ebook img

Dynamic Behavior of Materials, Volume 1: Proceedings of the 2017 Annual Conference on Experimental and Applied Mechanics PDF

234 Pages·2018·17.062 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamic Behavior of Materials, Volume 1: Proceedings of the 2017 Annual Conference on Experimental and Applied Mechanics

Conference Proceedings of the Society for Experimental Mechanics Series Jamie Kimberley · Leslie Lamberson · Steven Mates Editors Dynamic Behavior of Materials, Volume 1 Proceedings of the 2017 Annual Conference on Experimental and Applied Mechanics Conference Proceedings of the Society for Experimental Mechanics Series SeriesEditor KristinB.Zimmerman,Ph.D. SocietyforExperimentalMechanics,Inc., Bethel,CT,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/8922 Jamie Kimberley • Leslie Lamberson (cid:129) Steven Mates Editors Dynamic Behavior of Materials, Volume 1 Proceedings of the 2017 Annual Conference on Experimental and Applied Mechanics 123 Editors JamieKimberley LeslieLamberson NewMexicoInstituteofMiningandTechnology DrexelUniversity Socorro,NM,USA Philadelphia,PA,USA StevenMates NationalInstituteofStandardsandTechnology Gaithersburg,MD,USA ISSN2191-5644 ISSN2191-5652 (electronic) ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries ISBN978-3-319-62955-1 ISBN978-3-319-62956-8 (eBook) DOI10.1007/978-3-319-62956-8 LibraryofCongressControlNumber:2017956714 ©TheSocietyforExperimentalMechanics,Inc.2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialisconcerned,specificallytherights oftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,evenintheabsenceofaspecific statement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedate ofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorfor anyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutional affiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Dynamic Behavior of Materials represents one of nine volumes of technical papers presented at the 2017 SEM Annual ConferenceandExpositiononExperimentalandAppliedMechanicsorganizedbytheSocietyforExperimentalMechanics and held in Indianapolis, IN, June 12–15, 2017. The complete proceedings also includes volumes on: Challenges in Mechanics of Time-Dependent Materials; Advancement of Optical Methods in Experimental Mechanics; Mechanics of Biological Systems, Materials and Other Topics in Experimental and Applied Mechanics; Micro- and Nanomechanics; MechanicsofComposite,HybridandMultifunctionalMaterials;Fracture,Fatigue,FailureandDamageEvolution;Residual Stress,ThermomechanicsandInfraredImaging,HybridTechniquesandInverseProblems;andMechanicsofAdditiveand AdvancedManufacturing. Eachcollectionpresentsearlyfindingsfromexperimentalandcomputationalinvestigationsonanimportantareawithin experimentalmechanics.Dynamicbehaviorofmaterialsisoneoftheseareas. The Dynamic Behavior of Materials track was initiated in 2005 and reflects our efforts to bring together researchers interested in the dynamic behavior of materials and structures, and provide a forum to facilitate technical interaction and exchange. In the past years, this track has represented an ever growing area of broad interest to the SEM community, as evidencedbytheincreasednumberofpapersandattendance. ThecontributedpapersspannumeroustechnicaldivisionswithinSEM,whichmaybeofinterestnotonlytothedynamic behaviorofmaterialscommunitybutalsotothetraditionalmechanicsofmaterialscommunity. The track organizers thank the authors, presenters, organizers, and session chairs for their participation, support, and contributiontothistrack.WearegratefultotheSEMTDchairsforco-sponsoringand/orco-organizingthesessionsinthis track. They would also like to acknowledge the SEM support staff for their devoted efforts in accommodating the large numberofpapersubmissionsthisyear,makingthe2017DynamicBehaviorofMaterialsTracksuccessful. NewMexicoInstituteofMiningandTechnology,Socorro,NM,USA JamieKimberley DrexelUniversity,Philadelphia,PA,USA LeslieLamberson NationalInstituteofStandardsandTechnology,Gaithersburg,MD,USA StevenMates v Contents 1 EffectsofAdiabaticHeatingEstimatedfromTensileTestswithContinuousHeating .......................... 1 N.VazquezFernandez,M.Isakov,M.Hokka,andV.-T.Kuokkala 2 EffectofPre-strain,ProcessingConditions,andImpactVelocityonEnergyDissipationinSilicone FoamsandRubber ...................................................................................................... 9 BrettSanbornandBoSong 3 StrainRateSensitivityofRichtmyer-MeshkovInstabilityExperimentsforMetalStrength ................... 13 MichaelB.Prime 4 ImpactResponseofDensityGradedCellularPolymers ............................................................ 17 BehradKoohbor,SurajRavindran,andAddisKidane 5 DynamicMixed-ModeCrackInitiationandGrowthinPMMAandPolycarbonate............................ 25 BalamuruganM.SundaramandHareeshV.Tippur 6 DynamicResponseofAluminaCeramicsUnderBrazilianDiscTestConditions................................ 31 PingHongLin,LirenTsai,andN.S.Liou 7 DigitalGradientSensingMethodtoVisualizeandQuantifyCrack-TipDeformationsinSoda-Lime GlassUnderStaticandDynamicLoading............................................................................ 39 BalamuruganM.SundaramandHareeshV.Tippur 8 ConstructionofPhaseDiagramsofMg-ZnwithSelectedRareEarth(R.E)Elements ......................... 45 C.G.Fountzoulas 9 HighStrainRateTransverseCompressionResponseofBallisticSingleFibers.................................. 51 SubramaniSockalingam,DanielT.Casem,TusitWeerasooriya,andJohnW.GillespieJr. 10 WIAManATDPolymericMaterialCharacterizationforUnder-BodyBlastEnvironmentSimulation....... 57 MostafizR.ChowdhuryandDawnM.Crawford 11 InvestigationofTransmissionofaShockWaveThroughThinFilms ............................................. 63 HongjooJeonandVeronicaEliasson 12 ExperimentalTestingandComputationalAnalysisofViscoelasticWavePropagationinPolymeric SplitHopkinsonPressureBar.......................................................................................... 67 M.Bustamante,D.S.Cronin,andD.Singh 13 ModeIRigidDoubleCantileverBeamTestandAnalysisAppliedtoStructuralAdhesives.................... 73 C.-H.Liao,B.Watson,M.J.Worswick,andD.S.Cronin 14 BruteForceCeramicConstitutiveModelParameterization ....................................................... 83 BradyAydelotteandBrianE.Schuster 15 High-StrainRateCompressiveBehaviorofa“NaturalSoil” UnderUniaxialStrainState............................................................................................ 87 HuiyangLuo,ZhenxingHu,TinggeXu,LeiGuo,andHongbingLu vii viii Contents 16 LatestResultsforElasto-PlasticIdentificationatHighRatesUsingInertialImpact............................ 93 SarahDreuilhe,FrancesDavis,CliveSivour,andFabricePierron 17 MesoscaleModelingofPorousMaterialsUsingNewMethodology forFractureandFrictionalContactintheMaterialPointMethod................................................ 97 M.A.HomelandE.B.Herbold 18 UnderwaterBlastResponseofWeatheredCarbonCompositePlates............................................. 103 HelioMatos,CarlosJavier,JamesLeBlanc,andArunShukla 19 CharacterizationofaVisco-HyperelasticSyntheticGelforBallisticImpactsAssessment ..................... 109 A.Bracq,G.Haugou,B.Bourel,R.Delille,C.Maréchal,F.Lauro,S.Roth,andO.Mauzac 20 OntheMicrostructuralAspectsofShockInducedFailureinMagnesiumAlloys ............................... 115 C.L.Williams,J.Ligda,L.Farbaniec,andN.Krywopusk 21 HighSpeed ImagingTechniques toStudy EffectsofPressure Waves fromDetonating Explosive ChargesonBiologicalMaterials....................................................................................... 123 Thuvan Piehler, Nicole Zander, Rohan Banton, Richard Benjamin, Ray Sparks, Kimberly Byrnes, JoshDuckworth,andBenA.Bahr 22 ComputationalStudyontheDriverSectionDesignofanExplosivelyDrivenConicalShockTube........... 127 JoelB.Stewart 23 UnidirectionalCarbon-EpoxyCompositePlatesSubjectedtoExtremeMarineEnvironment................. 137 C.Javier,J.LeBlanc,andA.Shukla 24 HybridComputationalandExperimentalApproachtoIdentifytheDynamicInitiationFracture ToughnessatHighLoadingRate ...................................................................................... 141 AliFahadFahemandAddisKidane 25 High-RateMechanicalResponseofAluminumUsingMiniatureKolskyBarTechniques...................... 147 DanielT.Casem,JonathanP.Ligda,BrianE.Schuster,andShaneMims 26 Applicationof3DDigitalImageCorrelationInBallisticTesting.................................................. 155 PhillipJannottiandBrianE.Schuster 27 CompactionWavePropagationCharacteristicsinPolymerBondedExplosivesatMacro-MesoScale ....... 163 SurajRavindran,PeterMalchow,AddisTessema,andAddisKidane 28 DirectCompressionLoadingUsingthePre-stretchedBarTechnique:ApplicationtoHighStrains UnderModerateStrainRates.......................................................................................... 169 G.Haugou,H.Morvan,andN.Leconte 29 CompactionWaveCharacteristicsofPolymericFoamsUnderDynamicLoading .............................. 175 SurajRavindran,BehradKoohbor,PeterMalchow,andAddisKidane 30 ComparisonofNumericalSimulationswithExperimentsofBlast-InducedPressureWaveImpact onaSurrogateHeadModel ............................................................................................ 181 RohanBanton,ThuvanPiehler,NicoleZander,RichardBenjamin,andJoshDuckworth 31 Pressure Sensing inClay: ANew Metric for Characterizing the BallisticBackface Deformation ResponseofPersonnelProtectionEquipment........................................................................ 189 M.H.Merrill,C.J.Kindle,andJ.P.Thomas 32 EvaluationofConcretePenetrationResistanceUsingSmallCaliberBullets..................................... 193 StephanBless,MichaelMcAleer,andReyGuzman 33 DynamicAnalysisofaBi-stableBuckledStructureforVibrationEnergyHarvester........................... 199 MasoudDerakhshani,ThomasBerfield,andKevinD.Murphy 34 EffectsofStrainRateonMechanicalPropertiesandFractureMechanismsinaDualPhaseSteel ........... 209 Sukanya M. Sharma, Kishlay Mishra, Omar Rodriguez, Wilburn R. Whittington, Paul Allison, ShrikantP.Bhat,ArunM.Gokhale,andNareshN.Thadhani Contents ix 35 NonlinearandInertantAcousticMetamaterialsandTheirDeviceImplications ................................ 217 PrateekP.KulkarniandJamesM.Manimala 36 EvaluationofStressEquilibriuminDynamicTestsonAgglomeratedCork ..................................... 235 MarcoSasso,FabrizioSarasini,GianlucaChiappini,EdoardoMancini,andJacopoTirillò 37 HighStrainRateInducedPhaseTransitionofPolymer ............................................................ 243 G.MontellaandC.M.Roland Chapter 1 Effects of Adiabatic Heating Estimated from Tensile Tests with Continuous Heating N.VazquezFernandez,M.Isakov,M.Hokka,andV.-T.Kuokkala Abstract The mechanical behavior of metastable austenitic stainless steels is strongly influenced by the strain induced phase transformation of austenite into martensite. The phase transformation rate is significantly affected by the strain rate andbytheadiabaticheatingathigherstrainrates.Uncouplingoftheeffectsofstrainrateandadiabaticheatingcanleadtoa betterunderstandingofthestrain-inducedmartensitictransformationandallowmoreaccuratematerialmodeling.Thispaper presentsapreliminaryanalysisoftheeffectsofadiabaticheatingduringatensiletest.Theadiabaticheatingasafunctionof strainwascalculatedfromthestress-straincurvesobtainedinadiabaticconditions.Thenthetensiletestswerecarriedoutat alowerstrainratewhilecontinuouslyheatingthespecimenatthesamerateasobtainedintheadiabaticconditions.Withthis method,thethermalconditionsoftheadiabatictestswerereproducedinthelowrateconditions,whichwouldnormallybe isothermal without theexternal heating. The martensite fractionwas evaluated using the magnetic balance method. Inthis paper,wepresentadetaileddescriptionoftheexperimentalprocedureanddiscusstheobservedchangesinthemechanical behaviorandmicrostructureofthestudiedsteel. Keywords Stainless steel (cid:129) Adiabatic heating (cid:129) Martensite transformation (cid:129) Metastable austenite (cid:129) Magnetic balancemethod 1.1 Introduction Thesuccessfulproductdevelopmentinthesteelindustryisstronglylinkedwithaproperunderstandingofthemicroplastic deformationmechanismsofthematerial.Manyapplicationsrequirematerialswithoptimalmechanicalproperties,suchas high strength, good weldability, good corrosion resistance, and good formability. To obtain the desired properties, many modern steels have multiphase microstructures so that a suitable mixture of the mechanical properties of the different phasesinthesteelfulfillstheoverallrequirements.However,somemicrostructurescanundergophasetransformationsdue to the elastic and plastic deformations. These microstructures are often very complex and their behavior usually changes significantlyduringthedeformationasthephasefractionsevolve. Inrecentyears,manyresearchershavefocusedtheirattentiononthephasetransformationsinaustenitecontainingsteels. Xu et al. [1] and Huang et al. [2] studied the effects of heat treatments and cold rolling reductions on the mechanical behavior of different steels. These studies focused on the effects of the initial microstructures and processing parameters on certain properties. However, their work did not provide many details on the microplastic deformation mechanisms and the microstructural changes during the deformation. Therefore, further investigations are needed to understand the microplasticity and its mechanisms, which depend on many factors including local chemical composition, temperature, amountofdeformation,andstrainrate.Regardingthestrainrate,ithasbeenshownbyHeckeretal.[3]thathigherstrainrates resultinlessmartensiteformation.Moreover,lowerdeformationtemperaturesenhancethemartensiticphasetransformations. Thiscanbeexplainedbythethermodynamicsofthetransformation,asthedrivingforceforthephasetransformationishigher atlowertemperatures.Significantadiabaticheatingoccursusuallyatstrainratesabove(cid:2)0.5s(cid:2)1 [4],whentheheatinduced bytheplasticdeformationcannotdissipatefastenoughfromthematerialintothesurroundingsand,therefore,thetemperature ofthematerialincreases.However,manyscientists[3–7]havesuggestedthatalsothestrainratecouldhaveadirecteffecton themartensitictransformationrate.Hokka[8]demonstratedthatthephasetransformationratesinthequasi-staticconditions aredifferentfromthoseinthedynamicconditionsevenatsmallplasticstrains.Furthermore,Isakov[9]discoveredthatthe strainhardeningrateafterastrainratejumpfromquasi-statictodynamicconditionsdecreasesinstantaneouslyfollowingthe N.VazquezFernandez((cid:2))(cid:129)M.Isakov(cid:129)M.Hokka(cid:129)V.-T.Kuokkala TampereUniversityofTechnology,LaboratoryofMaterialsScience,POB589,FI-33101,Tampere,Finland e-mail:naiara.vazquez@tut.fi ©TheSocietyforExperimentalMechanics,Inc.2018 1 J.Kimberleyetal.(eds.),DynamicBehaviorofMaterials,Volume1,ConferenceProceedings oftheSocietyforExperimentalMechanicsSeries,DOI10.1007/978-3-319-62956-8_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.