaliencenetworkcomponent emphasisedthatduetothemultivariatecharacteristicofclassifying suggestedthatthiscomponentwasprimarilyfocusedinventricular methods,eachpathintheprojectingspaceshouldbeinterpretedin spaces.ThiswasconfirmedbyanadditionalGOFevaluation,whereby thecontextoftheentirediscriminatingpatternandshouldnotbecon- thiscomponentwasfoundtobethebest-fitcomponentwithacerebro- sideredinisolation(Eckeretal.,2010). spinalfluidmask.(PleaserefertoAppendixCforfurtherdetails.)The TocomplementthecurrentGCanalyses,afunctionalconnectivity componentwiththesecond-highestGOFscorewiththestriatalsalience analysiswasadditionallyperformedbymeansofzero-laggedcorrela- networkmaskwasthereforeselectedforconnectivityanalysis. tionbetweenthetimecoursesofactivityoftheneurocognitivenet- Thesixcomponentsidentifiedonthebasisoftheirspatialconcor- worksandispresentedasAppendixA. dancewithwell-studiedlarge-scaledistributednetworksthereforein- cluded:(A)theinsularportionofthesaliencenetwork,focusedon 2.9.GPDC,executivefunctionandperinatalriskfactors bilateralinferiorfrontalgyrusandinsula;(B)thestriatalcomponent ofthesaliencenetwork,focusedontheputamenbilaterally;(C)the Ithasrecentlybeenobservedthatpreterm-birthrelatedimpair- left-hemisphericconstituentsoftheCEN,withstrongloadingsinleft- ments in executive function preferentially persist into adulthood hemisphericinferiorparietallobuleanddorsolateralprefrontalcortex (Allinetal.,2011;Nosartietal.,2007);andthatimpairmentsinexecu- tivefunctionresultfromdisruptionofthecoordinationofactivityacross Table2 large-scalefunctionalbrainnetworks(Repovsetal.,2011).Withthe Group-averagedcharacteristicsofheadmotion.Standarddeviationsaregiveninbrackets. motivationoffurtherexaminingtheputativerelationshipbetweenex- ecutivefunctionandnetworkcoordination,whilstassessingthemoder- Metric Group atingeffectsoffactorsassociatedwithpretermbirth,severaladditional Term-bornindividuals VPT-bornindividuals analyseswereconducted. Meanmotion 0.060(0.025) 0.078(0.034) First,toevaluatewhethernetworkcoordinationpredictedexecutive Maximummotion 0.341(0.245) 0.474(0.434) functionaftertimelyanduncomplicatedbirth,alinearregressionanal- Numberofmovements 34.56(37.38) 60.16(46.85) ysiswasperformedfortheterm-borngroupdatausingexecutivefunc- Rotation 8×10−3(5×10−3) 0.001(3×10−3) tionasthedependentvariableandmeanGPDCinLDA-determined VPT,very-preterm. 358 T.P.Whiteetal./NeuroImage:Clinical4(2014)352–365 (PFC);(D)theright-hemisphericCEN,withstrongloadingsinright- hemisphericdorsolateralparietalandfrontalregions;(E)thefrontal portionoftheDMN,withmaximalloadingsinmedialandsuperior PFC;and(F)theposteriorportiionoftheDMN,focusedonposteriorcin- gulate gyrus and bilateral angular gyrus. These components are depictedinFig.2andtheirgrey-matterfocipresentedinTable3. 3.3. Spatial differences between VPT-born and term-born group components Analysisofbetween-groupwithin-componenteffectsrevealedthat fortherightCENcomponentonlyaregionoftherightanteriorinsula exhibitedsignificantlyreducedloadingsintheVPT-bornindividuals comparedtocontrols.CharacteristicsofthiseffectareshowninTable4. 3.4. Spectral differences between VPT-born and term-born group components Broadbandpower(between0.05and0.15Hz)foreachcomponent isdisplayedinFig.3.Meanpowerwasnotsignificantlydifferentbe- tweengroupsforanycomponent. 3.5.Generalisedpartialdirectedcoherence Between-groupcomparisonsofGPDCwithineachfrequencybinand for each pairwise combination of components revealed path- and frequency-specificreductionsinGPDCintheVPT-borncomparedto theterm-bornindividuals.ThesefindingsarepresentedinTable5.No significantincreasesinGPDCwereobservedintheVPT-borngroup comparedtotheterm-borncontrols. Fig. 4 presents GPDC distributions for both study groups. Low- strengthconnectionswerethemostnumerousinbothgroups(VPT: 43.4%;term-born:43.6%);andnon-significantbetween-groupdiffer- enceswerenotedinthepercentageoflow-ormid-strengthconnec- tions or the mean GPDC within these windows. By contrast, high- strengthconnectionswererobustlymorenumerousintheterm-born group as compared with the VPT-born group (VPT: 22.02%; term- born:26.2%,P=.0016).Furthermore,meanGPDCwithinthehigh- strengthconnectionwindowwassignificantlygreaterinterm-born as compared with VPT-born individuals (VPT: 0.43 ± 0.05 (mean GPDC±standarddeviation);term-born:0.45±0.05,P=0.0097). 3.6.Lineardiscriminantanalysis Fig.5presentstheresultsoftheLDAperformedtoassessgroup- classificationaccuracyonthebasisofnetworktopologyasafunction ofweightingthreshold.Classificationaccuracywascriticallyimproved byvaryingtheGPDCthreshold,reachingamaximumaccuracy(86%) at0.35(Fig.5A);here,allcontrolparticipantsarecorrectlyclassified andonly4of29VPT-bornindividualsaremisclassified(Fig.5B).LDA also provides path-specific weights for the discrimination. Fig. 5C showstheweightsforall30pathsfortheLDAusingaGPDC-threshold of 0.35. These weights permit identification of the most pertinent Fig.2.Componentsofinterest,showing(A)insularsaliencenetwork(B)striatalsalience paths for the topological discrimination of VPT- and term-born network;(C)leftcentralexecutivenetwork;(D)rightcentralexecutivenetwork;(E)fron- individuals. taldefaultmodenetwork;and(F)posteriordefaultmodenetwork.Resultsdepictedrep- Fig.6showsthepath-specificweightsassociatedwiththemostac- resentclusterswithsignificantpositiveloadings(Pb.05,family-wiseerrorcorrected)on curateclassification,andsuggeststhatthepathfromstriatalSNtopos- thebasisofone-sampleT-testsincludingallstudyparticipants.Resultsareoverlaidon teriorDMNwasparticularlyusefulindifferentiatingthegroups.Also standardisedT1-weightedimageandscaledaccordingtotheT-valuecolour-barshown. showntobeimportantwerereciprocalconnectionsbetweenfrontal DMNandrightCEN. predictedbyUSclassification(β=−1.70±0.69,T=−2.49,P=.020) andfurtherthattherewasasignificantinteractiononexecutivefunction 3.7.TherelationshipbetweenGPDCandexecutivefunction betweenGPDCandUSclassification(β=6.72±2.74,T=2.45,P= .023). Similarly, in the analysis assessing the moderating effects of ExecutivefunctionwasnotsignificantlypredictedbyGPDCineither GA,GAwasobservedtosignificantlypredictexecutivefunction(β= studygroupconsideredasawhole.However,themoderationanalysis 0.67±0.23,T=3.00,P=.007)andaninteractiononexecutivefunction revealedthatintheVPT-borngroupexecutivefunctionwassignificantly wasobservedbetweenGAandGPDC(β=−2.80±0.97,T=−2.88, T.P.Whiteetal./NeuroImage:Clinical4(2014)352–365 359 Table3 Grey-matterfociforthesixcomponentsofinterest.Reportedvoxelsarewithinclusterssignificantatafamily-wiseerrorcorrectedP-thresholdof.05. Component Location(BrodmannArea) Talairachcoordinates PeakvoxelT-statistic x y z InsularSN Inferiorfrontalgyrus(13) −32 14 −12 6.10 Inferiorfrontalgyrus(13) −40 26 10 5.73 Inferiorfrontalgyrus(13) −44 26 −2 5.57 Insula(13) −40 6 2 5.38 Insula(13) 44 16 −2 4.90 Superiortemporalgyrus(38) 48 14 −10 5.77 Anteriorcingulategyrus(24) 0 22 36 5.40 StriatalSN Putamen 32 −14 6 7.31 Putamen −24 22 −10 7.18 Insula(13) −46 12 0 5.33 Middleoccipitalgyrus(37) 56 −70 0 5.73 Fusiformgyrus(27) 38 −56 −16 5.52 LeftCEN Inferiorparietallobule(40) −46 −52 46 6.41 Inferiorparietallobule(40) 40 −60 54 6.56 Superiorfrontalgyrus(8) −34 16 56 6.13 Superiorfrontalgyrus(8) 34 22 54 5.35 Middlefrontalgyrus(10) −38 46 −6 6.26 Middlefrontalgyrus(10) 40 22 52 5.33 Medialfrontalgyrus(8) 2 40 48 5.33 Cingulategyrus(31) −2 −28 44 6.61 Cingulategyrus(31) −4 −46 38 5.40 Inferiortemporalgyrus(20) −62 −28 −20 5.34 Middletemporalgyrus(21) 50 −64 26 5.34 Cerebellum:posteriorlobe 32 −68 −38 5.69 Cerebellum:anteriorlobe 16 −56 −30 5.59 Cerebellum:posteriorlobe 20 −82 −32 5.49 RightCEN Superiorparietallobule(7) 32 −66 58 7.23 Middlefrontalgyrus(8) 36 26 52 7.17 Inferiorfrontalgyrus(9) 56 6 30 5.33 Precuneus(7) 6 −54 40 5.80 Parahippocampalgyrus(36) 14 −36 2 5.41 Middletemporalgyrus(21) 62 −50 −10 5.85 Middletemporalgyrus(21) −58 −2 −10 5.83 Cerebellum:posteriorlobe −10 −84 −30 6.36 Cerebellum:posteriorlobe −30 −64 −40 5.82 FrontalDMN Superiorfrontalgyrus(8) 8 54 44 6.78 Superiorfrontalgyrus(9) 28 48 38 5.48 Medialfrontalgyrus(9) −2 46 32 6.37 Medialfrontalgyrus(9) 10 58 20 6.23 Middlefrontalgyrus(10) −26 58 26 5.54 Anteriorcingulategyrus(32) 4 32 22 5.39 Orbitalgyrus(11) 0 44 −20 5.50 PosteriorDMN Posteriorcingulategyrus(30) 22 −68 10 5.38 Posteriorcingulategyrus(31) −4 −58 22 6.68 Posteriorcingulategyrus(23) 2 −36 40 5.81 Medialfrontalgyrus(11) 4 56 −10 6.11 Angulargyrus(39) −42 −76 30 6.48 Angulargyrus(39) 40 −70 30 5.95 Parahippocampalgyrus(36) −26 −16 −26 6.68 Parahippocampalgyrus(36) 34 −24 −24 6.81 Precuneus(19) 36 −72 38 6.07 Precuneus(19) −30 −76 42 5.71 Superioroccipitalgyrus(19) −36 −82 30 6.54 Thalamus 10 −10 3 5.52 Middlefrontalgyrus(8) 30 20 48 5.49 SN,saliencenetwork;CEN,centralexecutivenetwork;DMN,defaultmodenetwork. P=.008).Furthermore,accountingforGAproducedasignificanteffect 4.Discussion ofGPDConexecutivefunctionintheVPT-borngroup(β=83.45± 28.53,T=2.92,P=.008).StratificationbyGArevealedthatthemost Theprimaryaimofthecurrentstudywastodelineatedifferencesin robustrelationshipbetweenGPDCandexecutivefunctionwasobserved resting-statefunctionalconnectivitywithinandbetweenthreeimpor- inthelowGAindividuals(β=8.20±3.40,T=2.41,P=.024). tant and robust neurocognitive brain networks in VPT-born adults Table4 Between-groupcomponentspatialdifferences. Component Contrast Location(BrodmannArea) Talairachcoordinates PeakvoxelT-statistic x y z RightCEN TermNVPT Insula(13) 48 14 5 4.89 360 T.P.Whiteetal./NeuroImage:Clinical4(2014)352–365 Fig.3.Group-averagedperiodograms,depictingpowerspectrumdensityforthesixcomponentsofinterest.SN,saliencenetwork;CEN,centralexecutivenetwork;DMN,defaultmode network;VPT,verypreterm. relativetoterm-borncontrols.Nosignificantbetween-groupdiffer- between-networkratherthanwithin-networkdifference.Thegeneral ences were noted in broadband component power. Analysis of consistencyincross-groupcomponentfocusindicatesthattheselected regionally-specificcomponentloadingsrevealednosignificantdiffer- componentswerereliablyevidentinbothgroupsandservesasuseful encesbetweenVPT-andterm-bornadultsintermsofnetworkspatial validationfortheirsubsequenttargetedevaluation.Furthermore,it focus for five of thesix components.The sole significant between- demonstratesthatinadulthoodRSNsarenotforthemostpartdistin- group differencewas observed in the rightCEN componentwhere guishableintheirspatialcharacteristicsbetweenpreterm-andterm- term-bornindividualsexhibitedsignificantlygreaterloadingsinthe bornindividuals.Thissupportsthefindingsofpreviousinvestigation rightanteriorinsula.However,sincethisregionwasnotasignificant ofRSNspatialfocusininfancy,wheredifferencesinRSNlocationwere focusoftheright-CENcomponent,butwasinsteadincludedwiththe smallandfew(Damarajuetal.,2010). insular-SN component (Table 3), this finding is likely to reflect a Despitethegeneralconsistencyofwithin-networkfocusandspec- tralpower,severalimportantdifferenceswereobservedinbetween- Table5 networkconnectivityasindexedbyGPDC.First,viewingallfrequency Significantpath-andfrequency-specificbetween-groupdifferencesinGPDC. binsforallpairwisecombinationofcomponents,therewasarobustre- ductioninthenumberofhigh-strength(GPDCN0.35)connectionsin Pathdirection Band(Hz) Effectdirection Significance VPT-bornindividuals;thatis,fewernetworkswerestrongpredictors RightCEN→ 0.1221–0.1298 Term-bornNVPT-born P=.018 offutureactivityinothernetworksintheVPT-borngroupcompared StriatalSN StriatalSN→ 0.1124–0.1221 Term-bornNVPT-born P=.030 tocontrols.ThisimpliesafunctionaldisconnectintheadultVPT-born InsularSN brain.Inotherwords,thesefindingssuggestlessrobustinter-network InsularSN→ 0.1124–0.1221 Term-bornNVPT-born P=.019 coordinationintheseindividuals.Reducedtemporalanti-correlation PosteriorDMN betweenDMNandexogenously-directedattentionnetworkshasbeen InsularSN→ 0.0736–0.0814 Term-bornNVPT-born P=.026 suggestedasausefulindexofcompromisedbrainfunctioninassocia- FrontalDMN PosteriorDMN→ 0.0911–0.0988 Term-bornNVPT-born P=.003 tionwithpsychiatricillness(Broydetal.,2009;Buckneretal.,2008; LeftCEN Whiteetal.,2010)andsleepdeprivation(DeHavasetal.,2012).Our currentfindingsareconsistentwithVPT-birthrelateddisruptionto CEN,centralexecutivenetwork;SN,saliencenetwork;DMN,defaultmodenetwork;VPT, very-preterm. this mechanism. This may provide explanation for the increased T.P.Whiteetal./NeuroImage:Clinical4(2014)352–365 361 Fig.4.Group-averagedhistogramsshowingthepercentageofconnectionsasafunctionofgeneralisedpartialdirectedcoherence(GPDC).Dottedblacklineshowsterm-groupdistribution whenhiddenbyVPT-groupresults.Otherverticallinesrepresentboundariesforlow(0.05–0.20),mid(0.20–0.35)andhigh(0.35–0.55)GPDC.Inset:Bardiagramshowsgrand-average connectionstrengthforeachconnectivitywindow(CW).Asteriskdenotessignificantbetween-groupdifferenceinCW3. Fig.5.Classificationbywhole-networktopology,usinglineardiscriminantanalysisofbinarisednetworksaccordingtovariablegeneralisedpartialdirectcoherence(GPDC)thresholds, showing:(A)classificationaccuracyasafunctionofGPDCthreshold;(B)scatterplotofclassificationataGPDCthresholdof0.35;and(C)rankedLDAweightsforeachpathforclassification ataGPDCthresholdof0.35.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.