ebook img

Dynamic land use/cover change modelling: Geosimulation and multiagent-based modelling PDF

152 Pages·2012·6.015 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamic land use/cover change modelling: Geosimulation and multiagent-based modelling

Springer Theses Recognizing Outstanding Ph.D. Research For furthervolumes: http://www.springer.com/series/8790 Aims and Scope The series ‘‘Springer Theses’’ brings together a selection of the very best Ph.D. theses from around the world and across the physical sciences. Nominated and endorsed by two recognized specialists, each published volume has been selected for its scientific excellence and the high impact of its contents for the pertinent fieldofresearch.Forgreateraccessibilitytonon-specialists,thepublishedversions includeanextendedintroduction,aswellasaforewordbythestudent’ssupervisor explaining the special relevance of the work for the field. As a whole, the series will provide a valuable resource both for newcomers to the research fields described, and for other scientists seeking detailed background information on specialquestions.Finally,itprovidesanaccrediteddocumentationofthevaluable contributions made by today’s younger generation of scientists. Theses are accepted into the series by invited nomination only and must fulfill all of the following criteria • They must be written in good English. • The topic should fall within the confines of Chemistry, Physics and related interdisciplinary fields such as Materials, Nanoscience, Chemical Engineering, Complex Systems and Biophysics. • The work reported in the thesis must represent a significant scientific advance. • Ifthethesisincludespreviouslypublishedmaterial,permissiontoreproducethis must be gained from the respective copyright holder. • They must have been examined and passed during the 12 months prior to nomination. • Each thesis should include a foreword by the supervisor outlining the signifi- cance of its content. • The theses should have a clearly defined structure including an introduction accessible to scientists not expert in that particular field. Jamal Jokar Arsanjani Dynamic Land-Use/Cover Change Simulation: Geosimulation and Multi Agent-Based Modelling Doctoral Thesis accepted by University of Vienna, Austria 123 Author Supervisor Dr. JamalJokarArsanjani Prof.Dr. WolfgangKainz Department of Geography Department of Geography and Regional Research and Regional Research Universityof Vienna Universityof Vienna Universitätsstraße 7 Universitätsstraße 7 A-1010Vienna A-1010Vienna Austria Austria e-mail: [email protected] ISSN 2190-5053 e-ISSN 2190-5061 ISBN 978-3-642-23704-1 e-ISBN978-3-642-23705-8 DOI 10.1007/978-3-642-23705-8 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2011937768 (cid:2)Springer-VerlagBerlinHeidelberg2012 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply, even in the absence of a specific statement, that such names are exempt from the relevant protectivelawsandregulationsandthereforefreeforgeneraluse. Coverdesign:eStudioCalamar,Berlin/Figueres Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Parts of this thesis have been published in the following journal articles: J. Jokar Arsanjani, W. Kainz, Integration Of Spatial Agents And Markov Chain Model in Simulation of Urban Sprawl, In Proceeding of AGILE conference 2011, Utrecht, the Netherlands (peer reviewed) J. Jokar Arsanjani, M. Helbich, W. Kainz, A. Darvishi B., Integration of LogisticRegressionandMarkovChainModelstoSimulateUrbanExpansion, Submitted to the International Journal of Applied Earth Observation and Geoinformation, 2011 (Accepted for publication) J. Jokar Arsanjani, W. Kainz, A. Mousivand, Tracking Dynamic Land Use ChangeUsingSpatiallyExplicitMarkovChainBasedonCellularAutomata- the Case of Tehran, International Journal of Image and Data Fusion, 2011 (In press) J. Jokar Arsanjani, W. Kainz, M. Azadbakht, Monitoring and Geospatially ExplicitSimulation ofLand Use Dynamics: fromCellular Automata towards Geosimulation—CaseStudyTehran,Iran,InProceedingofISDIF2011,China J. Jokar Arsanjani, M. Helbich, W. Kainz, The Emergence of Urban Sprawl PatternsinTehranMetropolisthroughAgentBasedModelling,inpreparation Supervisor’s Foreword Land use and land cover change are two subjects that have triggered a large number of research activities and resulted in a wealth of different approaches to detect past change and also to predict future development. Among the most prominentmethodsarethosethatuseremotesensingandimageanalysiscombined withvariousstatisticalandanalyticalprocedures.Theyallrequireaseriesofdata over longer periods, appropriate land use maps, and related information. It is not always easy to acquire or access these data due to a simple lack of data or administrativeaccessrestrictions.Itisthereforeimperativetomakeuseofsatellite data and other easier accessible data of reasonable resolution. Many large cities face pressing problems with—sometimes uncontrolled— growth and sprawl, in particular when their expansion is limited by natural and otherconditions.Tehranisoneofthesecitieswhoseexpansionisafact,butwhich also experiences severe topographic constraints by its location at the foothills of theAlborzMountains.Tehranisaverydynamiccitywhichgrewrapidlyoverthe last decades. Being an Iranian it was therefore very logical for Dr. Jamal Jokar Arsanjanitochoosethecapitalofhishomecountryasastudyareaandatthesame time a city that has to cope with all the problems of urban sprawl. TheoriginalfocusofDr.JokarArsanjani’sworkisonagent-basedmodelingto predictlandcoverchangefortheTehranarea.Thisalonewouldalreadyhavebeen aninterestingendeavorworthinvestigating.However,arealvalueoftheworklies also inthe extensive application andcomparison of traditional methods topredict land cover change. These methods are cellular automata, Markov chain model, cellular automata Markov model, and the hybrid logistic regression model. In his thesis all these methods have been applied to the Tehran area to analyze and predict land cover change. In this respect the work can also serve as a text explainingthedifferentapproachesintheirtheoreticalcharacteristicsandpractical applications.Itisaparticularvaluethattheadvantagesanddisadvantagesofthese methods are clearly exposed and explained. Based on the preliminary findings of the different methods, finally, an agent- based model was developed that consist of government agents, developer agents, and resident agents, in order to simulate land cover change. Various parameters vii viii Supervisor’sForeword and behaviors were modeled and programmed in the ArcGIS environment. Since almost nothing in the real world follows a crisp classification, many tradi- tional approaches suffer from a lack of adequately representing the real world situation.Fuzzylogicisonewaytointroduceuncertaintyandvaguenesstospatial analysis. Dr. Jamal Jokar Arsanjani uses fuzzy membership functions for the relevantfactorsinhisgeo-simulationresearchtorepresentamorenaturalbehavior of the agents. This offers a more realistic analysis and provides results that better suit a real world situation. The major value of this work is twofold: it shows a detailed comparison of existingmethodsforlandcoverchangemodeling,anditpresentsanovelapproach ingeo-simulationbyapplyingagent-basedmodelinginafuzzysetting.Thethesis has already spawned several journal papers and Dr. Jokar Arsanjani’s approach opens new perspectives for scientific problems in environmental monitoring, modeling and change detection. Vienna, June 2011 Prof. Dr. Wolfgang Kainz Contents 1 General Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Rapid Urban Expansion of Tehran. . . . . . . . . . . . . . 3 1.2.2 Limitations of Previous Approaches. . . . . . . . . . . . . 4 1.3 Research Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Research Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.6 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.7 Organisation of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Land Use/Cover Change. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Land Use/Cover Change Causes and Consequences. . . . . . . . . 10 2.3.1 Loss of Biodiversity. . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.2 Climate Change. . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.3 Pollution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.4 Other Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Driving Forces of the Land Use/Cover Changes . . . . . . . . . . . 11 2.5 Land Use/Cover Change Simulation. . . . . . . . . . . . . . . . . . . . 12 2.6 Land Use Change Trend. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.7 Predicting Future Land Use Patterns. . . . . . . . . . . . . . . . . . . . 14 2.8 Simulating Sprawl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.9 Approaches to the LUCC Modelling . . . . . . . . . . . . . . . . . . . 15 2.10 Agent-Based Modelling and Geosimulation Terminology . . . . . 15 2.10.1 Agents and Agent-Based Models . . . . . . . . . . . . . . . 16 ix x Contents 2.11 Characteristics of the Geosimulation Model . . . . . . . . . . . . . . 18 2.11.1 Management of Spatial Entities . . . . . . . . . . . . . . . . 18 2.11.2 Management of Spatial Relationships. . . . . . . . . . . . 19 2.11.3 Management of Time . . . . . . . . . . . . . . . . . . . . . . . 19 2.11.4 Direct Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.12 The Basic of Geosimulation Framework: Automata. . . . . . . . . 20 2.13 Cellular Automata versus Multi-Agent Systems. . . . . . . . . . . . 20 2.14 Geographic Automata System . . . . . . . . . . . . . . . . . . . . . . . . 21 2.14.1 Definitions of Geographic Automata Systems . . . . . . 21 2.14.2 Geographic Automata Types . . . . . . . . . . . . . . . . . . 22 2.14.3 Geographic Automata States and State Transition Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.14.4 Geographic Automata Spatial Migration Rules. . . . . . 23 2.14.5 Geographic Automata Neighbours and Neighbourhood Rules. . . . . . . . . . . . . . . . . . . . 23 2.14.6 Types of Simulation Systems for Agent-Based Modelling. . . . . . . . . . . . . . . . . . . . . . 24 2.15 Current Simulation Systems . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.15.1 ASCAPE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.15.2 StarLogo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.15.3 NetLogo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.15.4 OBEUS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.15.5 AgentSheets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.15.6 AnyLogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.15.7 SWARM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.15.8 MASON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.15.9 NetLogo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.15.10 Repast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.15.11 Agent Analyst Extension. . . . . . . . . . . . . . . . . . . . . 28 2.16 Selection of ABM Implementation Toolkit . . . . . . . . . . . . . . . 29 2.17 Designing a Multi Agent System. . . . . . . . . . . . . . . . . . . . . . 29 2.18 Fuzzy Decision Theory in Geographical Entities . . . . . . . . . . . 31 2.18.1 Fuzzy Geographical Entities . . . . . . . . . . . . . . . . . . 33 2.18.2 Processing Fuzzy Geographical Entities . . . . . . . . . . 34 2.19 The Analytical Hierarchy Process Weighting. . . . . . . . . . . . . . 35 2.20 Moran’s Autocorrelation Coefficient Analysis. . . . . . . . . . . . . 36 2.21 Accuracy Assessment and Uncertainty in Maps Comparison. . . 37 2.21.1 Calibration and Validation. . . . . . . . . . . . . . . . . . . . 37 2.21.2 Techniques of Validation for Land Change Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.22 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.