ebook img

Dust Explosion Dynamics PDF

664 Pages·2016·36.245 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dust Explosion Dynamics

Dust Explosion Dynamics Dust Explosion Dynamics Russell A. Ogle Exponent, Inc. Warrenville, IL, United States AMSTERDAM(cid:129)BOSTON(cid:129)HEIDELBERG(cid:129)LONDON NEWYORK(cid:129)OXFORD(cid:129)PARIS(cid:129)SANDIEGO SANFRANCISCO(cid:129)SINGAPORE(cid:129)SYDNEY(cid:129)TOKYO Butterworth-HeinemannisanimprintofElsevier Butterworth-HeinemannisanimprintofElsevier TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates Copyright©2017ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageandretrieval system,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizations suchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundat ourwebsite:www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatment maybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein. BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-0-12-803771-3 ForInformationonallButterworth-Heinemannpublications visitourwebsiteathttps://www.elsevier.com Publisher:JoeHayton AcquisitionEditor:FionaGeraghty EditorialProjectManager:MariaConvey ProductionProjectManager:LauraJackson Designer:MariaIneˆsCruz TypesetbyMPSLimited,Chennai,India To Donna, “...I love you just the way you are.” —Billy Joel, TheStranger(1977) List of Figures Figure1.1 Depiction ofthe structure of acombustion wave. 6 Figure1.2 Combustible dust pentagon. 9 Figure1.3 Schematic of the 20-L sphere explosiontestingdevice. 17 Figure1.4 Thesmoldering fire hazard ofcombustible dust. 19 Figure1.5 Theflash fire hazardof combustibledust. 20 Figure1.6 Thedust explosion hazard scenario. 21 Figure1.7 Thesecondary explosion hazard scenario. 22 Figure1.8 Theconfined accelerating flame hazardscenario. 23 Figure1.9 Thepressure piling hazard scenario. 24 Figure1.10 Totaluncertainty ofmodelpredictions asa function of 29 combustion model uncertainty and inputdatauncertainty. Figure2.1 Equivalent spherical diameters. 38 Figure2.2 Discrete frequency distribution ofatomized aluminum 39 particle size measurements by light scattering. Figure2.3 Continuous frequencydistributionof atomized aluminum 40 particle size measurements by light scattering. Figure2.4 Cumulative distributionof atomized aluminum particle 40 sizemeasurements by light scattering. Figure2.5 Continuous cumulative distributionof atomized 41 aluminum particle size measurements by light scattering. Figure2.6 Subdivision ofsample sizes. 46 Figure2.7 Theeffect of dust concentration andparticle size onthe 48 dust explosbility parameters: (A)explosion pressure and (B) maximum rate of pressure rise. Figure2.8 Explosion parameters asa functionof polydispersity for 49 aluminum dust:(A) explosion pressure and(B) the deflagration index, Kst. Figure2.9 Ignitionproperties for Pittsburgh bituminouscoal as a 50 function ofparticle size: (A) minimum ignition temperature and(B) minimum explosible concentration. Figure3.1 Illustration ofclosedand open thermodynamic systems. 57 Figure3.2 Definition sketchfor a multiphasemixture. 62 Figure3.3 Illustration ofthe macroscale and microscaledimensions 69 for a dust flame burning at constant pressure. Figure3.4 Definition sketchfor the adiabatic isobaric flame 70 temperature. Figure3.5 Thermodynamicmodelfor constant volume combustion. 78 xvii xviii List of Figures Figure 3.6 Maximumpressure measurements asa function of dust 81 concentration: (A)cornstarch and(B) aluminum. The solidlines indicate the chemical equilibrium calculation. Figure 3.7 Definition sketch for the analysisof afractionalvolume 89 deflagration. Figure 3.8 Fractional deflagration model for acombustible dust 92 with an isochoric combustion(explosion)pressure of 8bars at the stoichiometric condition. Figure 3.9 Thermodynamic model for the secondary dust explosion 94 pressure. Figure 3.10 Thermodynamic model for asecondary dust explosion 96 comparedwith the fractionaldeflagration model. Figure 4.1 Illustration of one-dimensionalrectangularand spherical 103 coordinate systems. Figure 4.2 Open tube ignition ofpremixed flammable gas mixture: 110 (A)the ignitionevent and (B) the propagationofthe flame into the unburntmixture with the combustion products flowing outofthe tube inthe opposite direction. Figure 4.3 Closed tube ignition of premixed flammable gas mixture: 111 (A)the ignitionevent,(B) the propagation of the flame intothe unburnt mixture, (C) the formationofa shock wave ahead ofthe combustionwave, and (D)the merging of the shock and combustionwavesinto a detonationwave. Figure 4.4 Shock wave properties relative tolaboratory and shock- 112 fixed coordinate frames ofreference. Figure 4.5 P2 diagramshowingthe Rayleigh line and the 115 Rankine(cid:1)Hugoniotcurve. Figure 4.6 Rankine(cid:1)Hugoniotcurve with chemical energy addition 115 (Q.0). Figure 4.7 Rankine(cid:1)Hugoniotdiagram divided intodifferent 116 regimes. Figure 4.8 Temperature andfuel mass fraction profiles ina planar 123 premixed gas flame. Figure 4.9 Definition sketch for Annamalaiand Puri’s energy 127 balance for apremixedflame. Figure 4.10 Definition sketch for Spalding analysis ofpremixed 129 flame propagation. Figure 4.11 Premixedflame thickness divided into a preheat zone 131 anda reaction zone. List of Figures xix Figure4.12 Definition sketchfor criticalradiusof ignition. 134 Figure4.13 Definition sketchfor flame quenching ina tube. 136 Figure4.14 Isolatedliquidfuel droplet surrounded by aflame sheet. 139 Figure4.15 Heatfluxes for asingle burning particle. 140 Figure4.16 Sketch showing relationship ofspecies flux directions 140 with respect tothe flame sheet (Fis fuel, OX is oxidizer, and P is products). Figure4.17 Temperatureand mass fraction profiles for aburning 146 liquid droplet. Figure4.18 Diagram of arepresentativeelementary volume for a 149 combustible dust deposit. Figure4.19 Effective thermal conductivity ofa porous medium with 153 parallel structure. Figure4.20 Effective thermal conductivity ofa porous medium with 154 series structure. Figure4.21 Flow regimesfor dispersed multiphase flow. 157 Figure4.22 Controlvolume sketch for the radiative transfer equation. 166 Figure4.23 Definition of the solid angle ω. 167 Figure4.24 Surface energy balance for thermalradiationon asolid 168 surface. Figure4.25 Spectrum ofelectromagnetic waves in comparison with 169 the potential particle size range ofcombustible dusts. Figure4.26 Absorption and scattering ofincidentthermal radiation 170 by a spherical particle. Figure5.1 Thermal structure ofa smolder wave. 184 Figure5.2 Depiction ofa self-heating depositofcombustible dust. 186 Figure5.3 Temperatureprofilesforaself-heatingbodyinsubcritical 187 andsupercriticalstates.Thecriticaltemperatureoccurs betweenthesubcriticalandsupercriticalstates. Figure5.4 Heatgenerationand heat loss rate for the Semenov 189 analysis. Figure5.5 Rectangular slab geometryfor a self-heatingporous 192 medium. Figure5.6 Definition sketchfor Williams’s scale analysis of 199 smolder wave propagation. Figure5.7 Reverse smolder wave propagation. 201 Figure5.8 Ohlemiller’s diagram showing the influxofoxygeninto 202 a two-dimensional smolder front. Figure5.9 Definition sketchfor the diffusion analysis ofthe vertical 203 profileof the smolderfront. xx List of Figures Figure 5.10 Verticalprofile ofthe smolder wave front. 204 Figure 6.1 Sequenceof diffusion, adsorption, and chemical reaction 215 stepsin agas(cid:1)solidcombustion process. Figure 6.2 Theshrinking particle model. 226 Figure 6.3 Concentration profile for species Awhen the gas film 227 resistanceis controlling. Figure 6.4 Concentration profile ofspecies Awhenthe chemical 230 reaction is the rate-determining step. Figure 6.5 Theshrinking unreactedcore model with constant 233 particle diameter. Figure 6.6 Concentration profile for species Afor the shrinking 234 unreactedcore modelwhen the gas film resistanceis controlling. Figure 6.7 Concentration profile for species Afor the shrinking 236 unreactedcore modelwhen the productlayerdiffusion resistanceis controlling. Figure 6.8 Concentration profile for species Afor the shrinking 237 unreactedcore modelwhen the chemical reactionrate is the controllingstep. Figure 6.9 Relative importance ofthe rates ofgas film diffusion, 239 product layer (ash)diffusion,and chemical reaction on the overall reaction rate asa functionof temperature. Figure 6.10 Theprogressive conversionmodelfor a particle of 241 constant diameter. Figure 6.11 Photographs ofsingle droplet diffusion flamesfor four 246 different hydrocarbon liquids. Figure 6.12 Silhouette photograph ofburning petroleum ether 246 droplet, originaldiameter 1.5mm. Figure 6.13 Godsave’splot ofdroplet diameter-squared versus time 247 for three liquid fuels. Figure 6.14 Typical unburnt polymer particlesused ina single 252 particle combustion study byPanagiotou and Levendis. Figure 6.15 High-speed video framesof aburningpolystyrene 252 particle.Thetime between two consecutive frames is 1ms (left toright). Figure 6.16 Variation inthe particle sizes andshapes ofa Pittsburgh 257 coal dust sample beforeand after combustion. Figure 6.17 Sections of a30-mmbituminous particle at various 260 stages of conversionfrom 0% to100% (fromleft to right) ina combustionfurnace at 1000(cid:3)C. Figure 6.18 Fourexamples ofbiomass material. 263 List of Figures xxi Figure6.19 SEM micrographsof beech wood char particlesafter fast 265 pyrolysis at atemperature of950(cid:3)C: (A) 350μm, (B) 500μm,(C) 700μm,and (D)800μm. Figure6.20 Burnouttime for volatiles combustion ofcorncob 266 particles asa functionof particle diameter. Figure6.21 Burnouttime for char combustion ofcorncob particles as 267 a functionof particle diameter. Figure6.22 Spherical diffusion flame surrounding burning particle at 268 threedifferent oxygen concentrations. Volatile combustion infirst three frames followed bychar oxidation. Numbers underneath each photograph represents the burning time inmilliseconds. Figure6.23 Typical char formationon aflat slab ofDouglas fir 270 wood. Top andside views ofchar fissures andcracks; box denotesthe terminationof afissure.Scaleis in inches. Figure6.24 Conceptual modelofwood char development. 271 Figure6.25 Charpatterndevelopment in 50mmdiameter rosewood 272 sphereswith the formationof characteristic cracks and fissures. Figure6.26 Parentpine sawdust particle (A)and charred particles 273 caused bylow (B), high (C), andextremely high heating rates (D). Figure6.27 Carboncombustion models:(A)the heterogeneous 277 chemical reactionsinvolved inoxidation, (B) concentration profiles for the one-film model, and(C) concentration profiles for the two-film model. Figure6.28 Surface control volume at the particle surface showing 278 reactionratesfor the one-film carbon particle combustion model. Figure6.29 Surface control volumes at the particle surface andthe 280 flame sheet showingthe reactionratesfor the two-film modelof carbon combustion. Figure6.30 Aluminum particle diameter-squaredversusburnout 288 time. Figure6.31 Luminosity images for four burning aluminum particles 289 (210μmdiameter)in freefall.Scale on the left indicates distance frompoint of ignition bylaser. Images show the fullrange ofcombustion behavior. Figure6.32 Shrinking unreacted core model for iron particle 291 combustion. xxii List of Figures Figure 6.33 Flame propagation ina cloud ofiron dust.Iron dust 292 concentration of 1.05kg/m3;time is the burning time since ignition. Figure 7.1 Schematic oftypical dust flame burner. 310 Figure 7.2 Homogeneous flame behavior in adispersed phase fuel 319 cloud. The flame preheatsand vaporizesthe fuel particlescreating a premixed fuel vapor(cid:1)air mixture. Figure 7.3 Heterogeneous flame behavior inadispersed phase fuel 320 cloud. The individual burning particlespreheats and ignites their nearestneighbors with each particle burning essentiallyindependently. Figure 7.4 Mallard(cid:1)LeChatelier modelfor a dust flame. 330 Figure 7.5 Burning velocityof dust flame for aluminum (left side) 339 andmagnesium (right side) as afunction ofdust concentration. Families ofcurvesrepresent different mean particle diameters. Symbols are measured velocitiesand solidlines are the modelpredictions. Figure 7.6 Burning velocityof coal dust flames asa functionof 340 equivalence factor (dust concentration).(A)Comparison ofBersham(▲), Beynon (x), andAnnesley (’) coals. Influenceofvolatile matter (v.m.) and particle size (p.s.) indicated byarrows. (B) Annesley coal: Theory versus experiment.(C) Bershamcoal: Theory versus experiment. Figure 7.7 Dimensionless flame thicknessfor different fuels as a 341 function of the equivalence ratio. Figure 7.8 Burning velocityversusthe Spalding transfer number B. 341 Thetypesoffuel depicted inthisfigure range from propane vapor (g.f.,gaseous fuel) to iso-octane liquid mist (l.m.), and fromvolatile solid fuels (s.f.)to nonvolatilesolids. Calculations based on the stoichiometric concentration of fuel, aparticle diameter of30μm,atmospheric pressure,and ambient temperature. Fuel abbreviations: k, kerosene; d.f.,diesel fuel; h.f.o., heavy fuel oil; p.f., prevaporized fuel; and f.l., flammability limit. Figure 7.9 Laminar burning velocityfor iso-octane mist flames at 354 different Sautermean diameters (SMD) and fuel vapor fractions (Ω)for two different equivalence ratios. Figure 7.10 Plot ofmaximum flame temperature and mean flame 358 speed asa functionofdust concentration for three fatty alcohols.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.