JournalofAfricanEarthSciences101(2015)232–252 ContentslistsavailableatScienceDirect Journal of African Earth Sciences journal homepage: www.elsevier.com/locate/jafrearsci History of the development of the East African Rift System: A series of interpreted maps through time ⇑ Duncan Macgregor MacGeologyLtd.,26GingellsFarmRoad,Charvil,BerkshireRG109DJ,UK a r t i c l e i n f o a b s t r a c t Articlehistory: Thisreviewpaperpresentsaseriesoftimereconstructionmapsofthe‘EastAfricanRiftSystem’(‘EARS’), Received6May2014 illustratingtheprogressivedevelopmentoffaulttrends,subsidence,volcanismandtopography.These Receivedinrevisedform25July2014 mapsbuildonpreviousbasinspecificinterpretationsandintegratereleaseddatafromrecentpetroleum Accepted17September2014 drilling. N–S trending EARS rifting commenced in the petroliferous South Lokichar Basin of northern Availableonline2October2014 KenyaintheLateEocenetoOligocene,thoughthereseemtobefewfurtherdeepriftsofthisageother thanthoseimmediatelyadjoiningit.AtvarioustimesduringtheMid-LateMiocene,aseriesofsmallrifts Keywords: anddepressionsformedbetweenEthiopiaandMalawi,heraldingthemainregionalriftsubsidencephase EastAfricanRiftSystem andfurtherriftpropagationinthePlio-Pleistocene.Awidevariationisthusseenintheagesofinitiation History ofEARSbasins,thoughthemajorityoffaultactivity,structuralgrowth,subsidence,andassociateduplift Neogene Timereconstructionmaps ofEastAfricaseemtohaveoccurredinthelast5–9Ma,andparticularlyinthelast1–2Ma.Thesepercep- tionsarekeytoourunderstandingoftheinfluenceofthediversetectonichistoriesonthepetroleum prospectivityofundrilledbasins. (cid:2)2014ElsevierLtd.Allrightsreserved. Contents 1. Introduction......................................................................................................... 232 2. Pre-EARSrifts........................................................................................................ 234 3. ConstructionoftimereconstructionmapsforEARS1andEARS2Rifts ......................................................... 235 4. EARS1Rifts(?Eo-OligocenetoMidMiocene),Figs.5–8...................................................................... 239 5. EARS2Rifts(Mid-LateMiocenetoRecentandongoing) ..................................................................... 243 5.1. EasternBranch.................................................................................................. 243 5.2. WesternBranch................................................................................................. 247 5.2.1. AlbertineBasin.......................................................................................... 247 5.2.2. LakeEdwardtoLakeTanganyika............................................................................ 248 5.2.3. RukwatoMozambique ................................................................................... 249 6. Offshorebranch...................................................................................................... 250 7. Petroleumimplications................................................................................................ 250 8. Conclusions.......................................................................................................... 250 Acknowledgements................................................................................................... 250 References .......................................................................................................... 251 1.Introduction poorlyunderstood.Theobjectiveofthisreviewpaperistherefore tointegratethevoluminousliteratureontheEARSwithpartially TheEastAfricanRiftSystem(‘EARS’)representstheworld’sbest releasedsubsurfacewelldata,inordertocompileaseriesofmaps exampleofanactiveriftsystem,althoughitsdeeporiginsremain showingtheprogressivedevelopmentofthesystemthroughtime. Thesemapswillremaindynamicasmoredataisreleasedondril- lingintheregionandfurtherstudiesareundertaken. ⇑ There is widespread confusion in the application of the term Tel.:+447884266309. ‘East AfricanRift System’(‘EARS’). Multipleages of rifting in East E-mailaddress:[email protected] http://dx.doi.org/10.1016/j.jafrearsci.2014.09.016 1464-343X/(cid:2)2014ElsevierLtd.Allrightsreserved. D.Macgregor/JournalofAfricanEarthSciences101(2015)232–252 233 Africa are recognised (Fig. 1), including extensive systems of theSemlikiextensionoftheAlbertineBasin(seebelow),although Permo-Triassic and Cretaceous age, in each case themselves con- determiningwhetherthisinitiationistrulysynchronouswiththe sistingofseveralstackedriftphases(Kreuser,1995).Theterm‘East riftingshiftintheTurkanaAreaneedsbetterbiostratigraphiccon- African Rift System’ (‘EARS’) tends to be applied only to rifts of trolthanisavailableatpresent.Thisdivisionisthereforeusefulfor Cenozoic age (e.g. Chorowitz, 2005), but even here there may be descriptive purposes, but is likely to be refined in the future as confusion,astherearethreeoverlappingsubsetsofCenozoicrifts moreprecisedatingbecomesavailable.Offshoreriftsactiveduring (Figs.1and2),namely(a)thoseofEarlyPaleogeneage,whichusu- this timescale are also presented and discussed in this paper, ally represent a continuation of rifting from the Late Cretaceous thoughtheseareofdoubtfuldirectaffinitytotheonshoreriftsys- (e.g. AnzaGraben,(Morleyet al., 1999c)),(b) thoseof?Eo-Oligo- temsandlesseasilyfollowtheEARS1/EARS2division.Essentially, cenetoEarlyMioceneage,and(c)thecurrentlyactivesetofrifts, therefore, this is a paper which assimilates our current state of dating,accordingtothiswork,backtotheMidMiocene.Thispaper knowledge on Oligocene-Recent rift activity in East Africa. The is confined to the study of the two youngest of these phases, i.e. namesappliedforeachofthebasinsdescribedareshowninFig.2. thosewhicharenotcontinuationsoftheNW–SECretaceousrifts, Data and interpretations assimilate previous regional and thoughitisrealisedthatsomeoftheEARSriftsmaybereactiva- semi-regional evaluations of the EARS (e.g. Chorowitz, 2005; tionsofearlierrifts(e.g.RukwaBasin,Fig.2).TheEARSriftsshow Morley et al., 1999a), published outcrop-based studies, particu- a general N–S trend, except over the long-lived Ubendian line of larly of volcanic dating and geometries related to faulting (e.g. basement weakness through the Rukwa Basin (Klerkx et al., Wichura et al., 2011) and lakebed lithological studies (e.g. 1998),wheretheyswingtofollowNW–SEbasementtrends(Figs.1 Tiercelin et al., 1992). Geophysical contributions include gravity and2,Delvaux,2001).Thelimitednumberofriftsactivefrom?Eo- modelling to identify deep rifts (e.g. Ebinger et al., 1989), pub- Oligocene through to the Early-Mid Miocene boundary, of which lished subsurface seismic studies (e.g. Scholz/Project Probe, the type example is the South Lokichar Basin (Morley et al., 1989) and new seismic mapping by the author of the PROBE 1999b),arereferredtointhispaperlooselyas‘EARS1’rifts,while seismic over Lake Tanganyika, Lake Malawi (including Sure- the more extensive Late Neogene (Mid Miocene to Recent) rifts, stream Petroleum reprocessed data) and Lake Turkana. Public typified by the Albertine Basin (Pickford and Senut, 1994), are domain seismic data and mapping by other authors have also referred to as ‘EARS 2’ rifts. In most cases, in the onshore, these been incorporated from various sources over the Lake Albert, twophasesseemtobegeographicallydistinct,asisillustratedon Rukwa, South Lokichar, Turkana, Omo, Chew Bahir, Anza and Fig. 1, and the distinction has been historically emphasised in Kerio basins (as listed in Table 1). northernKenya,whereVetel(1995)andMorleyetal.(1999b)doc- Available well information, with the fullest datasets from umentamajorshifteastwardsthroughtimeinthelocationofrifts. pre-2005 wells, is shown in Table 1. There has been a recent TheMidMiocenedivisionbetweenthetwophasesalsoseemsto spate of drilling of Ugandan, Ethiopian and Kenyan EARS basins, mark theonset of Neogenerifting in the Western Branch, within though only sparse data is available on post-2005 wells through Table1 Publishedwellandseismicdata,plussourceofmappedfaults,overtheEastAfricanRiftSystem. Well Basin Reference Keypoints Kingfisher1,2,3 Albertine Loganetal.(2009) ThickPlio-Pleist.LateMioceneoverBasement.Tie toseismic.Publishedbiostrat Turacowells Albertine/Semliki AbeinomugishaandKasande 1400mthickMid-Late(and?Early)Miocene (2012),Lukaye(2009) section Ngassa2 Albertine SserubiriandScholz(2012) EarlyPliocenesourcerocksdescribedat3000– 3250mclosetoBasementsurface Waki1 Albertine Karpetal.(2012) UndatedsectionwithsourcerocksoverBasement Nyuni1 LakeEdward Dominion(2011) LatePlioceneoverBasement Ruzizi1 Ruzizi MorleyandWescott(1999) Undatedsection Buringa1 Ruzizi MorleyandWescott(1999) Undatedsection Ivuna1 Rukwa Morleyetal.(1999d) LatestMiocene-PlioceneovertopOligocene unconformity Galela1 Rukwa Morleyetal.(1999d) Asabove SyracuseBoreholeA LakeMalawi Scholzetal.(2011),Lyonsetal. TDat390matdateof1.2Ma (2011) Loperot1 SouthLokichar Talbotetal.(2004),Morley EarlyMiocenereservoirsandsourcerocks,Eo-Early etal.(1999b) OligclosetomappedBasement EliyeSprings1 Turkana Morleyetal.(1999b) TieforthickPlio-Pleistoceneandthinner?LateMio sectioninTurkanarift Ngamia1 SouthLokichar AfricaOil(2013) EarlyMiocenereservoirsandsourcerocks Twiga1 SouthLokichar AfricaOil(2013) Asabove Seismicprogramme Basin Reference Mappingoffaultsinthispaperby ProjectPROBE LakeTanganyika Rosendhal(1988) Author ProjectPROBE LakeMalawi Scholz/ProjectProbe(1989) Author ProjectPROBE LakeTurkana Dunkelmanetal.(1989) Author AmocoSeismicRukwaBasin Rukwa Morleyetal.(1999d) Morleyetal.(1999d) AmocoSeismicSouthLokichar, SouthLokichar Morleyetal.(1999b) Morleyetal.(1999b) KerioandTurkanaBasins EarlyAcademicSeismicLines Albertine Karpetal.(2012) Karpetal.(2012),AbeinomugishaandKasande (2012) RecentCommercialSeismicLines SouthOmo,ChewBahir,Ethiopia: AfricaOil(2013) AfricaOil(2013) TurkanaandSouthKerio,Kenya 234 D.Macgregor/JournalofAfricanEarthSciences101(2015)232–252 Fig.1. AssignmentofriftsinEastAfricatoPermo-Triassic(‘Karoo’),Cretaceous-Palaeogene,Eo-OligocenetoMidMiocene(EARS1)andMid-LateMiocenetoRecent(EARS2) phases.Latestriftphaseformsbasisofclassification.RiftsactiveinbothEARS1andEARS2phasesarelocatedintheoffshore,innorthernKenya/southernEthiopiaandinthe RukwaBasinofTanzaniaandareshownhereintheEARS1phase.R=Neogenereactivationofapre-EARSrift,Cretaceous/PalaeogeneinthecaseoftheAnzarift,Karoointhe caseofriftsalongtheUbendiantrendfromTanganyikatoMalawi.Forthecolourversionofthisandotherfigures,seetheelectronicversionofthispaper. conference and investors presentations. However, the maps and orPermo-Triasphase.TheNE–SWtrendingRuhuhuriftofTanzania chronostratigraphic charts in this paper are consistent, to (Figs.2and3)hasbeensubdividedintothreemainriftphasesin the author’s knowledge, with all wells drilled as of January the Early Permian, Mid Permian and around the Permo-Triassic 2014. boundary(Kreuser,1995).TheyoungerKarooriftphasesseemto be less well represented within the NE–SW trending rifts of this age, such as those exploited by the Western Branch of the EARS. 2.Pre-EARSrifts The‘Karoo’riftsareagainreactivatedineasternandcoastalareas by Early Jurassic rifts, some of which evolved into the successful AninterpretationoftherespectiveagesofthevariousPhanero- riftsoftheIndianOcean. zoicriftsacrossEastAfricaisshowninFig.1,basedoninterpreta- In the earliest Early Cretaceous, a series of rifts developed tions in the literature, mainly the ages of their thickest across Central Africa, related to plate re-organisations in the stratigraphicfills.WhilethereissomeevidenceforNeoproterozoic Atlanticocean,generallyreferredtoasthe‘CentralAfricaRiftSys- riftingalongtheUbendiantrendofTanzania(Klerkxetal.,1998), tem’ or ‘CARS’ (Genik, 1992). NW–SE trending members of this the oldest regionally extensive rift phase is the so-called ‘Karoo’ population of rifts, including the Anza Basin and Sudan rifts, D.Macgregor/JournalofAfricanEarthSciences101(2015)232–252 235 Fig.2. Keybasinnamesappliedinthispaper.ThelinesofchronostratigraphyshownasFigs.3and4arelocatedhere. experienced multiple rift phases extending into renewed Late 3.ConstructionoftimereconstructionmapsforEARS1and CretaceousandEocene–Oligocenephases,withinterveninginver- EARS2Rifts sions in the case of the Anza Basin (Bosworth, 1992; Bosworth and Morley, 1994; Morley et al., 1999c), where activity is gener- The key product of this paper is a series of sequential maps ally younger than in the Sudanese rifts. Apatite Fission Track illustratingadevelopingunderstandingoftheprogressivedevelop- Analysis from surrounding basement outcrop (Foster and mentoftheEARS(Figs.5–12).Themapsshowriftfaultsevidenced Gleadow, 1996) and vitrinite reflectance data on the Elgal wells tohavebeactiveduringtheintervalslabelled,anillustrationofrel- (Bosworth and Morley, 1994) evidence that the Anza Rift shoul- ativepalaeo-topography(unquantified)andactivevolcanism.The ders experienced severe erosion in the Late Cretaceous-Palaeo- periodscovered by the mapsspan approx. ±10% of the ages con- gene. Such erosional events are not seen in the basin or cerned to allow for uncertainties in the dating and to enable the surroundingarea, suggesting that theshoulders weretopograph- illustrationofthefullseriesofevents.Faultlocationsandtimings ically high, similar to modern EARS rift shoulders. Many EARS shownaretakenfromtheauthor’smappingofthePROBEseismic rifts of the Western Branch exploit these earlier rifts (such cases inthevariouslakesandfromthemappingofotherauthorsonseis- are labelled on Fig. 1 and are illustrated on Fig. 3), particularly micdata,listedinTable1.Furtherinterpretationsoffaultlocations along lines of basement weakness, though this seems rarely to and timing are taken from: Africa Oil, 2013; Bonini et al., 2005⁄; be the case for the Eastern Branch (Fig. 4). Chorowitz, 2005; Cohen et al., 1993; Dawson, 2008; Delvaux, 236 D.Macgregor/JournalofAfricanEarthSciences101(2015)232–252 Fig.3. ChronostratigraphyoftheWesternBranchoftheEastAfricanRiftSystem.ScaleamendedtoaccommodatetheCretaceousandPermianriftphasesonwhichmanyof theEARS2riftsarereactivated.OnlytheRukwaBasinshowsevidencefor(mild)EARS1rifting.TheAlbertineBasinisthebestcontrolledoftheEARS2rifts,withpartsofLake Tanganyikabeingconceivabletimeanalogues:otherbasins,particularlytothesouth,seemtobeslightlyyounger,asindicatedbybiostratigraphicdatadiscussedinthetext onwellsintheRukwaBasinandinexhumedoutcropadjacenttoLakeMalawi.SeeFig.2forlineofsection.Referencesarelistedinthetext.LineofsectioninFig.2.Wells: K=Kingfisher,T=Turaco,Ni=Nyuni,R=Ruzizi,I=Ivuna,Sa=SyracuseA. 2001; Ebinger, 1989; Ebinger et al., 2000; Foster et al., 1997; Le a. Biostratigraphicorvolcanicdatingwithinwellpenetrations Fournier et al., 1985; Lezzar et al., 1996⁄; Morley, 1999⁄; Morley intheriftsconcerned,tiedwhereverpossibletoseismic. et al., 1992; Pickford and Senut, 1994; Ring and Betzler, 1995; b. Biostratigraphicorvolcanicdatingofexhumedoutcropsec- Saemundsson, 2010⁄; Vetel, 1995⁄; Woldegabriel et al., 1990. tionsofrifts,usuallyonupliftedflexuralmargins. Those asterisked above contain time reconstruction maps for c. Datingofvolcanicsin outcrops, combinedwithanalysesof restrictedregionsoftheEARSthatareintegratedintothispaper. theirthicknesspatternsrelativetorift-boundingfaults. Baker, 1986; Ebinger et al., 1989, 1993; Kampunzu et al., 1998; d. Dating of volcanics that are believed to have compositions McDougall and Brown, 2009, are the main sources for the age of (e.g.rhyolites)thatcorrelatetoperiodsoflikelyextension. volcanism. e. Extrapolationofmeasuredmodernsedimentationratestoa Theinterpretationofthetimingofriftinginthisanalysisusesa mappedbasementhorizon. numberoftechniques,whichcanbelistedinapproximateorderof f. Jump correlations of intervals of similar seismic character confidencebelow: betweenbasins. D.Macgregor/JournalofAfricanEarthSciences101(2015)232–252 237 Fig.4. ChronostratigraphyoftheEasternBranchoftheEastAfricanRiftSystem.TimescalelimitedtoEARS1andEARS2riftsasoldersedimentarysections(e.g.Turkana Grits)areoflimiteddevelopmentandaffinity.NotedistinctionbetweenEARS1riftsinitiatedinOligocenewithpeakriftinginEarlyMioceneandEARS2riftsinitiatedas depressionswithminorriftingatvarioustimesinMid-LateMiocenewithpeakriftinginPliocene-PresentDay.Referencesarelistedinthetext.LineofsectioninFig.2.Wells: ES=EliyeSprings,L=Loperot,N=Ngamia. g. Labelledseismiccorrelationswithininvestorspresentations appliestotheRukwa-MalawitrendoftheWesternBranchwhere thatcannotbefullyauditedbytheauthor. thereisone wellfullypenetratingthe riftsection tiedtoseismic (technique a.) and outcrop control in Malawi of an exhumed rift Inthecontextoftheaboveandthewidevariationsindatabases, section(techniqueb.).Basedonalackofpublishedwelldataatthis confidence in the interpretation of the precise timing of rifting stage,confidenceisalsolowintheprecisenatureoftimingofrif- eventsclearlyvariesregionally.Confidenceishighovertheportion tingoffshore,withtheinterpretationshowninferredfromanum- oftheEasternBranchinKenyaandTanzania,wheretechniquesa. ber of conference papers and diverse seismic images within andc.canbeemployed,butisdiminishedsomewhatoverEthiopia, investorspresentations(techniquef.). wheretherearesomeconflictinginterpretationsfromtechniquec. Theinterpretationofpalaeotopographyisbasedonanextrapo- andlittlepublisheddrillingcontrol.IntheWesternBranch,confi- lationofcurrenttopographybackwardsintime.Thisextrapolation dence is high in the analysis of the well-drilled Albertine Basin essentially assumes that (a) maximumtopographicvariation and butlowinLakeTanganyika,wherelowconfidencetechniquessuch amplitude across the region is achieved at Present Day, and (b) as technique e. need to be used. A level of moderate confidence the rough level of rift shoulder topography was achieved at the 238 D.Macgregor/JournalofAfricanEarthSciences101(2015)232–252 Fig.5. Timereconstructionat28±3Ma,Rupelian,InitiationofEARS1rifts.Keyeventsinclude:(1)firstN–StrendingCenozoicriftsareinitiatedinNKenya?around35Ma. (probableOligocenestratainLoperot1well),(2)largevolumeoftrapbasaltseruptedfrom28–25MainEthiopia,associatedreliefofAfarplumearound1km,(3)riftingin Afararound25Ma(Bosworthetal.,2005),(4)earlierMelutandAnzabasinsremainactive,(5)NsungweFm.ofRukwaBasinindicatesmildreactivationofPermian/ Cretaceousrift(Robertsetal.,2012).TopographypriortoEARSdevelopmentbasedonMooreetal.,2009,insouth,AFTAdataofNoble(1997)andFosterandGleadow(1996) inTanzania,plusOligocenesedimentationratesoffshoreEastAfrica(Morley,1999,Fig.13ofthispaper).Darkershadesonallmapsindicaterelativelyhighertopography. Volcanicsinred. time of maximum rift faulting, as interpreted in the paper. The uplift are not seen in spore assemblages within the Kingfisher critical interpretation that topography is at a maximum in the Wells in the Albertine Basin until around 1Ma (Shaw et al., Plio-Pleistocene is supported by a number of lines of evidence, 2009).VolcanicgeometriesanddatingillustratethattheGregory including (a) the peak of sedimentation rates in the Plio- rift shoulders (technique c.) also did not rise till 1–2Ma (Baker, Pleistocene in depocentres charged from rivers which drain the 1986;Dawson,2008). EARS rift shoulders (Fig. 13), (b) the immaturity of river profiles Thetopographyaroundriftsisassumedtohavebeenreducedin acrosstheregion(Pauletal.,2014;Ganietal.,2007)and(c)inter- magnitudeforperiodspriortomaximumrifting,followingamodel pretationsoftheageofthemainthrowsontheriftboundingfaults, of rifts developing initiallyas gentle depressions with low throw as is discussed below for the basins concerned. For example, the bounding faults apparent on Present Day analogues (Modisi rise of the 5km high Rwenzori mountains, which represent the et al., 2000) and developed on seismic over Lake Tanganyika by highest non-volcanic, non-orogenic topography in the world, is Tiercelin and Mondeguer (1991) (Fig. 14). Many, though not all, dated as Plio-Pleistocene by folding of Pliocene strata in outcrop rifts investigated in this paper show increased structural growth (PickfordandSenut,1994).Highaltitudetaxaassociatedwiththat intoboundingfaultsthroughtime,i.e.greatestisochronvariations D.Macgregor/JournalofAfricanEarthSciences101(2015)232–252 239 Fig.6. Timereconstructionat20±2Ma,Aquitanian,AcmeofEARS1rifting.Keyeventsinclude:(1)deeplacustrineshale(sourcerock)developmentinSouthLokicharBasin, (2)riftinginBroadlyRiftedZoneofEthiopiacommencingbetween25Maand21Ma(Levitteetal.,1974;Boninietal.,2005),(3)someactivityinSugutaBasin(Morley,1999), whereEarlyMiocenesectionpresent,(4)EthiopiandomedevelopedalongwithpeakofRedSeariftingandshoulderuplift(Bosworthetal.,2005),(5)offshoreriftingactive fromlatestOlig-EarlyMiocene(Danforthetal.,2012;Jeansetal.,2012;Parsonsetal.,2012). in Recent times. Prior to rifting, interpretations are made of the through time are similar to those independently derived by Paul development of broad domes with reliefs as suggested by etal.(2014)onthebasisofriverprofilestudies,thoughdifferfrom Wichuraetal.(2011)fortheKenyadome,basedontheobserved the assumption used in that paper that African topography was geometriesoflavaflows.Theinterpretationiseventuallytiedfor essentiallyflatatthestartoftheOligocene. the Oligocene to a broad interpretation of pre-EARS topography basedonApatiteFissionTrackAnalysis,drainageanalysisandoff- shoresedimentationratesanalysis.Thisessentiallyassumessome 4.EARS1Rifts(?Eo-OligocenetoMidMiocene),Figs.5–8 residualpalaeotopographyaroundtheAnzaRiftshoulder(asdis- cussed earlier) and Tanzanian Craton in a region of Late Creta- A new set of rifts were created in the Palaeogene in northern ceous-PalaeogeneApatiteFissionTrackagesandhightopography Kenyathatdonotexploitearliertrendsandshow,forthefirsttime in the northern part of the South African plateau as proposed by in Africa, a distinct N–S orientation, thus marking a significant Mooreetal., 2009:suchtopographyisalso requiredto explaina change in stress direction (Fig. 5). There are many basins in this peak in sedimentationrates and turbiditesand supplyin e.g. the region and most are undrilled, but the only basin at this time Rovuma Delta (Fig. 13). The palaeotopographical patterns shown established from drilling and seismic interpretation to contain a 240 D.Macgregor/JournalofAfricanEarthSciences101(2015)232–252 Fig.7. Timereconstructionat15±1Ma,Langhian,latemilderstageofEARS1riftinginEasternBranchandpossibleearliestEARS2riftsinWesternBranch.Keyevents include:(1)volcanismfillsuprifttopographyinnorthernKenya,(2)riftsactiveinsouthernMER(Boninietal.,2005),(3)SemlikiSub-BasinofAlbertineBasinprobably initiatedclosetothistime,basedonstratigraphyofTuracowell,(4)assumedcontinuationofriftingoffshorebasedonsparsepublishedseismiccoverage. thick(6–7km)stratigraphicsectionofthisageistheSouthLoki- Earlyto earliestMid-Mioceneage (‘Auwerwer Formation’)before charBasin. thebasinwasupliftedintheLateMiocene-Plioceneontheshoul- TheSouthLokicharBasinhasnowbeendrilledbyalargenum- derofthelaterEARS2Turkanarift(McDougallandBrown,2009). berofrecentwells(AfricaOil,2013).ResultsoftheearlierLoperot Vetel(1995)proposesthattheinitiationofthebasinwasaround 1wellhavebeenpublishedindetail(Figs.4and14,Morleyetal., 35Ma,whichisconsistentwiththeavailabledata. 1999b;Talbotetal.,2004).Thewellpenetratedadeeplacustrine Two adjoining rifts in the Turkana complex, the South Kerio shale (the ‘Loperot Shale’), dated as ‘Early Oligocene to possible (Fig.14)andNorthLokicharrifts,haveestablishedEARS2sections Eocene’,some300msTWTabovethepredictedbasementsurface observable onseismicandtiedtooutcroppingarkosesbelowthe at a central point within the rift (Fig. 14). The earliest rift units regional mid Miocene volcanics (Morley et al., 1999b; Vetel, showaplanargeometryonseismic,withoutsignificantthickening 1995). Their sections seem to be thinner than in South Lokichar, totheboundingfault.Peakriftsubsidencewasprobablyattained atupto2kminNorthLokicharandperhapsupto5–6kminSouth at the time of deposition of a younger deep lacustrine shale unit Keriowhereseismicdefinitionishoweverpoor.Vetel(1995)spec- termedthe ‘Lokone Shale’,which showsa distinct wedgeshaped ulatedthese basinsmay havebeeninitiatedlater,perhapsin the geometryonseismic,andisdatedinrecentwellsasEarlyMiocene Early Miocene, partly due to their thinner nature and partly to (Africa Oil, 2013). This is overlain by a sandy rift infilling unit of follow a trend of younging volcanism to the east. Drilling is D.Macgregor/JournalofAfricanEarthSciences101(2015)232–252 241 Fig.8. Timereconstructionat12±1Ma,Serravallian,transitionalphasebetweenEARS1andinitiationofearlysagphasesofEARS2rifts,withmigrationofrifts.Keyevents include:(1)jumpofriftactivityfromSouthtoNorthLokicharBasinandtoTurkanaBasinaroundendmidMiocene(Morleyetal.,1999b),(2)lackofrifting(Elgayo escarpmentexcepted)butexistenceofcirca1400mhighdomeevidencedbyvolcanicgeometriesofKenyaphonolitesat13.5–11Ma.(Wichuraetal.,2011),(3)continued riftingofSemlikiportionofAlbertineBasin(e.g.PickfordandSenut,1994)andcommencementofsubsidencebelowLakeAlbert,(4)abestcaseassessmentofLake Tanganyikariftssuggestsinthemostlikelycasethattheyhavenotbeeninitiatedbythistime,thoughthiscannotbeexcluded,(5)poorlycontrolledperiodofrelative quiescenceoffshorebetweenriftphases(e.g.Jeansetal.,2012). plannedlaterthisyear(2014)toanalysewhetherthecriticalEarly aroundandeastofLakeTurkana(Vetel,1995),whichsuggeststhat Miocene source rock and reservoir section seen in the South riftingwas concentratedaround South Lokichar.Theexistence of Lokicharwellsispresentandshouldresolvethisissue. EARS1riftsectionsbelowthemidMiocenevolcanicsbelowLake ElsewhereinnorthernKenya,sparseevidencesuggeststheexis- Turkana,andthereforebeyondseismicdefinition,cannothowever tenceofonlythinsedimentarysectionsofEarlyMioceneage. An beruledout. Early Miocene sandy section is uplifted along the Elgayo Escarp- InthemainpartoftheGregoryRift,Mid-Miocenevolcanicflow ment in the northern Gregory rift (Bosworth and Maurin, 1993) geometriesaregenerallyunsupportiveofthepresenceofanypre- whilethinshallowlacustrinedepositshavebeendatedataround existingrifttopography(Wichuraetal.,2011),suggestingtheEARS 20Ma by interbedded tuffs east of Lake Turkana (Ebinger et al., 1 rifts did not propagate any further to the south. Rifting also 2000). These sections, as shown by the maps of Morley et al. seemstohavealsocontinuedfromPalaeocenetimesintheearlier (1999b),areindicativeoffluvialandshallowlacustrinedeposition, Anza Graben, extending up to an unconformity in the Hothori 1 perhaps in localised small and slowly subsiding rifts. It can be well,roughlydatedasintra-EarlyMiocene(Morleyetal.,1999c). noted that pre mid-Miocene volcanism is sparse in the region Itisalsopossiblethatthegravity-definedGatomeandLotikipirifts
Description: