ebook img

Dynamics of charged particles and their radiation field PDF

378 Pages·2004·2.313 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamics of charged particles and their radiation field

This page intentionally left blank DYNAMICS OF CHARGED PARTICLES AND THEIR RADIATION FIELD This book provides a self-contained and systematic introduction to classical elec- trontheoryanditsquantizationnonrelativisticquantumelectrodynamics.Thefirst halfofthebookcoverstheclassicaltheory.Itdiscussesthewell-definedAbraham modelofextendedchargesininteractionwiththeelectromagneticfield,andgives astudyoftheeffectivedynamicsofchargesundertheconditionthat,onthescale givenbythesizeofthechargedistribution,theyarefarapartandtheappliedpoten- tialsvaryslowly.Thesecondhalfcoversthequantumtheory,leadingtoacoherent presentationofnonrelativisticquantumelectrodynamics.Topicsdiscussedinclude nonperturbative properties of the basic Hamiltonian, the structure of resonances, therelaxationtothegroundstatethroughemissionofphotons,thenonperturbative derivationoftheg-factoroftheelectron,andthestabilityofmatter. Suitable as a supplementary text for graduate courses, this book will also be a valuable reference for researchers in mathematical physics, classical electrody- namics,quantumoptics,andappliedmathematics. HERBERT SPOHN is Professor of Mathematical Physics at Zentrum Mathe- matik, Technische Universita¨t Mu¨nchen. He obtained his Ph.D. from Ludwig- Maximilians-Universita¨t Mu¨nchen in 1975. He has done research at universities andinstitutesthroughouttheworld.Hisresearchinterestsareinstatisticalphysics, particularlydynamicsandnonequilibriumstatisticalmechanics,withonefocuson thederivationofmacroscopicevolutionequationsfromthedynamicsofatoms.He hashadnumerouspublicationsintheseareas.From2000to2002hehasbeenthe presidentoftheInternationalAssociationofMathematicalPhysics. DYNAMICS OF CHARGED PARTICLES AND THEIR RADIATION FIELD HERBERT SPOHN TechnischeUniversita¨tMu¨nchen cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge cb2 2ru, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521836975 © H. Spohn 2004 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2004 isbn-13 978-0-511-21079-2 eBook (EBL) isbn-10 0-511-21256-9 eBook (EBL) isbn-13 978-0-521-83697-5 hardback isbn-10 0-521-83697-2 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. TothememoryofmyparentsOrtrudKnoppandKarlSpohn Contents Preface pagexi Listofsymbols xiii 1 Scope,motivation,andorientation 1 PartI Classicaltheory 5 2 Achargecoupledtoitselectromagneticfield 7 2.1 TheinhomogeneousMaxwell–Lorentzequations 8 2.2 Newton’sequationsofmotion 12 2.3 CoupledMaxwell’sandNewton’sequations 13 2.4 TheAbrahammodel 17 2.5 TherelativisticallycovariantLorentzmodel 22 2.5.1 Thefour-currentdensity 24 2.5.2 Relativisticaction,equationsofmotion 27 3 Historicalnotes 33 3.1 Extendedchargemodels(1897–1912) 33 3.2 Nonrelativisticquantumelectrodynamics 36 3.3 Thepointcharge 37 3.4 Wheeler–Feynmanelectrodynamics 41 4 Theenergy–momentumrelation 44 4.1 TheAbrahammodel 44 4.2 TheLorentzmodel 48 4.3 Thelimitofzerobaremass 51 5 Long-timeasymptotics 54 5.1 Radiationdampingandtherelaxationoftheacceleration 55 5.2 Convergencetothesolitonmanifold 59 5.3 Scatteringtheory 61 vii viii Contents 6 Adiabaticlimit 65 6.1 Scalinglimitforexternalpotentialsofslowvariation 66 6.1.1 Appendix 1: How small is ε?71 6.1.2 Appendix2:Adiabaticprotection 72 6.2 Comparisonwiththehydrodynamiclimit 74 6.3 Point-chargelimit,negativebaremass 75 7 Self-force 80 7.1 Memoryequation 81 7.2 Taylorexpansion 83 7.3 Howcantheaccelerationbebounded? 86 8 Comparisondynamics 91 8.1 Anexampleforsingularperturbationtheory 94 8.2 Thecriticalmanifold 95 8.3 Trackingofthetruesolution 97 8.4 Electromagneticfieldsintheadiabaticlimit 100 8.5 Larmor’sformula 101 9 TheLorentz–Diracequation 106 9.1 Criticalmanifold,theLandau–Lifshitzequation 107 9.2 Someapplications 109 9.3 ExperimentalstatusoftheLorentz–Diracequation 114 10 Spinningcharges 119 10.1 EffectivespindynamicsoftheLorentzmodel 119 10.2 TheAbrahammodelwithspin 121 10.3 Adiabaticlimitandthegyromagneticratio 125 11 Manycharges 130 11.1 Retardedinteraction 130 11.2 Limitofsmallvelocities 132 11.3 TheVlasov–Maxwellequations 138 11.4 Statisticalmechanics 139 12 Summaryandpreambletothequantumtheory 145 PartII Quantumtheory 147 13 QuantizingtheAbrahammodel 149 13.1 LagrangianandHamiltonianrewritingoftheAbrahammodel 150 13.2 ThePauli–FierzHamiltonian 153 13.3 Fockspace,self-adjointness 160 13.4 Energyandlengthscales 164 13.5 Conservationlaws 167 13.6 BoundaryconditionsandtheCasimireffect 169 13.7 Dipoleandsingle-photonapproximation 171

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.