ebook img

Dynamics of Gambling: Origins of Randomness in Mechanical Systems PDF

163 Pages·2009·9.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamics of Gambling: Origins of Randomness in Mechanical Systems

Lecture Notes in Physics FoundingEditors:W.Beiglbo¨ck,J.Ehlers,K.Hepp,H.Weidenmu¨ller EditorialBoard R.Beig,Vienna,Austria W.Beiglbo¨ck,Heidelberg,Germany W.Domcke,Garching,Germany B.-G.Englert,Singapore U.Frisch,Nice,France F.Guinea,Madrid,Spain P.Ha¨nggi,Augsburg,Germany W.Hillebrandt,Garching,Germany R.L.Jaffe,Cambridge,MA,USA W.Janke,Leipzig,Germany H.v.Lo¨hneysen,Karlsruhe,Germany M.Mangano,Geneva,Switzerland J.-M.Raimond,Paris,France D.Sornette,Zurich,Switzerland S.Theisen,Potsdam,Germany D.Vollhardt,Augsburg,Germany W.Weise,Garching,Germany J.Zittartz,Ko¨ln,Germany TheLectureNotesinPhysics TheseriesLectureNotesinPhysics(LNP),foundedin1969,reportsnewdevelopments in physics research and teaching – quickly and informally, but with a high quality and theexplicitaimtosummarizeandcommunicatecurrentknowledgeinanaccessibleway. Bookspublishedinthisseriesareconceivedasbridgingmaterialbetweenadvancedgrad- uatetextbooksandtheforefrontofresearchandtoservethreepurposes: • tobeacompactandmodernup-to-datesourceofreferenceonawell-definedtopic • to serve as an accessible introduction to the field to postgraduate students and nonspecialistresearchersfromrelatedareas • tobeasourceofadvancedteachingmaterialforspecializedseminars,coursesand schools Both monographs and multi-author volumes will be considered for publication. Edited volumes should, however, consist of a very limited number of contributions only. Pro- ceedingswillnotbeconsideredforLNP. VolumespublishedinLNParedisseminatedbothinprintandinelectronicformats,the electronicarchivebeingavailableatspringerlink.com.Theseriescontentisindexed,ab- stractedandreferencedbymanyabstractingandinformationservices,bibliographicnet- works,subscriptionagencies,librarynetworks,andconsortia. ProposalsshouldbesenttoamemberoftheEditorialBoard,ordirectlytothemanaging editoratSpringer: ChristianCaron SpringerHeidelberg PhysicsEditorialDepartmentI Tiergartenstrasse17 69121Heidelberg/Germany [email protected] J. Strzałko J. Grabski P. Perlikowski A. Stefan´ski T. Kapitaniak Dynamics of Gambling: Origins of Randomness in Mechanical Systems ABC JarosławStrzałko JuliuszGrabski TechnicalUniversityofLodz TechnicalUniversityofLodz DivisionofDynamics DivisionofDynamics Stefanowskiego1/15 Stefanowskiego1/15 90-924Lodz 90-924Lodz Poland Poland [email protected] [email protected] PrzemysławPerlikowski AndrzejStefan´ski TechnicalUniversityofLodz TechnicalUniversityofLodz DivisionofDynamics DivisionofDynamics Stefanowskiego1/15 Stefanowskiego1/15 90-924Lodz 90-924Lodz Poland Poland [email protected] [email protected] TomaszKapitaniak TechnicalUniversityofLodz DivisionofDynamics Stefanowskiego1/15 90-924Lodz Poland [email protected] StrzałkoJ.,etal.,DynamicsofGambling:OriginsofRandomnessinMechanical Systems,Lect.NotesPhys.792(Springer,BerlinHeidelberg2009), DOI10.1007/978-3-642-03960-7 LectureNotesinPhysicsISSN 0075-8450 e-ISSN 1616-6361 ISBN 978-3-642-03959-1 e-ISBN 978-3-642-03960-7 DOI10.1007/978-3-642-03960-7 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2009938265 (cid:2)c Springer-VerlagBerlinHeidelberg2009 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Coverdesign:IntegraSoftwareServicesPvt.Ltd.,Pondicherry Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) to Jagoda,Aldona,Renata,Marzena,Gosia –ourwives Preface Our everyday life is influenced by many unexpected (difficult to predict) events usuallyreferredasachance.Probably,weallareasweareduetotheaccumulation point of a multitude of chance events. Gambling games that have been known to human beings nearly from the beginning of our civilization are based on chance events. These chance events have created the dream that everybody can easily becomerich.Thispursuitmadegamblingsopopular. Thisbookisdevotedtothedynamicsofthemechanicalrandomizersandwetry tosolvetheproblemwhymechanicaldevice(roulette)orarigidbody(acoinora die)operatinginthewaydescribedbythelawsofclassicalmechanicscanbehave insuchawayandproduceapseudorandomoutcome. During mathematical lessons in primary school we are taught that the outcome of the coin tossing experiment is random and that the probability that the tossed coinlandsheads(tails)upisequalto1/2.Approximately,atthesametimeduring physicslessonswearetoldthatthemotionoftherigidbody(coinisanexampleof suchabody)isfullydeterministic.Typically,studentsarenotgiventheanswertothe questionWhythisdualityintheinterpretationofthesimplemechanicalexperiment ispossible? Tryingtoanswerthisquestionwedescribethedynamicsofthegamblinggames basedonthecointoss,thethrowofthedie,andtherouletterun.Thedynamicsof thistypeofgamblingcanbedescribedintermsoftheNewtonianmechanics,soone canexpectthattheoutcomecanbepredicted.Wegiveevidencethatfromthepoint of view of dynamical systems this dynamics is predictable. However, due to high (butfinite)sensitivitytoinitialconditionstheveryprecisedevicesarenecessaryto predict the outcome, so practically this outcome is pseudorandom. Our studies do notgivethegeneralanswertothefamousAlbertEinstein’squestionDoestheGod play dice? which is connected with all the events in the whole universe but give evidencetothenegativeanswertothesimplerquestionDoestheGodplaydicein the casino? We give evidence that the pseudorandomness in mechanical systems can be fully understood in terms of nonlinear dynamics as temporal sensitivity to theinitialconditionsgeneratedbynonsmoothpropertiesoftherandomizers. This book is mainly for mathematicians and physicists interested in nonlinear phenomena. It can also be read by all interested in such chance problems as only basic classical mechanics is necessary to understand most of the text. It is also vii viii Preface addressed to gamblers but our results cannot be directly used to make fortune in the casino. However our results can help to understand that the betting systems that claim to be winning (particularly popular for roulette) are nothing more than charlatanism. The book is organized as follows. Typical mechanical randomizers like a coin, a die, and a roulette are described in Chap. 2. In Chap. 3 we derive the equations ofmotionwhichallowtodescribethedynamicsofthegamblingbasedonthecoin toss, the throw of the die, and the roulette run. Chapter 4 explains why according tothetheoryofthedynamicalsystemsthisgamblingispredictablebutpractically unpredictable.Finally,inChap.5wediscusstheoriginofrandomnessinmechanical systems. We would like to acknowledge the helpful discussions with Eric Mosekilde, Giusseppe Rega, Ko-Choong Woo, Marian Wiercigroch, and Serhiy Yanchuk. We arethankfultoFranciszekWo´jcik,PiotrBorkowski,andPiotrDmuchowskiofthe DepartmentofElectricalApparatus,TechnicalUniversityofŁo´dz´,forallowingus tousetheirhighspeedcamera. Ło´dz´ JarosławStrzałko JuliuszGrabski PrzemysławPerlikowski AndrzejStefan´ski TomaszKapitaniak Contents 1 Introduction.................................................... 1 1.1 GamblingandGaming ....................................... 1 1.2 AShortHistory ............................................. 2 1.3 Coin....................................................... 6 1.4 Dice....................................................... 7 1.5 Roulette.................................................... 11 1.6 OtherMechanicalRandomizers................................ 14 1.7 DynamicsandPredictability................................... 17 1.7.1 SensitiveDependenceonInitialConditions ............... 18 1.7.2 FractalBasinBoundaries............................... 19 References ...................................................... 21 2 GeneralMotionofaRigidBody .................................. 23 2.1 BasicEquationsofMotionofaRigidBody...................... 23 2.1.1 DynamicsEquationsinGeneralForm .................... 23 2.1.2 Newton–EulerEquations .............................. 25 2.2 PrecessionofaBody ........................................ 26 2.2.1 PrecessionofSymmetricTop ........................... 27 2.2.2 Torque-FreeMotionofSphericalTop .................... 29 2.3 OrientationofaRigidBody .................................. 30 2.3.1 EulerAnglesandOtherConventions ..................... 31 2.3.2 Euler’sParameters .................................... 34 2.4 AirResistanceForcesandMoments ............................ 35 2.5 ModelingofBodiesImpact ................................... 37 References ...................................................... 39 3 EquationsoftheRandomizer’sDynamics .......................... 41 3.1 EquationsoftheCoinToss.................................... 41 3.1.1 FreeFallofaCoin .................................... 41 3.1.2 CoinMotionintheAir................................. 46 3.1.3 CoinBouncesontheFloor ............................. 64 ix

Description:
This monograph presents a concise discussion of the dynamics of mechanical randomizers (coin tossing, die throw and roulette). The authors derive the equations of motion, also describing collisions and body contacts. It is shown and emphasized that, from the dynamical point of view, outcomes are pre
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.