ebook img

Dynamic Gas-Surface Interaction Modeling for Satellite Aerodynamic Computations PDF

232 Pages·2016·8.36 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamic Gas-Surface Interaction Modeling for Satellite Aerodynamic Computations

University of Colorado, Boulder CU Scholar Aerospace Engineering Sciences Graduate Theses & Aerospace Engineering Sciences Dissertations Spring 1-1-2011 Dynamic Gas-Surface Interaction Modeling for Satellite Aerodynamic Computations Marcin Dominik Pilinksi University of Colorado at Boulder, [email protected] Follow this and additional works at:http://scholar.colorado.edu/asen_gradetds Part of theAerodynamics and Fluid Mechanics Commons, and thePhysical Chemistry Commons Recommended Citation Pilinksi, Marcin Dominik, "Dynamic Gas-Surface Interaction Modeling for Satellite Aerodynamic Computations" (2011).Aerospace Engineering Sciences Graduate Theses & Dissertations.Paper 37. This Dissertation is brought to you for free and open access by Aerospace Engineering Sciences at CU Scholar. It has been accepted for inclusion in Aerospace Engineering Sciences Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please contact [email protected]. Dynamic Gas-Surface Interaction Modeling for Satellite Aerodynamic Computations by M. D. Pilinski B.S. in Aerospace Engineering, The University of Texas, 2005 B.S. in Physics, The University of Texas, 2006 M.S. in Aerospace Engineering Sciences, University of Colorado, 2008 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Aerospace Engineering Sciences 2011 This thesis entitled: Dynamic Gas-Surface Interaction Modeling for Satellite Aerodynamic Computations written by M. D. Pilinski has been approved for the Department of Aerospace Engineering Sciences Prof. Brian Argrow Prof. Scott Palo Prof. Jeffrey Forbes Prof. John Falconer Dr. Kenneth Moe Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Pilinski, M. D. (Ph.D., Aerospace Engineering Sciences) Dynamic Gas-Surface Interaction Modeling for Satellite Aerodynamic Computations Thesis directed by Prof. Brian Argrow Dragcoefficientsarealargesourceofuncertaintywhenpredictingtheaerodynamicforcesonorbiting satellites. Accordingly, the focus of this research is to improve the fidelity of drag modeling by investigating the nature of gas-surface interactions in low earth orbit. The author has investigated to what extent oxygen adsorptioncaninfluencetheparametersofdragcoefficientmodels, mostnotablytheenergyaccommodation coefficient. Toaccomplishthis,severalanalysistechniquesareapplied. Fitteddragcoefficientsfor68objects were provided by Air Force Space Command Drag Analysis Office and are analyzed using analytical and numerical aerodynamic models. Gas-surface parameters are estimated by comparing the model results to the observed coefficients. The results indicate that a successful and predictive relationship of the energy accommodation coefficient can be obtained with gas-surface models incorporating Langmuir adsorption. Goodagreementwithdatahasbeenobtainedbyusingacosinereflectionmodelbelow500km. Furthermore, it is found that satellite accommodation coefficients can be explained by a model in which atomic oxygen bindstothesurfacewithanenergyofapproximately5.7eV.Multi-axisaccelerometerdatafromtheCHAMP and GRACE satellites has also been analyzed to derive measurements of lift and drag which are compared to model predictions given different gas-surface assumptions. The results indicate that diffuse reflection is appropriate for CHAMP near 400 km and that the accommodation coefficient before 2008 ranges between 0.86 and 0.89. CHAMP accelerometer data is also combined with remote sensing estimates of density to arriveatvaluesofdragcoefficientwhichdonotdependonempiricalatmosphericmodelsalone. Thisdataset confirms the predicted drop in accommodation with decreasing atomic oxygen pressure. The culmination of this work is an enhanced energy accommodation and drag coefficient model applicable between 100 km and 500 km altitudes for satellites in both circular and elliptical orbits. Dedication To Emily, my wife and best friend. v Acknowledgements Theauthorextendssinceregratitudetothemanypeoplewhomadethisadventureanddreampossible. First, to Tadeusz and Iwona Pilinski for their encouragement and high expectations. To Wanda and Janek Olszewski for encouraging my interest in science and technology. To my wife Emily, who was there through all the writing and research, thank you for your patience and support. The author thanks Dr. Brian Argrow for advising and supporting this work as well as Dr. Scott Palo who encouraged me to pursue the doctoral thesis. Dr. Argrow and Dr. Palo have been wonderful and patient mentors and it has been a great benefit to the author to receive their tutelage. Dr. Jeff Forbes provided the critical encouragement to publish and has provided other gems of advice which the author will never forget. Mr. Chris Koehler took a chance to hire the author for the duration of his Masters work and made possible his coming to the University of Colorado at Boulder. Without that leap-of-faith, none of this would have been possible. Drs. Kenneth and Mildred Moe have been an inspiration and constant source of scientific and non- scientific feedback which helped steer this work in a productive direction. The author would also like to thank them for a thorough introduction to the subject of satellite drag and gas-surface interactions. Many thanks goes to Mr. Bruce Bowman for providing the fitted-ballistic coefficients, answering the author’s questions with regards to the measurement technique, and for providing the motivation to study low-altitude satellite aerodynamics. The author also thanks Dr. Eric Sutton and Dr. Eelco Doornbos for the CHAMP and GRACE accelerometer datasets as well as for the thoughtful feedback and stimulating discussions. Thanks also to the Air Force Research Laboratory for funding the summer internship which led to the development of the SPARCS software used in this research. vi Contents Chapter 1 Executive Summary 1 2 Introduction 3 2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Scientific Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Review of Progress in Drag Coefficient Modeling and Gas-Surface Interactions for Rarefied Flow Applications 11 3.1 Gas-Surface Interactions and the Satellite Drag Coefficient. . . . . . . . . . . . . . . . . . . . 13 3.1.1 Laboratory Measurements of Gas-Surface Interactions . . . . . . . . . . . . . . . . . . 14 3.1.2 Gas-Surface Interactions in Earth Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.3 Scattering Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.4 Satellite Drag Coefficient Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Drag Coefficients and the Development of Atmospheric Models . . . . . . . . . . . . . . . . . 43 4 Aerodynamic Force Coefficient Computations 48 4.1 Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2 Plate Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3 Test-Particle Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.1 Software Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3.2 Preliminary Reference Frame Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 58 vii 4.3.3 Cross-Sectional Area Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3.4 Aerodynamic Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.4 Direct Simulation Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.5 Sensitivity to Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.6 Force Coefficient Lookup Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5 Satellite Observations 86 5.1 Measurements of Multiple Interactions With the Atmosphere . . . . . . . . . . . . . . . . . . 88 5.2 Fitted Ballistic Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2.1 Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2.2 Rocket Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.3 Remote Sensing Observations of Atmospheric Density . . . . . . . . . . . . . . . . . . . . . . 99 5.4 Accelerometer Data: Multi-Axial Acceleration Measurements . . . . . . . . . . . . . . . . . . 104 6 Review of Analysis Methods 107 6.1 Using Fitted Ballistic Coefficients for Gas-Surface Interaction Evaluation. . . . . . . . . . . . 108 6.2 Multi-Instrument Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.3 Orhogonal Force Coefficient Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.4 From Drag Observations to Surface Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7 Evidence of a Link Between Adsorption of Atomic Oxygen and Accommodation at High Thermo- spheric Pressures 128 7.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.2 Computational Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 8 Dynamics of Adsorption Phenomena and the Satellite Drag Coefficient at High Thermospheric Pres- sures 138 8.1 Computational Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 viii 8.2 Sensitivity Analysis to Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 8.3 Initial Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 9 Evidence of Low Energy Accommodation Coefficients at Reduced Thermospheric Pressures 146 9.1 Multi-Instrument Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 10 Evaluating Gas-Surface Interactions Based on Orthogonal Force Coefficient Observations at Low Thermospheric Pressures 155 10.1 Small Angle Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 10.2 Yaw Maneuver Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 11 Semi-Empirical Model for Compact Shapes 170 11.1 Model Evaluation and Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 11.2 Extension to Satellites with Large Surfaces Parallel to the Free-Stream . . . . . . . . . . . . . 183 11.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 12 Conclusions and Recommendations 189 12.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 12.1.1 Scattering Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 12.1.2 Energy Accommodation Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 190 12.1.3 Energy Accommodation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 12.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 12.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 Bibliography 196 Appendix A Drag Coefficient of a Cylinder 205 ix B Numerical Program Validation 208 C SESAM Drag Coefficient Lookup Tables 212

Description:
Part of the Aerodynamics and Fluid Mechanics Commons, and the Physical Dynamic Gas-Surface Interaction Modeling for Satellite Aerodynamic .. a full range of pitch angels. Plate model area is shown in blue for comparison. how the drag coefficient varies with atmospheric properties [Moe and
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.