ebook img

Dynamics of subarcsecond bright dots in the transition region above sunspot and their relation to penumbral micro-jets PDF

1.3 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamics of subarcsecond bright dots in the transition region above sunspot and their relation to penumbral micro-jets

ARXIVASTRO-PH.SRVERSIONJANUARY11,2017 AcceptedforpublicationinTheAstrophysicalJournalLetters DYNAMICSOFSUBARCSECONDBRIGHTDOTSINTHETRANSITIONREGIONABOVESUNSPOTANDTHEIR RELATIONTOPENUMBRALMICRO-JETS TANMOYSAMANTA1,HUITIAN2,DIPANKARBANERJEE1,3,NICOLESCHANCHE4 1IndianInstituteofAstrophysics,Koramangala,Bangalore560034,India;[email protected] 2SchoolofEarthandSpaceSciences,PekingUniversity,China;[email protected] 3CenterofExcellenceinSpaceSciences,IISERKolkata,India;[email protected] 4Harvard-SmithsonianCenterforAstrophysics,Cambridge,USA;[email protected] arXivastro-ph.SRversionJanuary11,2017 Abstract 7 1 Recenthigh-resolutionobservationsrevealthatsubarcsecondbrightdots(BDs)withsub-minutelifetimesap- 0 pearsubiquitouslyinthetransitionregion(TR)abovesunspotpenumbra. Thepresenceofpenumbralmicro- 2 jets(PMJs)inthechromospherehavealsobeenreportedearlier. ItwasproposedthatboththePMJsandBDs areformedduetomagneticreconnectionprocessandmayplayanimportantroleinheatingofthepenumbra. n UsingsimultaneousobservationofthechromospherefromtheSolarOpticalTelescope(SOT)aboardHinode a J andtheTRfromtheInterfaceRegionImagingSpectrograph(IRIS),westudythedynamicsofBDsandtheir relationwithPMJs. WefindtwotypesofBDs,onewhichisrelatedtoPMJsandtheotherswhichdonotshow 0 1 any visible dynamics in the SOT Ca II H images. From a statistical analysis we show that these two types havedifferentproperties. TheBDswhicharerelatedtoPMJsalwaysappearatthetopofthePMJs, thevast ] majority of which show inward motion and originate before the generation of the PMJs. These results may R indicatethatthereconnectionoccursatthelowercoronal/TRheightandinitiatesPMJsatthechromosphere. S This formation mechanism is in contrast with the currently believed formation of PMJs by reconnection in . the(upper)photospherebetweendifferentlyinclinedfields. h Keywords:Sun: corona—Sun: transitionregion—Sun: UVradiation—Sun: magnetictopology p - o r 1. INTRODUCTION Vissers et al. (2015) studied the multi-wavelength signa- t tures of PMJs and found that PMJs show spatial offset from s Sunspotsareregionsofconcentratedstrongmagneticfields a comprising of dark central region, umbra surrounded by a the chromosphere to TR in the direction of the PMJ. Hence, [ they proposed that PMJs may progressively heat up to TR less darker region called the penumbra. Penumbral micro- temperature. Tiwari et al. (2016) could not find noticeable 1 jets(PMJs)areoneoftheprominentfine-structuredynamical signature of normal PMJs in any Atmospheric Imaging As- v featuresobservedinthesunspotatthechromosphericheight. sembly(AIA)(Lemenetal.2012)passbands,althoughafew 1 Using the SOT (Tsuneta et al. 2008) Ca II H filter images, strong and large PMJs show BD/BD-like signatures in the 3 Katsukawa et al. (2007) first reported that these micro-jets 5 occur ubiquitously above penumbra. They have lengths of 1600 A˚ and High-resolution Coronal imager (Hi-C) 193 A˚ 2 1 to 4 Mm and lifetimes of up to a minute. They generally images. Alpertetal.(2016)foundthatBDsobservedinHi-C 0 move very fast and have apparent speeds over 100 km s−1. areonaverageslower,dimmer,largerinsizeandlongerlived 1. The magnetic field in the chromospheric penumbral region thanIRISpenumbralBDs. Theyalsofoundthatmostofthe 0 consists of a combination of spines (more vertical field) and BDs observed in Hi-C 193 A˚ may correspond to TR. Deng 7 interspines (more horizontal field) (Lites et al. 1993; Bel- et al. (2016) found that the locations of most of the penum- 1 lot Rubio et al. 2004; Scharmer et al. 2011; Scharmer & bral BDs show downflow. Their statistical analysis shows : Henriques 2012; Henriques & Kiselman 2013; Tiwari et al. that BDs do not have consistent brightening response in the v 2013,2015). Katsukawaetal.(2007)foundthatPMJsgener- chromosphere. Following Tian et al. (2014), they also sug- i X ally originate near the bright structures in between two dark gested that TR penumbral BDs are manifestation of falling penumbral filaments and propagate upward along the direc- plasma from coronal heights along more vertical and dense r a tionofthespine. So,theyproposedthatPMJscouldoriginate magnetic loops or small-scale impulsive magnetic reconnec- as a result of magnetic reconnection between the spine and tion at TR or higher heights. Kleint et al. (2014) and Chitta interspinemagneticfields. et al. (2016) observed heating events which are associated UsingtheIRIS(DePontieuetal.2014)observations,Tian with the strong downflows in the TR and proposed a similar etal.(2014)foundthepresenceofsubarcsecondBrightDots scenario. Baietal.(2016)havestudiedsmalltransientbright- (BDs)abovesunspotpenumbraintheTR.Theyappearubiq- eningeventsinthepenumbraandfoundthatitshowredshifts uitously and mostly have a lifetime less than few minutes. in the Si IV 1402.77 A˚ line, an inward motion towards the They sometimes appear slightly elongated along the penum- umbrainIRIS1400A˚ imagesandhaveamulti-thermalcom- bralfilamentsandalsomovealongthefilamentswithspeeds ponent.Theyproposedthetriggeringmechanismasmagnetic of10–40kms−1. Theyproposedthatsomeofthemcouldbe reconnection at low coronal heights. A component of the duetoimpulsivereconnectionintheTRandchromosphereat plasma from the reconnection site may move downward and footpointsofcoronalmagneticloopsandothersareprobably reachtheTR,whichisconfirmedbytheobservedredshiftsin duetofallingplasma. ItisstillunclearhowBDsareformed the Si IV 1402.77 A˚ line and the inward motions as seen in andiftheyshowanysignaturesinthelowerandupperatmo- theIRIS1400A˚ images. Finally,itreachesthechromosphere sphere. 2 T.SAMANTAETAL. Figure1. A-E:ImageofasunspotasseenbytheSOT,IRISandAIAaround08:57UTon19March2014.F-J:Showtherunningdifferenceimages.Thegreen andbluecontours,derivedformatime-averagedsmoothedSOTimage,representtheumbraandpenumbraofthesunspot,respectively. Theyellowcontours markthelocationsofbrightdots(BDs). EvolutionoftheBDinsidetheboxB1andB2(asmarkedinthe1400A˚)isshownintheFigure2(animatedfigures correspondingtoB1,B2,B11-B13areavailableonline.)Ananimationofthisfullfigureisalsoavailable. andappearsasribbon-likebrightening. pensateforthesolarrotation.ThepixelsizeofSOT,SJI’sand In this work, while combining multi-wavelength observa- AIA are 0.109(cid:48)(cid:48), 0.166(cid:48)(cid:48) and 0.6(cid:48)(cid:48), respectively. We have in- tions covering chromosphere, TR/corona we try to find the terpolatedSOTandAIAdatainspaceandtimetomatchthe sourceoftheBDsandtheirrelationtoPMJs. IRISSJIcadence(10.50sec)andspatialresolution(0.33(cid:48)(cid:48) ). The IRIS SJIs and SOT images were co-aligned using IRIS 2. DATAANALYSISANDRESULTS 2796 A˚ and SOT Ca II H images. The time difference be- tweentheSOTandIRISimageisoftheorderofsub-seconds. 2.1. ObservationandDataReduction AfterthatIRISandAIAwereco-alignedusingIRIS1400A˚ We use the data obtained from a coordinated observation andAIA1600A˚ images(Samantaetal.2015). takenon19March2014,usingtheHINODE/SOT(HOP-250) Figure 1 shows the image of a sunspot, where the bottom (Tsuneta et al. 2008), IRIS (IRIS-3840007453) (De Pontieu rows (G-K) correspond to running difference images. The et al. 2014) and the AIA (Lemen et al. 2012) on board the yellow contours show the location of BDs in the sunspot Solar Dynamics Observatory. The coordinated observation penumbra. Thesecontoursareobtainedfromthe1400A˚ im- betweenalltheinstrumentswasperformedfrom08:51UTto ageaftersubtractingthesameimagewitha8x8pixelsmooth- 09:46 UT. We selected a FOV of 37(cid:48)(cid:48)x50(cid:48)(cid:48) centered at 200(cid:48)(cid:48) ing. Evolution of two BDs inside the box B1 and B2 (as and 317(cid:48)(cid:48). The FOV is limited due to the SOT observations. IRISSlit-jawimages(SJI)centeredat2796A˚ and1400A˚ are markedin1400A˚)areshownintheFigure2(alsoinonline movie). TheBDsinsidetheboxB1includingboxB11,B12 dominated by the Mg II k and Si IV emission lines, respec- andB13arerelatedtoPMJs. TheBDinsideB2isnotrelated tively. The SOT filter is dominated by Ca II H line, which toanyvisibledynamicsintheSOT. forms at the lower chromosphere where the temperature is below104 K.TheIRIS2796A˚ imagesaredominatedbythe emission from a plasma at temperatures ∼10,000-15,000 K 2.2. TemporalevolutionofBDsandPMJs and represent the middle chromosphere. The IRIS 1400 A˚ Figure 2 depicts the temporal evolution of two BDs. passband is sensitive to TR ∼60,000-80,000 K. AIA filter- (cid:13)B1 shows the evolution of the BD inside the B1 box in the gramimagescenteredat304A˚ (sensitiveto∼0.05MK)and Figure1. PanelA,CandEshowtheevolutionasseeninthe 193A˚ (∼1.25MK)aredominatedbyHe IIandFe XIIemis- IRIS1400A˚,SOTCa IIHandIRIS2796A˚,whereastheB, sion lines, respectively. SOT Ca II H data was taken with DandFcorrespondtorunningdifferenceimages. Theclear 0.3 sec exposure and 1.58 sec cadence. IRIS SJI’s were ob- presenceofaBDisseenintheinthe1400A˚.Ajetlikefea- tained with 4 sec exposure and a cadence of 10.5 sec. AIA tureisalsoseenintheCaIIHand2796A˚ images. Similarly, 304 A˚ and 193 A˚ observations were taken with 2 sec expo- (cid:13)B2 showtheevolutionoftheB2regionasmarkedintheFig- sureand12seccadence. AIAdatawerethenco-alignedand ure1. Here, wecanclearlyfindthepresenceofa BDinthe de-rotatedtothestarttime(08:51UT)ofobservationtocom- 1400 A˚ channel but no clear signature of intensity enhance- DYNAMICSOFSMALLBRIGHTDOTSINTHETRANSITIONREGIONABOVESUNSPOT 3 Figure2. (cid:13)B1 showthetemporalevolutionofaBDandaPMJinsidetheB1region(asmarkedintheFigure1)asseenindifferentfiltergramimagesandtheir runningdifferenceimages.ThegreencontourisderivedfromthetopmiddlepanelstoshowthelocationoftheBD.Yellowarrowindicatesthedirectionofthe sunspotcenter.Similarly,(cid:13)B2 showthetemporalevolutionoftheB2region(asmarkedintheFigure1) mentintheCa IIH.WehaveidentifiedseveralBDsandper- initiation of the BD. The long intensity strip at the center of formedastatisticalanalysistocompilethepropertiesofthese theXTmapisduetohighintensityenhancementatthatpar- BDs and their signatures in the other channels. At first, we ticulartimeframe.WefollowasimilarmethodfortheCaIIH identifymanuallyanisolatedBDandlookforthetimeframe and 2796 A˚ channels (D and G). The intensity enhancement whereitshowsmaximumintensityenhancement. Weusethat in these channels is only a few percent and very difficult to asourcentralframeandmakeamovie(seeanimatedfigureof findthelocationoftheintensityenhancement. So,weusethe Fig.2,coveringa5x5Mmregionforadurationof210sec)to runningdifferenceimagestoplaceourgreenandredcut(see follow the BDs and their direction of propagation. The BDs EandH)ontheoriginalimages. TheXTmapisproducedaf- oftenshowapparentmovementsalongthebrightfilamentary terremovingasmoothedbackgroundfromeachimages. An structuresroughlyintheradialdirectionofthesunspot. elongatedbrightstructureisseenintheXTplot. Thesehave NowtofindthepropertiesoftheBDs,wefollowasimilar beenconventionallyreferredaspenumbralmicro-jets(PMJs) method as used by Tian et al. (2014). Two examples of the by Katsukawa et al. (2007). The lifetimes of these jets are analysisareshowninFigure3(cid:13)&(cid:13). Wehavestudied180 verysmall. Mostofthemappearassuddenbrighteninginthe B1 B1 penumbral BDs and try to find if they have any signature in XT plot and hence it is very difficult to determine their di- theSOTCa IIHandIRIS2796A˚ channels. Weusethecen- rectionofpropagationandthespeed. Inthisworkwedonot tralimagetocomputetheintensityenhancement, lengthand focusonthespeedofthesejets. Usingearlierconventionwe widthofaBD,asshowninFigure3(cid:13). Weplottheintensi- haveassumedthatthesebrighteningsarepropagatingoutward B1 tiesalongthegreencutandredcut(panelA).Thegreencut formthesunspot,thoughitisnotclearlyestablishedfromour isplacedalongtheradialdirectionandtheredcutisperpen- analysis that the bright structures are moving outward from diculartoit. Theintensityvaluesareshownbyredandgreen thesunspot.Weusea2σintensitycontourtofindthelocation diamondsymbols. AfittedGaussianisalsooverplottedwith andextentofthePMJ.Thebluelineisdrawnalongthedirec- thesamecolor. TheFWHMofthegreenprofileprovidesan tion of intensity enhancement. The starting time of the blue estimateofthelengthoftheBD,whereastheredprofilepro- lineisconsideredastheinitiationandthelengthofthelineis vides the width. Percentage intensity enhancement is calcu- consideredasthelengthofthePMJ.Wecanclearlyseethat latedfromthepeakintensityandthelinearbackgroundofthe theBDappearsbeforethePMJinthisexample. fitted Gaussian. The smallest between the two values (green Similarly, in Figure 3(cid:13)B2, we study another BD. Follow- andred)measurestheintensityenhancement. Weplotspace- ingsamemethodologywestudytheevolutionoftheBD.We time(XT)diagram(panelC)tostudytheirtemporalbehavior couldnotfindaclearsignatureoftheBDintheCaIIHthough andtomeasuretheirapparentspeed.A2σintensitycontouris afaintsignatureisseeninthe2796A˚ channel. Inthefollow- drawnontheXTmap. Theinclinedbluelineisdrawninside ing subsection a statistical study is performed to find out if the contour to measure the apparent velocity and lifetime of therearetwotypesBDspresentinourdata. theBD.Thestartingtimeofthebluelineisconsideredasthe 4 T.SAMANTAETAL. Figure3. (cid:13)B1 showtheprocedureofdeterminingthephysicalparametersoftheBDandthePMJinsidetheB1region(asmarkedintheFigure1).(A)showthe BDenclosedbythebluecontourasseeninthe1400A˚.Thegreenslitandredslitisplacedalongtheradiallyoutwarddirectionanditsperpendiculardirection, respectively. (B)showtheintensityprofilealongthegreenandredslitwithdiamondsymbol. ThesolidlineisaGaussianfittotheprofilestodeterminethe widthandintensityenhancementoftheBD.(C)showthetemporalevolution(XTplot)alongthegreencut.Yellowcontourshowtheregionabove2σintensity enhancement.TheslopofthebluelineisusedtodeterminetheplaneoftheskyvelocityoftheBD.(D)showCaIIHimage.Thegreenlineistheslittodetermine XTplot.(E)showtheCaIIHimageaftersubtractingthepreviousframe.RedcontourshowthelocationofthePMJ.(F)showtheXTplotforthegreencutof CaIIHimages.(G)show2796A˚ image.(H)-(I)aresimilarto(E)-(F),respectively,butforthe2796A˚ channel.Similarly,(cid:13)B2 showfortheBDinsideB2region (asmarkedintheFigure1). Figure4. (A-F)showthedistributionofdifferentphysicalparametersofBDs.RedrepresentstheBDswhichdonothaveanyconnectiontothePMJswhereas bluerepresentsthosewhicharefoundonthetopofthePMJs. (A)showtheofthelength(FWHMoftheintensityprofilesalongthegreenslit),(B)thewidth (FWHMoftheintensityprofilesalongtheredslit),(C)theratiooflengthandwidth,(D)thelifetime,(E)theintensityenhancementand(F)theplaneofthesky speedoftheBDs.Theaveragevalueofeachparametersandalsotheirstandarddeviationareprinted(anrandare). DYNAMICSOFSMALLBRIGHTDOTSINTHETRANSITIONREGIONABOVESUNSPOT 5 Figure5. (A):TheyellowarrowsshowthelocationofthePMJsasfoundintheCaIIHimagesandthedots(red/blue)showsthelocationoftheBDsasseenin the1400A˚ channelsovertheCaIIHimage.ReddotsrepresenttheBDswhichmovesinwarddirection(oppositeofthePMJ’sdirection)andbluerepresentthe BDswhichmovesoutward(alongthedirectionofPMJs).(B):Theyellowarrowandthedots(red/blue)showthelocationofCaIIHPMJsand1400A˚ BDsover the2796A˚ SJI.ThegreenarrowsrepresentthePMJsasobservedinthe2796A˚ images.(C):TheBDswhichdonothaveanyvisiblecounterpartsintheCaIIH imagesareshownoverthe1400A˚ image. (D)showthedistributionofthelengthofthePMJs. (E)showthedistributionofthedistancebetweenthefootpoint ofthePMJsandstartinglocationoftheBDs. (F)showthedistributionofthetimedelayoftheoriginationofBDafterPMJ.AnegativevaluemeansthataBD originatesearlierthanaPMJ.AllthePMJsandBDsareobservedoverthetotalobservingwindowwhereasthebackgroundimagesaretakenatt=0. Themean valuesofeachparameterandalsotheirstandarddeviationareprinted.TheasoandairrepresentsthemeanvalueasobtainedfromtheSOTCaIIHandIRIS 2796A˚,respectively. 6 T.SAMANTAETAL. 2.3. StatisticalbehavioroftheBDs reaches the chromosphere and appears as ribbon-like bright- ening(PMJ)whichcouldexplainthetimedelayintheappear- We analyze the properties of many BDs and their signa- anceofthePMJsandtheirshortlifetime. Klimchuk(2006), tureintheotherchannels. Outofthetotal180events,90are Jiangetal.(2012)andWinebargeretal.(2013)proposedthat identifiedashavingacorrelatedsignatureintheCaIIHand this kind of small magnetic reconnection occurs in the low 2796 A˚ channels, while the other 90 do not. We have sepa- corona. Thisisincontrasttothereconnectionmodelaspro- ratedthesetwoclassessoastofindoutiftheyhaveanysignif- posed by Katsukawa et al. (2007). The progressive heating icantdifferencesintheirphysicalproperties. Figure4(A)-(F) mechanismofthePMJsasproposedbyVissersetal.(2015) show the distributions of the observed parameters. The red alsomaynotexplaintheinwardmotionsoftheBDs,appear- colorinthehistogramsrepresenttheBDswhichdonothave anceofBDsbeforePMJsandthelongerlifetimeoftheBDs. a counterpart in the Ca II H images whereas the blue repre- Itisstillunclearhowthenon-relatedBDsoriginate. sent the BDs which are related to the Ca II H PMJs. The mean value of each of the parameters for both the types are alsoprinted. WefindthattheBDswhicharerelatedtoPMJs, WethankYukioKatsukawaforusefuldiscussionsandsug- generally,arelongerandhavehigherintensityenhancements. gestions. H. Tian is supported by the Recruitment Program They are also more elongated (the ratio between length and of Global Experts of China, NSFC under grant 41574166, width is higher). One of the distinguishable feature is that and the Max Planck Partner Group program. H.Tian thanks mostoftheBDswhicharerelatedtoPMJsshownegativeve- ISSI Bern for the support to the team “Solar UV bursts: a locities(driftstowardsthecenterofthesunspot). new insight to magnetic reconnection”. We thank the Hin- ode, IRIS and SDO team for proving the data in the pub- 2.4. StatisticalbehaviorofPMJsandtheirconnectiontoBDs lic domain. Hinode is a Japanese mission developed and WehavealsocalculatedafewphysicalparametersofPMJs. launchedbyISAS/JAXA,withNAOJasdomesticpartnerand The position and length of each PMJs are measured in both NASA and STFC (UK) as international partners. It is oper- the 2796 A˚ and Ca II H channels. The starting point of the ated by these agencies in co-operation with ESA and NSC PMJs is considered as the location close to the center of the (Norway). IRISisaNASAsmallexplorermissiondeveloped sunspot. ThelocationsofthePMJasseenintheCa IIHand and operated by LMSAL with mission operations executed 2796 A˚are marked (yellow arrows) in the Figures 5A, B re- at NASA Ames Research center and major contributions to spectively. The length of the arrow measures the length of downlink communications funded by the Norwegian Space thePMJs. TheBDswhicharerelatedtothesePMJsarealso Center(NSC,Norway)throughanESAPRODEXcontract. shownbythesmalldots.Redrepresentsthedotswhichmoves inwardandbluerepresentsthosethatmoveoutwardfromthe REFERENCES sunspotcenter. ThePMJsasseenin2796A˚ generallyshow spatialoffsetfromtheCaIIHPMJsalongthePMJsdirection (outer penumbral side). In Figure 5C, we show the location Alpert,S.E.,Tiwari,S.K.,Moore,R.L.,Winebarger,A.R.,&Savage, S.L.2016,ApJ,822,35 of the BDs which are not related to any PMJs. Figure 5(D) Bai,X.Y.,Su,J.T.,Cao,W.D.,Liu,S.Q.,Deng,Y.Y.,&Priya,T.G.2016, showthedistributionofthelengthofthePMJsasseeninthe ApJ,823,60 2796A˚ andCaIIHimages.ThePMJsinCaIIHhavesimilar BellotRubio,L.R.,Balthasar,H.,&Collados,M.2004,A&A,427,319 valueasreportedbyKatsukawaetal.(2007)thoughtheyap- Chitta,L.P.,Peter,H.,&Young,P.R.2016,A&A,587,A20 DePontieu,B.,etal.2014,Sol.Phys.,289,2733 pearlittlelongerinthe2796A˚ images. Figure5(E)showthe Deng,N.,Yurchyshyn,V.,Tian,H.,Kleint,L.,Liu,C.,Xu,Y.,&Wang,H. distribution ofthe length betweenthe BDsand the footpoint 2016,ApJ,829,103 ofthePMJsandFigure5(F)showthetimedelaybetweenthe Henriques,V.M.J.,&Kiselman,D.2013,A&A,557,A5 appearance of the BDs and PMJs. A negative value means Jiang,R.-L.,Fang,C.,&Chen,P.-F.2012,ApJ,751,152 Katsukawa,Y.,etal.2007,Science,318,1594 BDs appear earlier than the PMJs. We find that most of the Kleint,L.,etal.2014,ApJL,789,L42 BDsappearbeforethePMJs. Klimchuk,J.A.2006,Sol.Phys.,234,41 Lemen,J.R.,etal.2012,Sol.Phys.,275,17 3. SUMMARY Lites,B.W.,Elmore,D.F.,Seagraves,P.,&Skumanich,A.P.1993,ApJ, 418,928 Wehaveanalyzedthepropertiesof180BDsasseeninthe Samanta,T.,Banerjee,D.,&Tian,H.2015,ApJ,806,172 1400 A˚ images above a sunspot. Using our coordinated ob- Scharmer,G.B.,&Henriques,V.M.J.2012,A&A,540,A19 servation,wehavealsopositivelyidentifiedPMJsintheSOT Scharmer,G.B.,Henriques,V.M.J.,Kiselman,D.,&delaCruz CaIIHandIRIS2796A˚ images.Wefindthat90BDsarere- Rodr´ıguez,J.2011,Science,333,316 Tian,H.,Kleint,L.,Peter,H.,Weber,M.,Testa,P.,DeLuca,E.,Golub,L., latedtoPMJswhereasothersarenot. Adetailanalysisshow &Schanche,N.2014,ApJL,790,L29 thattheBDswhicharerelatedaregenerallylongerandmore Tiwari,S.K.,Moore,R.L.,Winebarger,A.R.,&Alpert,S.E.2016,ApJ, elongated and have higher intensity enhancements. Most of 816,92 theseBDsshownegativevelocities(movesinwarddirection) Tiwari,S.K.,vanNoort,M.,Lagg,A.,&Solanki,S.K.2013,A&A,557, A25 and appear at top of the PMJs. These BDs are found to be Tiwari,S.K.,vanNoort,M.,Solanki,S.K.,&Lagg,A.2015,A&A,583, appearing before the generation of the PMJs. These results A119 mayindicatethatBDscouldoriginatefromamagneticrecon- Tsuneta,S.,etal.2008,Sol.Phys.,249,167 nectionoccurringatlowcoronalheightsand/orduetofalling Vissers,G.J.M.,RouppevanderVoort,L.H.M.,&Carlsson,M.2015, plasma. A component of the plasma from the reconnection ApJL,811,L33 Winebarger,A.R.,etal.2013,ApJ,771,21 site may move downwards and reach the TR and show in- ward motion as seen in the IRIS 1400 A˚ images. Finally, it

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.