ebook img

Dynamics of Coupled Structures, Volume 4: Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics, 2015 PDF

173 Pages·2015·12.747 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamics of Coupled Structures, Volume 4: Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics, 2015

Conference Proceedings of the Society for Experimental Mechanics Series Matt Allen · Randall L. Mayes · Daniel J. Rixen Editors Dynamics of Coupled Structures, Volume 4 Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics, 2015 Conference Proceedings of the Society for Experimental Mechanics Series SeriesEditor TomProulx SocietyforExperimentalMechanics,Inc., Bethel,CT,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/8922 Matt Allen • Randall L. Mayes (cid:129) Daniel J. Rixen Editors Dynamics of Coupled Structures, Volume 4 Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics, 2015 123 Editors MattAllen RandallL.Mayes EngineeringPhysicsDepartment SandiaNationalLaboratories UniversityofWisconsin-Madison Albuquerque,NM,USA Madison,WI,USA DanielJ.Rixen LehrstuhlfurAngewandteMechanik TechnischeUniversitatMunchen Garching,Germany ISSN2191-5644 ISSN2191-5652 (electronic) ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries ISBN978-3-319-15208-0 ISBN978-3-319-15209-7 (eBook) DOI10.1007/978-3-319-15209-7 LibraryofCongressControlNumber:2014932412 SpringerChamHeidelbergNewYorkDordrechtLondon ©TheSocietyforExperimentalMechanics,Inc.2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialisconcerned,specificallytherights oftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,evenintheabsenceofaspecific statement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateof publication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia(www.springer.com) Preface DynamicsofCoupledStructuresrepresentsoneoftenvolumesoftechnicalpaperspresentedatthe33rdIMAC,AConference andExpositiononBalancingSimulationandTesting,2015,organizedbytheSocietyforExperimentalMechanics,andheld inOrlando,Florida,February2–5,2015.ThefullproceedingsalsoincludevolumesonNonlinearDynamics;Dynamicsof CivilStructures;ModelValidationandUncertaintyQuantification;SensorsandInstrumentation;SpecialTopicsinStructural Dynamics;StructuralHealthMonitoring&DamageDetection;ExperimentalTechniques,RotatingMachinery&Acoustics; Shock&VibrationAircraft/Aerospace,EnergyHarvesting;andTopicsinModalAnalysis. Eachcollectionpresentsearlyfindingsfromexperimentalandcomputationalinvestigationsonanimportantareawithin StructuralDynamics.Coupledstructuresor,substructuring,isoneoftheseareas. Substructuringisageneralparadigminengineeringdynamicswhereacomplicatedsystemisanalyzedbyconsideringthe dynamicinteractionsbetweensubcomponents.Innumericalsimulations,substructuringallowsonetoreducethecomplexity of parts of the system in order to construct a computationally efficient model of the assembled system. A subcomponent model can also be derived experimentally, allowing one to predict the dynamic behavior of an assembly by combining experimentally and/or analytically derived models. This can be advantageous for subcomponents that are expensive or difficult to model analytically. Substructuring can also be used to couple numerical simulation with real-time testing of components.Suchapproachesareknownashardware-in-the-looporhybridtesting. Whetherexperimentalornumerical,allsubstructuringapproacheshaveacommonbasis,namelytheequilibriumofthe substructures under the action of the applied and interface forces and the compatibility of displacements at the interfaces of the subcomponents. Experimental substructuring requires special care in the way the measurements are obtained and processedinordertoassurethatmeasurementinaccuraciesandnoisedonotinvalidatetheresults.Innumericalapproaches, the fundamental questis theefficient computation of reduced order models describing thesubstructure’s dynamic motion. Forhardware-in-the-loopapplications,difficultiesincludethefastcomputationofthenumericalcomponentsandtheproper sensingandactuationofthehardwarecomponent.Recentadvancesinexperimentaltechniques,sensor/actuatortechnologies, novel numerical methods, and parallel computing have rekindled interest in substructuring in recent years leading to new insightsandimprovedexperimentalandanalyticaltechniques. Theorganizerswouldliketothanktheauthors,presenters,sessionorganizers,andsessionchairsfortheirparticipationin thistrack. UniversityofWisconsin-Madison,Madison,WI,USA MattAllen SandiaNationalLaboratories,Albuquerque,NM,USA RandallL.Mayes TechnischeUniversitatMunchen,Garching,Germany DanielJ.Rixen v Contents 1 RobustStabilityandPerformanceAnalysisforMulti-actuatorReal-TimeHybridSubstructuring........... 1 RuiM.BotelhoandRichardE.Christenson 2 EffectofActuatorDelayonReal-TimeHybridSimulationInvolvingMultiple ExperimentalSubstructures............................................................................................ 9 ChengChen,FrankSanchez,andMaryamKhan 3 EffectiveControlofaSixDegreeofFreedomShakeTable......................................................... 19 JosephA.FrancoIII,RuiM.Botelho,andRichardE.Christenson 4 MathematicalEquivalenceBetweenDynamicSubstructuringandFeedbackControlTheory ................ 31 RuiM.BotelhoandRichardE.Christenson 5 FeasibilityofaTransmissionSimulatorTechniqueforDynamicRealTimeSubstructuring................... 41 AndreasBartlandDanielJ.Rixen 6 IgnoringRotationalDoFsinDecouplingStructuresConnectedThroughFlexotorsionalJoints............... 57 WalterD’AmbrogioandAnnalisaFregolent 7 AComparisonofTwoComponentTPAApproachesforSteeringGearNoisePrediction...................... 71 M.V.vanderSeijs,E.A.Pasma,D.deKlerk,andDanielJ.Rixen 8 ExperimentalDynamicSubstructuringofaCatalyticConverterSystemUsingtheTransmission SimulatorMethod ....................................................................................................... 81 MatthewS.AllenandDanielR.Roettgen 9 AModalCraig-BamptonSubstructureforExperiments,Analysis,ControlandSpecifications ............... 93 RandallL.Mayes 10 AComparisonoftheDynamicBehaviorofThreeSetsoftheAmpair600WindTurbine...................... 99 AndreasLinderholt,ThomasAbrahamsson,AndersJohansson,DanielSteinepreis,andPascalReuss 11 Ampair600WindTurbineThree-BladedAssemblySubstructuringUsingtheTransmission SimulatorMethod ....................................................................................................... 111 DanielR.RoettgenandRandallL.Mayes 12 QuantifyingEpistemicandAleatoricUncertaintyintheAmpair600WindTurbine........................... 125 BrettA.Robertson,MatthewS.Bonney,ChiaraGastaldi,andMatthewR.W.Brake 13 ACraig-BamptonExperimentalDynamicSubstructureUsingtheTransmissionSimulatorMethod......... 139 RandallL.Mayes 14 AParallelSolutionMethodforStructuralDynamicResponseAnalysis.......................................... 149 VahidYaghoubi,MajidKhorsandVakilzadeh,andThomasAbrahamsson 15 StructuralCouplingofTwo-NonlinearStructures .................................................................. 163 CagriTepeandEnderCigeroglu vii Chapter 1 Robust Stability and Performance Analysis for Multi-actuator Real-Time Hybrid Substructuring RuiM.BotelhoandRichardE.Christenson Abstract Real-time hybrid substructuring (RTHS) is a relatively new method of vibration testing for characterizing the system-level performance of physical components or substructures. With RTHS, the coupled system is partitioned into physical and numerical substructures and interfaced together in real-time as cyber-physical system similar to hardware- in-the-loop testing. Control actuation and sensing is used to enforce the compatibility and equilibrium conditions between the physical and numerical substructures. Since RTHS involves a feedback loop, the frequency-dependent magnitude and inherenttimedelayoftheactuatordynamicscanintroduceinaccuracyandinstability.Thispaperpresentsarobuststability andperformanceanalysismethodformulti-actuatorRTHSbasedonrobuststabilitytheoryformultiple-input-multiple-output (MIMO)feedbackcontrol.Thisanalysismethodinvolvescastingtheactuatordynamicsasamultiplicativeuncertaintyand applyingthesmallgaintheoremtoderivethesufficientconditionsforrobuststabilityandperformance.Theattractivefeature ofthisrobuststabilityandperformanceanalysismethodisthatitaccommodateslinearizedmodeledormeasuredfrequency responsefunctionsforboththephysicalsubstructureandactuatordynamics. Keywords Experimental structural dynamics (cid:129) Real-time hybrid testing (cid:129) Dynamic substructuring (cid:129) Hardware-in-the- looptesting (cid:129) Robuststability (cid:129) Feedbackcontrolsystems 1.1 Introduction Real-time hybrid substructuring (RTHS), also called real-time hybrid simulation or real-time dynamic substructuring, is a relatively new method of vibration testing in experimental structural dynamics. RTHS allows a coupled system to be partitioned into separate physical and numerical components or substructures. The substructures that are well understood are simulated in real-time using analytical or numerical models, while those that are highly complex or of particular interest are physically tested using physical specimens. The physical and numerical substructures are interfaced together as cyber-physical system similar to hardware-in-the-loop (HWIL) testing. In a RTHS test, the numerical and experimental substructures communicate together in real-time by transferring displacement and force signals through a feedback loop usingcontrolledactuationandsensing.Thephysicalsubstructureisusuallytheexperimentalcomponent ofinterest,while the numerical substructure is typically an analytical or numerical model of the remaining system incorporating various complexities that may be difficult to represent physically. RTHS has recently become more feasible due to advances in numericalcomputingpower,digitalsignalprocessing,andhigh-speedservo-hydraulicactuation. EarlydevelopmentsofRTHSincludeHoriuchietal.[1,2],NakashimaandMasaoka[3],andDarbyetal.[4].RTHSis also a major element of the Network for Earthquake Engineering Simulation (NEES). For example, Christenson and Lin [5]describealarge-scaleRTHStestsetupattheUniversityofColoradoBoulderNEESfacilitytoexaminethesystem-level performanceofmultiple200kNMRfluiddampersinathree-storybuildingstructure.Jiangetal.[6]describerecentRTHS testingattheLehighUniversityNEESfacilityoffull-scaleMRdampersattachedtoabridgestructure,andFriedmanetal. [7]describeRTHStestsattheLehighUniversityNEESfacilityusingthesameMRdampersinstalledinaseismicallyexcited steelmomentresistingframe. Figure1.1illustratestheblockdiagramofatypicalRTHStest.Atagiventime-step,numericalloadingisappliedtothe numericalsubstructuretosimulatethenumericaldisplacements,x ,tobeimposedonthephysicalsubstructureinreal-time. n Thenumericaldisplacementsarethenfedintoacontrollertoapplythecommanddisplacement,x ,totheactuatortransfer c R.M.Botelho((cid:2))(cid:129)R.E.Christenson DepartmentofCivilandEnvironmentalEngineering,UniversityofConnecticut,261GlenbrookRoad Unit3037,Storrs,CT 06269-3037,USA e-mail:[email protected] ©TheSocietyforExperimentalMechanics,Inc.2015 1 M.Allenetal.(eds.),DynamicsofCoupledStructures,Volume4,ConferenceProceedingsoftheSociety forExperimentalMechanicsSeries,DOI10.1007/978-3-319-15209-7_1 2 R.M.BotelhoandR.E.Christenson Physical Loading Numerical Numerical xn Controller xc ATcratunastfoerr xm Physical fr Substructure Component Loading System Displacement Feedback Force Feedback x – numerical displacement x – measured actuator displacement n m x – command actuator displacement f – measured restoring force c r Fig.1.1 BlockdiagramofatypicalRTHStest system,whichisusuallyasetofhydraulicactuatorscontrolledbyaproportional-integral-derivative(PID)servo-controller usingthemeasureddisplacement,x ,asthefeedbacksignal.Themeasuredrestoringforce,f ,ofthephysicalsubstructure m r is then fed back into the numerical substructure to compute the numerical displacements for the next time step. RTHS also accommodates physical loading of the physical substructure from external shaker forcing of the physical specimen. This closed-loop testing method makes RTHS very similar to HWIL testing, whereby a real-time virtual model is directly interfacedwithactualphysicalhardwareformingacyber-physicalsystem. SinceRTHSinvolvesafeedbackloop,theinherenttimedelayoftheactuatortransfersystemcanleadtoinaccuracyinthe actuatortrackingandpotentialinstabilityduringclosed-looptesting.TheeffectoftimedelayonRTHStestingwasinitially consideredbyHoriuchietal.[1],whoshowedthatactuatordelaycancauseanincreaseinthetotalenergy,whichisequivalent to introducing negative damping into the system. When the negative damping is larger than the total system damping, the RTHStestwillbecomeunstable.PreviousRTHStestswithoutactuatordelaycompensationhadbeenperformedforsystems withverylownaturalfrequenciesandhighdampingtoensurestability.TherearealsoothersourcesoftimedelayinaRTHS test, including communication delays of the various electrical signals and computational delays for solving the numerical substructure.Thesetimedelaysaregenerallymuchsmallerthantheinherenttimedelayoftheactuatortransfersystem. To improve the closed-loop stability and performance of RTHS, researchers have developed a variety of techniques for compensating the time delay or more generally the frequency dependent dynamics of the actuator transfer system. The techniques range from polynomial extrapolation in Horiuchi et al. [1] and inverse compensation in Chen and Ricles [8] to reduce the actuator delay as well as adaptive techniques in Chen and Ricles [9] and Chae et al. [10]. Carrion and Spencer [11]usedacontrolsapproachtodevelopmodel-basedfeedforward-feedbackcontroltocompensatethefrequency-dependent magnitude and phase of the actuator dynamics. Phillips and Spencer [12] extended this approach with a more accurate feedforward inverse of the actuator dynamics and adding linear-quadratic Gaussian (LQG) feedback control. Christenson and Lin [5] employed virtual coupling to balance closed-loop stability and performance in RTHS testing of large-scale MR dampers. Gao et al. [13] recently developed an H-infinity robust loop-shaping controller to compensate the actuator dynamicsforRTHStestingoflightlydampedsteelframestructures.Theultimategoalofthesecompensationtechniquesis toprovideeffectivedisplacementtrackingoftheactuatortransfersystemoverthedesiredfrequencyrangeoftheRTHStest, calledthecontrolband. Stabilityandperformanceanalysisisanimportanttoolforunderstandingtheeffectofactuatortimedelayonthestability behavior and accuracy of RTHS. This information is especially useful in guiding the compensation design of the actuator transfersystemtoreduceitsinherenttimedelayandprovideclosed-loopstabilityandperformance.Wallaceetal.[14]studied the effect of actuator time delay using delay differential equation (DDE) modeling of a single degree of freedom (SDOF) RTHS system comprised of a physical stiffness coupled to an analytically modeled mass-spring oscillator. This approach yields a governing characteristic equation with an exponential delay term whose solution has an infinite number of roots. The purely imaginary roots define the critical frequencies at which switches in the stability behavior of the system occur andcanbeusedtoidentifythecriticaltimedelaysoftheRTHSsystem.Kyrychkoetal.[15]appliedasimilarapproachto identifythecriticaltimedelaysforRTHSofaphysicalpendulumcoupledtoananalyticalmass-springoscillator,butusing neutralDDE’s. MercanandRicles[16]appliedapseudodelaytechniquetosolvetheDDEforaSDOFRTHSsystemandidentifiedthe criticaltimedelaysintermsofthemass,damping,stiffnessparametersoftheteststructure.MercanandRicles[17]extended thepseudodelaytechniquetoevaluatemultiplesourcesoftimedelayincludingthoseformulti-actuatorRTHS.Fudongetal. [18]employedaPadérationalfractionapproachtoapproximatetheexponentialdelaytermandusedarootlocustechniqueto

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.