DEGREE PROJECT, IN CIVIL ENGINEERING , SECOND LEVEL STOCKHOLM, SWEDEN 2015 Dynamic response of a steel arch bridge due to traffic load - A CASE STUDY OF VÄSTERBRON FREDRIK HILL AND FREDRIK JOHANSSON KTH ROYAL INSTITUTE OF TECHNOLOGY KTH ARCHITECTURE AND THE BUILT ENVIRONMENT Abstract The purpose of this master thesis was to study the dynamic response of the bridge Västerbron. The bridge is situated in Stockholm and is considered being of critical significance for the infrastructure. The thesis consists of both field measurements and analyses of a finite element model. A stochastic load model was created that is intended to simulate different realistic traffic situations based on parameters as velocity, vehicle type and amount of traffic. The traffic load model was implemented in a finite element model to study if the response was similar to the measurements. With comparisons of the dynamic properties the validity of the model can be as- sessed. Parameters as stiffness, mass and boundary conditions also often needs to be updated to describe the real behaviour of the bridge. With these updates a model can be created that could better predict problematic behaviour as fatigue. The field measurements were made with accelerometers and analysed in Matlab. The stochastic load model is also scripted in this environment. The FE-model was created using Python scripts that were implemented in BRIGADE/Plus. No conclusive results regarding the mode shapes of Västerbron could be found, however possible eigenfrequencies were identified and presented. The load model was implemented in the FE-model and the influence of different parameters were discussed. The results were consistent with structural dynamics theory and in the same order of magnitude as the measurements. This implies that the traffic load model can be used for further studies regarding dynamic analyses. Keywords: Dynamics, finiteelementanalysis, measurements, fieldtests, frequency, accelerations, traffic simulation, moving force ii Sammanfattning Syftet med detta examensarbete var att undersöka de dynamiska egenskaperna hos Västerbron. Denna bro är belägen i Stockholm och bedöms vara av stor betydelse för infrastrukturen. Undersökningen skedde både genom fältmätningar av acceler- ationer och med hjälp av en finita elementmodell. En stokastisk trafiklastmodell skapades som var avsedd att simulera olika realistiska trafiksituationer med parame- trar som hastighet, fordonstyp och trafikmängd. Trafikmodellen implementerades i en finita elementmodell för att se om resultatet stämmde överens med mätningarna. Vidjämförelseravdedynamiskaegenskapernakangiltighetenavmodellenbedömas. Parametrarsomstyvhet, massaocholikarandvillkorbehöveroftauppdaterasföratt beskriva det verkliga beteendet hos bron. Med dessa uppdateringar kan en modell skapas som bättre skulle kunna förutsäga problemområden som t.ex. utmattning. Fältmätningarna utfördes med accelerometrar och analyserades i Matlab. Den stokastiska trafiklastmodellen skapades också i detta program. FE-modellen byg- gdes med skript utförda i Python som sedan implementerades i BRIGADE/Plus. Inga definitiva resultat med avseende på Västerbrons modformer kunde bestäm- mas, men eventuella egenfrekvenser identifieras och presenteras. Lastmodellen an- vänds i FE-modellen och påverkan av olika parametrar diskuterades. Resultaten överensstämmer med teori för strukturdynamik och är i samma storleksordning som mätningarna. Detta visar på att trafiklastmodellen kan användas för vidare studier av dynamiska analyser. iii Preface The topic of this master thesis was initiated by the consultant company Tyréns AB together with the department of Civil and Architectural Engineering at the Royal Institute of Technology (KTH). We would like to thank Tyréns and our supervisor Ph.D. Mahir Ülker-Kaustell for the guidance and support during the writing of this thesis. We would also like to thank Joakim Kylén at Tyréns for the good support and inspiring discussions. We further would like to express our gratitude to the Div. of Structural Engineering and Bridges at KTH together with Ph.D. Ignacio Gonzalez who helped us with the field measurements. A special thank to Prof. Raid Karoumi for his inspirational lectures on dynamics and bridge design which lead us to the topic of this master thesis. Last but not least we would like to thank our family and friends for supporting us throughout the years at KTH. Thank you! Stockholm, June 2015 Fredrik Hill and Fredrik Johansson iv Notations Notation Description a Mass coefficient 0 a Stiffness coefficient 1 c Viscous damping matrix C Diagonal viscous damping matrix d Displacement E Elastic modulus f Natural frequency n F Nyquist frequency n F Sampling frequency s F Axial force 1 φ Mode shape n Φ Modal matrix n g Surface roughness ligk g Gravitational acceleration I Moment of inertia k Spring constant k Stiffness matrix K Diagonal stiffness matrix L Length m Mass matrix M Diagonal mass matrix µ Mean value ω Natural circular frequency n p(t) Force P DFT of signal j p Inverse of DFT of signal n q Modal coordinate n q Modal displacement r σ Standard deviation T Natural period of vibration n t Time t Start time 0 u(t) Displacement w(t) Displacement ζ Damping ratio n v Abbreviations Abbreviation Description 2D Two-dimensional 3D Three-dimensional AMS Automatic Multi-level Substructuring DAF Dynamic amplification factor DFT Discrete Fourier Transform DOF Degree of freedom FE Finite element FEM Finite element method FEA Finite element analysis FFT Fast Fourier Transform FLM Fatigue Load Model GUI Graphical User Interface GVW Gross Vehicle Weight MDF Multi degree of freedom system RPY Python script file RMS Root Mean Square ODB Output database file OMA Operational Modal Analysis PSD Power spectral density WIM Weight In Motion vi Contents Abstract ii Sammanfattning iii Preface iv Notations v Abbreviations vi 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Challenges of structural health . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Aim of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Description of the bridge: Västerbron . . . . . . . . . . . . . . . . . . 3 2 Literature review 4 2.1 Vehicle bridge interaction . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Vehicle induced vibrations . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Probabilistic traffic load simulations . . . . . . . . . . . . . . . . . . . 9 2.4 Summary of literature review . . . . . . . . . . . . . . . . . . . . . . 10 3 Theoretical background 11 3.1 Structural dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 Undamped system . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.2 Systems with damping . . . . . . . . . . . . . . . . . . . . . . 13 vii 3.1.3 Modal dynamic analysis . . . . . . . . . . . . . . . . . . . . . 14 3.2 Finite element method . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 Description of element types . . . . . . . . . . . . . . . . . . . 16 3.3 Signal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.1 Time and frequency domain . . . . . . . . . . . . . . . . . . . 18 3.3.2 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . 19 3.3.3 Errors in signal processing . . . . . . . . . . . . . . . . . . . . 20 3.4 Arch Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4 Methodology 22 4.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 2D Finite element model . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.1 Geometry and properties . . . . . . . . . . . . . . . . . . . . . 25 4.2.2 Connections and boundary conditions . . . . . . . . . . . . . . 27 4.3 Python scripting with BRIGADE/Plus . . . . . . . . . . . . . . . . . 28 4.4 Traffic load model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.4.1 Moving force . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.4.2 Traffic load . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.5 Verification of moving load model . . . . . . . . . . . . . . . . . . . . 32 4.6 Finite element dynamic analysis . . . . . . . . . . . . . . . . . . . . . 34 4.6.1 Linear Eigenvalue analysis . . . . . . . . . . . . . . . . . . . . 34 4.6.2 Implicit and modal dynamic analysis . . . . . . . . . . . . . . 34 4.6.3 Rayleigh damping . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.6.4 Convergence study of 2D-model . . . . . . . . . . . . . . . . . 36 5 Results 38 5.1 Measured dynamic response . . . . . . . . . . . . . . . . . . . . . . . 38 5.1.1 Acceleration response . . . . . . . . . . . . . . . . . . . . . . . 38 5.1.2 Frequency response . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2 Frequency content of the load model . . . . . . . . . . . . . . . . . . 43 viii 5.2.1 Influence of velocity . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2.2 Influence of vehicle type . . . . . . . . . . . . . . . . . . . . . 45 5.2.3 Influence of vehicle distance . . . . . . . . . . . . . . . . . . . 46 5.3 Eigenfrequency analysis, FE-model . . . . . . . . . . . . . . . . . . . 47 5.3.1 Initial eigenfrequencies . . . . . . . . . . . . . . . . . . . . . . 47 5.3.2 Sensitivity study of FE-model . . . . . . . . . . . . . . . . . . 48 5.4 Dynamic response, FE-model . . . . . . . . . . . . . . . . . . . . . . 51 5.4.1 Acceleration response . . . . . . . . . . . . . . . . . . . . . . . 51 5.4.2 Frequency response . . . . . . . . . . . . . . . . . . . . . . . . 51 5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.5.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.5.2 Comparison of accelerations . . . . . . . . . . . . . . . . . . . 55 5.5.3 Comparison of frequency response . . . . . . . . . . . . . . . . 56 5.5.4 Implementation of traffic load model . . . . . . . . . . . . . . 58 6 Conclusions and further research 60 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3 Suggested further studies . . . . . . . . . . . . . . . . . . . . . . . . . 61 Bibliography 62 Appendix A - Matlab scripts 65 A.1 Traffic load model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 A.1.1 Main script . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 A.1.2 Class, amplitude method . . . . . . . . . . . . . . . . . . . . . 68 Appendix B - Python scripts 70 B.1 Python ODB-reader . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Appendix C - Mode shapes 72 C.1 Mode shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 ix Chapter 1 Introduction 1.1 Background Stockholm City is currently running several projects intended to estimate the struc- tural capacity of bridges of critical significance for the infrastructure. The bridge Västerbron is one of these bridges, especially as it is the only bridge between Söder- malm and Kungsholmen. This master thesis was initiated by Tyréns AB as they together with BROSYS has carriedoutaninvestigationofthestructuralcapacityofVästerbron, howeverfurther analyses are of interest to validate the results. There is a need for validation of produced finite element models by measurements, especially with regards to dynamic properties. This is common in many countries butisnotoftencarriedoutintheSwedishbridgeindustry. Measurementsconducted on a bridge can together with the use of a finite element model give indications of parameters that need to be updated. Parameters as material properties, boundary conditions and the stiffness in connections are typically chosen with safety consid- eration and do not always describe the real behaviour. 1.2 Challenges of structural health The Swedish transport administration hastogether with the Royal Institute of Tech- nology (KTH) published a summarizing report, see (Andersson et al., 2007), on the challenges and needs of monitoring our bridges. As many bridges in Sweden are of considerable age there is a need for methods that can provide optional maintenance and repairs intervals. Amodelthatprovidesrealisticdeformationsandvibrationspresentsagoodbasisfor decisions regarding a structures health. With estimated load situations it is possible to predict which areas that are especially subjected to fatigue from a combination of static and dynamic responses. 1
Description: