Table Of ContentUniversity of Colorado, Boulder
CU Scholar
Aerospace Engineering Sciences Graduate Theses &
Aerospace Engineering Sciences
Dissertations
Spring 1-1-2011
Dynamic Gas-Surface Interaction Modeling for
Satellite Aerodynamic Computations
Marcin Dominik Pilinksi
University of Colorado at Boulder, marcin.pilinski@colorado.edu
Follow this and additional works at:http://scholar.colorado.edu/asen_gradetds
Part of theAerodynamics and Fluid Mechanics Commons, and thePhysical Chemistry
Commons
Recommended Citation
Pilinksi, Marcin Dominik, "Dynamic Gas-Surface Interaction Modeling for Satellite Aerodynamic Computations" (2011).Aerospace
Engineering Sciences Graduate Theses & Dissertations.Paper 37.
This Dissertation is brought to you for free and open access by Aerospace Engineering Sciences at CU Scholar. It has been accepted for inclusion in
Aerospace Engineering Sciences Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please contact
cuscholaradmin@colorado.edu.
Dynamic Gas-Surface Interaction Modeling for Satellite
Aerodynamic Computations
by
M. D. Pilinski
B.S. in Aerospace Engineering, The University of Texas, 2005
B.S. in Physics, The University of Texas, 2006
M.S. in Aerospace Engineering Sciences, University of Colorado, 2008
A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Aerospace Engineering Sciences
2011
This thesis entitled:
Dynamic Gas-Surface Interaction Modeling for Satellite Aerodynamic Computations
written by M. D. Pilinski
has been approved for the Department of Aerospace Engineering Sciences
Prof. Brian Argrow
Prof. Scott Palo
Prof. Jeffrey Forbes
Prof. John Falconer
Dr. Kenneth Moe
Date
The final copy of this thesis has been examined by the signatories, and we find that both the content and
the form meet acceptable presentation standards of scholarly work in the above mentioned discipline.
iii
Pilinski, M. D. (Ph.D., Aerospace Engineering Sciences)
Dynamic Gas-Surface Interaction Modeling for Satellite Aerodynamic Computations
Thesis directed by Prof. Brian Argrow
Dragcoefficientsarealargesourceofuncertaintywhenpredictingtheaerodynamicforcesonorbiting
satellites. Accordingly, the focus of this research is to improve the fidelity of drag modeling by investigating
the nature of gas-surface interactions in low earth orbit. The author has investigated to what extent oxygen
adsorptioncaninfluencetheparametersofdragcoefficientmodels, mostnotablytheenergyaccommodation
coefficient. Toaccomplishthis,severalanalysistechniquesareapplied. Fitteddragcoefficientsfor68objects
were provided by Air Force Space Command Drag Analysis Office and are analyzed using analytical and
numerical aerodynamic models. Gas-surface parameters are estimated by comparing the model results to
the observed coefficients. The results indicate that a successful and predictive relationship of the energy
accommodation coefficient can be obtained with gas-surface models incorporating Langmuir adsorption.
Goodagreementwithdatahasbeenobtainedbyusingacosinereflectionmodelbelow500km. Furthermore,
it is found that satellite accommodation coefficients can be explained by a model in which atomic oxygen
bindstothesurfacewithanenergyofapproximately5.7eV.Multi-axisaccelerometerdatafromtheCHAMP
and GRACE satellites has also been analyzed to derive measurements of lift and drag which are compared
to model predictions given different gas-surface assumptions. The results indicate that diffuse reflection is
appropriate for CHAMP near 400 km and that the accommodation coefficient before 2008 ranges between
0.86 and 0.89. CHAMP accelerometer data is also combined with remote sensing estimates of density to
arriveatvaluesofdragcoefficientwhichdonotdependonempiricalatmosphericmodelsalone. Thisdataset
confirms the predicted drop in accommodation with decreasing atomic oxygen pressure. The culmination of
this work is an enhanced energy accommodation and drag coefficient model applicable between 100 km and
500 km altitudes for satellites in both circular and elliptical orbits.
Dedication
To Emily, my wife and best friend.
v
Acknowledgements
Theauthorextendssinceregratitudetothemanypeoplewhomadethisadventureanddreampossible.
First, to Tadeusz and Iwona Pilinski for their encouragement and high expectations. To Wanda and Janek
Olszewski for encouraging my interest in science and technology. To my wife Emily, who was there through
all the writing and research, thank you for your patience and support.
The author thanks Dr. Brian Argrow for advising and supporting this work as well as Dr. Scott
Palo who encouraged me to pursue the doctoral thesis. Dr. Argrow and Dr. Palo have been wonderful
and patient mentors and it has been a great benefit to the author to receive their tutelage. Dr. Jeff Forbes
provided the critical encouragement to publish and has provided other gems of advice which the author will
never forget. Mr. Chris Koehler took a chance to hire the author for the duration of his Masters work and
made possible his coming to the University of Colorado at Boulder. Without that leap-of-faith, none of this
would have been possible.
Drs. Kenneth and Mildred Moe have been an inspiration and constant source of scientific and non-
scientific feedback which helped steer this work in a productive direction. The author would also like to
thank them for a thorough introduction to the subject of satellite drag and gas-surface interactions.
Many thanks goes to Mr. Bruce Bowman for providing the fitted-ballistic coefficients, answering the
author’s questions with regards to the measurement technique, and for providing the motivation to study
low-altitude satellite aerodynamics. The author also thanks Dr. Eric Sutton and Dr. Eelco Doornbos for
the CHAMP and GRACE accelerometer datasets as well as for the thoughtful feedback and stimulating
discussions. Thanks also to the Air Force Research Laboratory for funding the summer internship which led
to the development of the SPARCS software used in this research.
vi
Contents
Chapter
1 Executive Summary 1
2 Introduction 3
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Scientific Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Review of Progress in Drag Coefficient Modeling and Gas-Surface Interactions for Rarefied Flow
Applications 11
3.1 Gas-Surface Interactions and the Satellite Drag Coefficient. . . . . . . . . . . . . . . . . . . . 13
3.1.1 Laboratory Measurements of Gas-Surface Interactions . . . . . . . . . . . . . . . . . . 14
3.1.2 Gas-Surface Interactions in Earth Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Scattering Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.4 Satellite Drag Coefficient Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Drag Coefficients and the Development of Atmospheric Models . . . . . . . . . . . . . . . . . 43
4 Aerodynamic Force Coefficient Computations 48
4.1 Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Plate Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Test-Particle Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.1 Software Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.2 Preliminary Reference Frame Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 58
vii
4.3.3 Cross-Sectional Area Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.4 Aerodynamic Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Direct Simulation Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Sensitivity to Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6 Force Coefficient Lookup Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5 Satellite Observations 86
5.1 Measurements of Multiple Interactions With the Atmosphere . . . . . . . . . . . . . . . . . . 88
5.2 Fitted Ballistic Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.1 Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.2 Rocket Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3 Remote Sensing Observations of Atmospheric Density . . . . . . . . . . . . . . . . . . . . . . 99
5.4 Accelerometer Data: Multi-Axial Acceleration Measurements . . . . . . . . . . . . . . . . . . 104
6 Review of Analysis Methods 107
6.1 Using Fitted Ballistic Coefficients for Gas-Surface Interaction Evaluation. . . . . . . . . . . . 108
6.2 Multi-Instrument Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3 Orhogonal Force Coefficient Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.4 From Drag Observations to Surface Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7 Evidence of a Link Between Adsorption of Atomic Oxygen and Accommodation at High Thermo-
spheric Pressures 128
7.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2 Computational Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8 Dynamics of Adsorption Phenomena and the Satellite Drag Coefficient at High Thermospheric Pres-
sures 138
8.1 Computational Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
viii
8.2 Sensitivity Analysis to Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.3 Initial Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9 Evidence of Low Energy Accommodation Coefficients at Reduced Thermospheric Pressures 146
9.1 Multi-Instrument Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
10 Evaluating Gas-Surface Interactions Based on Orthogonal Force Coefficient Observations at Low
Thermospheric Pressures 155
10.1 Small Angle Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
10.2 Yaw Maneuver Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
11 Semi-Empirical Model for Compact Shapes 170
11.1 Model Evaluation and Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
11.2 Extension to Satellites with Large Surfaces Parallel to the Free-Stream . . . . . . . . . . . . . 183
11.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
12 Conclusions and Recommendations 189
12.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
12.1.1 Scattering Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
12.1.2 Energy Accommodation Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 190
12.1.3 Energy Accommodation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
12.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
12.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Bibliography 196
Appendix
A Drag Coefficient of a Cylinder 205
ix
B Numerical Program Validation 208
C SESAM Drag Coefficient Lookup Tables 212
Description:Part of the Aerodynamics and Fluid Mechanics Commons, and the Physical Dynamic Gas-Surface Interaction Modeling for Satellite Aerodynamic .. a full range of pitch angels. Plate model area is shown in blue for comparison. how the drag coefficient varies with atmospheric properties [Moe and