ebook img

Dynamic Substructures, Volume 4: Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics 2019 PDF

184 Pages·2020·11.297 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamic Substructures, Volume 4: Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics 2019

Conference Proceedings of the Society for Experimental Mechanics Series Andreas Linderholt · Matthew S. Allen Randall L. Mayes · Daniel Rixen Editors Dynamic Substructures, Volume 4 Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics 2019 ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries SeriesEditor KristinB.Zimmerman,Ph.D. SocietyforExperimentalMechanics,Inc., Bethel,CT,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/8922 Andreas Linderholt • Matthew S. Allen (cid:129) Randall L. Mayes (cid:129) Daniel Rixen Editors Dynamic Substructures, Volume 4 Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics 2019 123 Editors AndreasLinderholt MatthewS.Allen MechanicalEngineering UniversityofWisconsin–Madison LinnaeusUniversity Madison,WI,USA Växjö,Sweden DanielRixen RandallL.Mayes LehrstuhlfürAngewandteMechanik Bldg860Room201D,MS0557 TechnischeUniversitatMunchen SandiaNationalLaboratory Garching,Germany Albuquerque,NM,USA ISSN2191-5644 ISSN2191-5652 (electronic) ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries ISBN978-3-030-12183-9 ISBN978-3-030-12184-6 (eBook) https://doi.org/10.1007/978-3-030-12184-6 ©SocietyforExperimentalMechanics,Inc.2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialisconcerned,specificallytherights oftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,evenintheabsenceofaspecific statement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedate ofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorfor anyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutional affiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Dynamic Substructures represents one of eight volumes of technical papers presented at the 37th IMAC, A Conference and Exposition on Structural Dynamics, organized by the Society for Experimental Mechanics and held in Orlando, Florida, on January 28–31, 2019. The full proceedings also include volumes on Nonlinear Structures & Systems; Dynamics of Civil Structures; Model Validation and Uncertainty Quantification; Special Topics in Structural Dynamics &ExperimentalTechniques;RotatingMachinery,OpticalMethods&ScanningLDVMethods;SensorsandInstrumentation, Aircraft/Aerospace,EnergyHarvesting&DynamicEnvironmentsTesting;andTopicsinModalAnalysis&Testing. Eachcollectionpresentsearlyfindingsfromexperimentalandcomputationalinvestigationsonanimportantareawithin structuraldynamics.Coupledstructuresorsubstructuringisoneoftheseareas. Substructuringisageneralparadigminengineeringdynamicswhereacomplicatedsystemisanalyzedbyconsideringthe dynamicinteractionsbetweensubcomponents.Innumericalsimulations,substructuringallowsonetoreducethecomplexity of parts of the system in order to construct a computationally efficient model of the assembled system. A subcomponent model can also be derived experimentally, allowing one to predict the dynamic behavior of an assembly by combining experimentally and/or analytically derived models. This can be advantageous for subcomponents that are expensive or difficult to model analytically. Substructuring can also be used to couple numerical simulation with real-time testing of components.Suchapproachesareknownashardware-in-the-looporhybridtesting. Whetherexperimentalornumerical,allsubstructuringapproacheshaveacommonbasis,namely,theequilibriumofthe substructures under the action of the applied and interface forces and the compatibility of displacements at the interfaces of the subcomponents. Experimental substructuring requires special care in the way the measurements are obtained and processedinordertoassurethatmeasurementinaccuraciesandnoisedonotinvalidatetheresults.Innumericalapproaches, the fundamental questis theefficient computation of reduced order models describing thesubstructure’s dynamic motion. Forhardware-in-the-loopapplications,difficultiesincludethefastcomputationofthenumericalcomponentsandtheproper sensingandactuationofthehardwarecomponent.Recentadvancesinexperimentaltechniques,sensor/actuatortechnologies, novel numerical methods, and parallel computing have rekindled interest in substructuring in recent years leading to new insightsandimprovedexperimentalandanalyticaltechniques. Theorganizerswouldliketothanktheauthors,presenters,sessionorganizers,andsessionchairsfortheirparticipationin thistrack. Växjö,Sweden A.Linderholt Madison,WI,USA M.Allen Albuquerque,NM,USA R.Mayes Garching,Germany D.Rixen v Contents 1 UsingLaserVibrometryforPreciseFRFMeasurementsinExperimentalSubstructuring .................... 1 FrancescoTrainotti,TobiasF.C.Berninger,andDanielJ.Rixen 2 APrioriInterfaceReductionforSubstructuringofMultistageBladedDisks.................................... 13 LukasSchwerdt,LarsPanning-vonScheidt,andJörgWallaschek 3 Using Hybrid Modal Substructuring with a Complex Transmission Simulator to Model anElectrodynamicShaker.............................................................................................. 23 BenjaminMoldenhauer,MattAllen,WashingtonJ.DeLima,andEricDodgen 4 HybridSubstructureAssemblyTechniquesforEfficientandRobustOptimizationofAdditional StructuresinLatePhaseNVHDesign:AComparison ............................................................. 35 BenjaminKammermeier,JohannesMayet,andDanielJ.Rixen 5 WorkpieceCouplinginMachineToolsUsingExperimental-AnalyticalDynamicSubstructuring ............ 47 PrateekChavan,ChristianBrecher,MarcelFey,andMatthäusLoba 6 MechanicalCharacterizationandNumericalModelingofHighDensityPolyethylenePipes .................. 57 MehrzadTaherzadehboroujeniandScottW.Case 7 StudyonDynamicStiffnessCharacteristicofPrimarySuspensionforHigh-SpeedEMU ..................... 67 XiugangWang,XiaoningCao,AiqinTian,JianSu,WeiXue,andShenZhan 8 Test-BasedModeling,SourceCharacterizationandDynamicSubstructuringTechniquesApplied onaModularIndustrialDemonstrator............................................................................... 73 A.M.Steenhoek,M.W.vander Kooij,M.L.J.Verhees,D.D.vanden Bosch,andJ.M.Harvie 9 DevelopmentofaLowCostAutomaticModalHammerforApplicationsinSubstructuring .................. 77 JohannesMaierhofer,AhmedElMahmoudi,andDanielJ.Rixen 10 UsingSEMMtoIdentifytheJointDynamicsinMultipleDegreesofFreedomWithoutMeasuring Interfaces................................................................................................................. 87 S.W.B.KlaassenandD.J.Rixen 11 OverviewofFreeInterfaceSubstructuringApproachesforSystemswithArbitraryViscousDamping inDynamicSubstructuring............................................................................................. 101 FabianM.Gruber,DennisBerninger,andDanielJ.Rixen 12 ModelUpdatingofFluid-StructureInteractionEffectsonPipingSystem ....................................... 133 SrijanRajbamshi,QintaoGuo,andMingZhan 13 VehicleDrivelineBenchmarkingtoSupportPredictiveCAEModelingDevelopment.......................... 141 J.Furlich,J.Blough,andD.Robinette 14 AProposalofDynamicBehaviourDesignBasedonModeShapeTracing:NumericalApplication toaMotorbikeFrame................................................................................................... 149 ElvioBonisoli,DomenicoLisitano,LucaDimauro,andLorenzoPeroni vii viii Contents 15 RapidSeismicRiskAssessmentofStructureswithGaussianProcessRegression............................... 159 MohamadrezaSheibani,GeOu,andShandianZhe 16 ModelingRail-VehicleCoupledDynamicsbyaTime-VaryingSubstructuringScheme ........................ 167 LuigiCarassale,PaoloSilvestri,RoaldLengu,andPaoloMazzaron 17 PlanningofaBlack-BoxBenchmarkStructureforDynamicSubstructuring.................................... 173 D.RoettgenandA.Linderholt 18 StudyontheTechnologyofReliableLifePredictionofPlateHeatExchangerforShip ........................ 177 LongboLiu,NaHan,LingliFu,andJunYao 19 Real-TimeHybridSubstructuringResultsoftheMarsPathfinderParachuteDeployment.................... 183 MichaelJ.HarrisandRichardE.Christenson Chapter 1 Using Laser Vibrometry for Precise FRF Measurements in Experimental Substructuring FrancescoTrainotti,TobiasF.C.Berninger,andDanielJ.Rixen Abstract The acquisition of high quality FRF measurements is a key factor for a successful implementation of cou- pling/decouplingtechniquesinExperimentalDynamicSubstructuring.Althoughtheuseofpiezoaccelerometersasresponse transducers is very popular for impact testing due to its easy and fast implementation, the level of accuracy could not be adequate in certain applications. The laser technology provides a non-invasive alternative to standard piezo devices. The choice of a non-contact measurement technique allows to minimize the impact of external dynamic systems on the test component during the measurement process. In this paper, a validation of Lagrange Multiplier—Frequency Based Substructuring coupling by means of a Virtual Point Reduction is performed on a benchmark structure with a non-stiff interface.ThenecessaryFRFdataisacquiredtwice,usingaccelerometersandalaserDopplervibrometerrespectively.Both couplingresultsarecomparedtoeachotherandareshowntomatchverywellsimulationdatauptoahighfrequencyrange. Theresultsunderlinethepotentialofhighquality,non-intrusivemeasurementsforFrequencyBasedSubstructuring. Keywords Experimentaldynamics · DynamicSubstructuring · FrequencyBasedSubstructuring · VirtualPoint Transformation · FRFmeasurements · Laservibrometry 1.1 Introduction InDynamicSubstructuring(DS)theconceptofmodulardesigncanbereinterpretedfromastructuraldynamicspointofview, making possible the modelling, analysis and optimization of a complex system on a substructure level. Although various methodologiesandtechnicalsolutionswithinDSarewelldocumented[1],itstillremainschallengingtovalidatetheoretical concepts in the framework of an industrial application. Significant difficulties in Experimental Dynamic Substructuring (EDS) concern the coupling/decoupling of the measured components. In this context, a frequency-based formulation of theproblemisrecommendedasitdirectlyincludesthemeasuredFrequencyResponseFunctions(FRFs)intheimplemented methods.Furthermore,apropercouplingofsubstructuresstronglydependsonacompleteandaccuratemodellingofinterface dynamics. It is common practice to ‘weaken’ the interface problem by projecting the dynamics into a subspace composed by Interface Deformation Modes (IDMs), which aren’t global vibration modes but rather kinematic assumptions of the local deformation behaviour at the interface. This approach uses so-called virtual points to connect the components as in finite element models, overcoming some of the issues arising from experimental practice [2]. Inaccuracies and sources of errorrelatedtotheapplicationofexperimentalFrequencyBasedSubstructuring(FBS)techniquesbymeansofVirtualPoint Transformation(VPT)arisefromthecomplexitiesassociatedwithbothreliableandaccuratedataacquisitionandhighquality interfacemodeling.RegardingtheerrorsexclusivelygeneratedbyFRFmeasurements,differentsourcesofdisturbancescan befurtherdistinguished: (cid:129) Modificationofthesignalarisingfromdataacquisitionandsignalprocessing[3,4]. (cid:129) Influence of external dynamic systems on the measured component (e.g. support mechanisms, attached measurement devices)[5]. (cid:129) Randomandsystematicerrors(e.g.environmentalnoise,sensornoiseandpositioning). Moreover,theuncertaintyonthemeasurementscanbehighlyamplifiedbytheDSalgorithmduetonumericalinstabilities andinducesspuriouspeaksandinaccuraciesinthecouplingresults[6,7]. F.Trainotti((cid:2))·T.F.C.Berninger·D.J.Rixen FacultyofMechanicalEngineering,TechnicalUniversityofMunich,Garching,Germany e-mail:[email protected];[email protected];[email protected] ©SocietyforExperimentalMechanics,Inc.2020 1 A.Linderholtetal.,DynamicSubstructures,Volume4,ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries, https://doi.org/10.1007/978-3-030-12184-6_1 2 F.Trainottietal. In particular, the use of standard measurement devices like piezo accelerometers in the FRFs acquisition process may notbesuitableforapplicationsrequiringahighlevelofaccuracy.Therefore,avalidalternativeformotiondetectioncanbe identifiedintheuseoflaserinterferometry,thankstoitsnon-invasiveandhighqualitymeasurementtechnique. Inthiscontribution,thepotentialoflasertechnologyintheacquisitionofFRFswithinFBSisinvestigated.Thereliability oflasermeasurementscompared tothosetakenwithstandardaccelerometers isevaluated throughtheanalysisofthefinal couplingresults. In Sect.1.2, the theoretical background on Experimental Dynamic Substructuring is recalled, with particular focus on frequency-basedapproachesandinterfacemodellingtechniques.ThelaservibrometryisshortlydiscussedinSect.1.3along withitsadvantagesanddrawbacksovertraditionalmeasurementtechniques.InSect.1.4,twomeasurementcampaignsare carried out, one with accelerometers and the other with a laser Doppler vibrometer. A DS coupling is performed and the resultsofbothcasestudiesarecompared.AbriefsummaryoffindingsandconclusionsisgiveninSect.1.5. 1.2 ExperimentalDynamicSubstructuring This section briefly reviews the theoretical concepts underlying the Experimental Dynamic Substructuring. Inparticular, a generaloverviewofFrequencyBasedSubstructuringandVirtualPointTransformationisprovidedinSects.1.2.1and1.2.2 respectively. 1.2.1 Frequency BasedSubstructuring TheassemblyprocedureinthefrequencydomainaccordingtoadualapproachisnamedLagrangeMultiplier—Frequency BasedSubstructuring(LM-FBS)[1,8,9].Thismethod,whichoperateswithadmittancenotation,evaluateslocallyasetof interfaceDoFsforeachsinglesubstructureinthesystemandconsiderstheinterfaceforcesasunknownvariables.Theaim ofLM-FBSistoderivetheadmittanceoftheassembledsystemYAB fromtheseparateadmittancesofthetwosubsystems YAandYB. ConsiderthesystemdepictedinFig.1.1.Thesubsystems’admittancesareknownandthesubstructures’DoFsaregrouped in internal DoFs ((∗)A and (∗)B) and interface DoFs ((∗)A and (∗)B). The vectors of displacements, applied forces and 1 3 2 2 reactionforcesaredenotedbyu,f andg respectively.Thegoverningequationofmotionfortheuncoupledsysteminthe frequencydomainiswritteninacompactform: ⎡ ⎤ ⎡ ⎤⎛⎡ ⎤ ⎡ ⎤⎞ uA YA YA 0 0 fA 0 1 11 12 1 u=Y(f +g) (cid:3)⇒ ⎢⎢⎣uuBA2⎥⎥⎦=⎢⎢⎣Y0A21 Y0A22 Y0B Y0B⎥⎥⎦⎜⎜⎝⎢⎢⎣ffBA2⎥⎥⎦+⎢⎢⎣ggBA2⎥⎥⎦⎟⎟⎠ (1.1) 2 22 23 2 2 uB 0 0 YB YB fB 0 3 32 33 3 The matrixY represents theadmittance oftheuncoupled system,builtinablock diagonal formby theadmittances ofthe subsystemsYAandYB. Fig.1.1 AssemblyofsubsystemsAandBattheinterfaceDoFsu2

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.