ebook img

Dual identities in fractional difference calculus within Riemann PDF

0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dual identities in fractional difference calculus within Riemann

Principles of Delta and Nabla Fractional Differences Thabet Abdeljawad a’b a DepartmentofMathematics, C¸ankayaUniversity,06530, Ankara,Turkey b DepartmentofMathematics andPhysicalSciences 1 PrinceSultanUniversity,P.O.Box66833, Riyadh11586,SaudiArabia 1 0 2 Abstract. We define nabla right fractional sum and difference and obtain a nabla integration by c e parts formula. Some properties of nabla and delta fractional sums and differences are obtained to D derivedualidentitiesbetweenthenablaanddeltaonesandotherQ-dualidentitiestorelateleftand rightones. Thesedualidentitiesgivetheimpressionthat thedefinitionofthedeltarightfractional 5 difference presented by Abdeljawad and Baleanu in [1] and [12] are more appropriate than those 2 introduced by other authors. Hence, the delta integration by parts formulaformulated in [12] and thenablaonepresentedinthisarticleareconsistent. ] S Keywords: right (left) delta and nabla fractional sums, right (left) delta and nabla Riemann D andCaputofractionaldifferences. Integration byparts,Q-operator,dualidentity. . h 1 Introduction t a m During the last two decades, due to its widespread applications in different fields of science and engineering,fractionalcalculushasattractedtheattentionofmanyresearchers[9,10,11,23,24,25]. [ StartingfromtheideaofdiscretizingtheCauchyintegralformula,MillerandRoss[8]andGray and Zhang [18] obtained discrete versions of left type fractional integrals and derivatives, called 1 fractional sums and differences. Fifteen years later, several authors started to deal with discrete v fractionalcalculus[1,3,4,5,6,14,12,20,21,22],benefitingfromthetheoryoftimescalesoriginated 5 byHilgerin1988(see[15]). 9 In this article, we summarize some of the results mentioned in the above references and add 7 more in the Caputo type and right type fractional differences. Throughout the article we almost 5 agreewiththepreviouslypresenteddefinitionsexceptforthedefinitionofrightfractionaldifference. 2. Weshallfigureoutthatthesedefinitionsseemtobemoreconvenientthanthepreviouslypresented 1 onesbyprovingsomedualidentities. Theseidentitiesfallintotwokinds. Thefirstrelatenablatype fractionaldifferencesandsumstodeltaones. ThesecondkindrepresentedbytheQ-operatorrelate 1 leftandrightfractionalsumsanddifferences. Also,inthedefinitionofleftandrightfractionalsums 1 weusethe ones that agreewiththe general theoryfortimescalesandnot asin[5]orin[18]. This : v setting enables us to get identities resembling better the ordinary fractional case. Along with the i previouslymentionedpointsweareabletofitareasonablenablaintegrationbypartsformulawhich X remainsinaccordancewiththeoneobtainedin[12]butdifferentfromthoseobtainedin[6]and[14]. r Thearticleisorganizedasfollows: Theremainingpartofthissectioncontainssummarytosome a ofthebasicnotations anddefinitions indeltaandnablacalculus. Section2contains thedefinitions intheframeofdeltaandnablafractionalsumsanddifferencesintheRiemannsense. Moreoversome essential lemmas about the commutativity of the different fractional sum operators with the usual difference operators are established. These lemmas are vital to proceed in the next sections. The thirdsection contains some dual identities relating nabla and delta fractional sums and differences in the left and right cases. Using these dual identities, power formulae for nabla left and right fractionalsums andacommutative lawfornablaleftandrightsumsareobtained. InSection 4an integrationbypartsformulafornablafractionalsumsanddifferencesisobtainedwithanaccordance totheoneobtainedin[12]. Section5isdevotedtodeltaandnablaCaputofractionaldifferencesand theirrelationswiththeRiemannones. Finally,Section6containsCaputotypefractionaldynamical equations where anonhomogeneous nabla Caputo fractional difference equation issolved to obtain nabladiscreteversionsforMittag-Lefflerfunctions. Forthecaseα=1weobtainthediscretenabla exponentialfunction[15]. Inadditiontothis,theQ-operatorisusedtorelateleftandrightfractional sumsinthenablaanddeltacase. TheQ-dualidentitiesobtainedinthissectionexposethevalidity ofthedefinitionofdeltaandnablarightfractionaldifferences. 1 Foranaturalnumbern,thefractionalpolynomialisdefinedby, n−1 Γ(t+1) t(n)= Y(t−j)= , (1) Γ(t+1−n) j=0 whereΓdenotes thespecialgammafunctionandtheproductiszerowhent+1−j=0forsomej. Moregenerally,forarbitraryα,define Γ(t+1) t(α)= , (2) Γ(t+1−α) wheretheconvention thatdivisionatpoleyieldszero. Giventhattheforwardandbackwarddiffer- enceoperatorsaredefinedby ∆f(t)=f(t+1)−f(t), ∇f(t)=f(t)−f(t−1) (3) respectively, wedefineiterativelytheoperators ∆m=∆(∆m−1)and∇m=∇(∇m−1),wheremis anaturalnumber. Herearesomepropertiesofthefactorialfunction. Lemma 1.1. ([3])Assume the following factorial functions are well defined. (i) ∆t(α)=αt(α−1). (ii) (t−µ)t(µ) =t(µ+1), where µ∈R. (iii) µ(µ)=Γ(µ+1). (iv) If t≤r, then t(α)≤r(α) for any α>r. (v) If 0<α<1, then t(αν)≥(t(ν))α. (vi) t(α+β)=(t−β)(α)t(β). Also,forourpurposeswelistdownthefollowingtwoproperties,theproofsofwhicharestraight- forward. ∇s(s−t)(α−1) =(α−1)(ρ(s)−t)(α−2). (4) ∇t(ρ(s)−t)(α−1) =−(α−1)(ρ(s)−t)(α−2). (5) Forthesakeofthenablafractionalcalculuswehavethefollowingdefinition Definition 1.1. ([15, 16, 17, 19]) (i) For a natural number m, the m rising (ascending) factorial of t is defined by m−1 tm= Y(t−k), t0=1. (6) k=0 (ii) For any real number the α rising functionis defined by Γ(t+α) tα= , t∈R− {...,−2,−1,0}, 0α=0 (7) Γ(t) Regardingtherisingfactorialfunctionweobservethefollowing: (i) ∇(tα)=αtα−1 (8) (ii) (tα)=(t+α−1)(α). (9) (iii) ∆t(s−ρ(t))α =−α(s−ρ(t))α−1 (10) Notation: (i) Forarealα>0,wesetn=[α]+1,where[α]isthegreatestinteger lessthanα. (ii) Forrealnumbersaandb,wedenote Na={a,a+1,...}and bN={b,b−1,...}. (iii) Forn∈Nandreala,wedenote a∆nf(t),(−1)n∆nf(t). (iv) Forn∈Nandrealb,wedenote ∇nf(t),(−1)n∇nf(t). b 2 2 Definitions and essential lemmas Definition 2.1. Letσ(t)=t+1 and ρ(t)=t−1be the forward and backward jumping operators, respectively. Then (i) The (delta) left fractional sum of order α>0 (starting from a) isdefined by: t−α ∆−aαf(t)= Γ(1α) X(t−σ(s))(α−1)f(s), t∈Na+α. (11) s=a (ii) The (delta) right fractional sum of order α>0 (ending at b) is defined by: b b b∆−αf(t)= 1 X (s−σ(t))(α−1)f(s)= 1 X (ρ(s)−t)(α−1), t∈ b−αN. (12) Γ(α) Γ(α) s=t+α s=t+α (iii) The (nabla) left fractional sum of order α>0 (starting from a) isdefined by: t ∇−aαf(t)= Γ(1α) X (t−ρ(s))α−1f(s), t∈Na+1. (13) s=a+1 (iv)The (nabla) right fractional sum of order α>0 (ending at b) isdefined by: b∇−αf(t)= Γ(1α)bX−1(s−ρ(t))α−1f(s)= Γ(1α)bX−1(σ(s)−t)α−1f(s), t∈ b−1N. (14) s=t s=t Regardingthedeltaleftfractionalsumweobservethefollowing: (i)∆−aα mapsfunctions definedonNa tofunctions definedonNa+α. (ii)u(t)=∆−anf(t), n∈N,satisfiestheinitialvalueproblem ∆nu(t)=f(t), t∈Na, u(a+j−1)=0, j=1,2,...,n. (15) (iii)TheCauchyfunction (t−σ(s))(n−1) vanishes ats=t−(n−1),...,t−1. (n−1)! Regardingthedeltarightfractionalsumweobservethefollowing: (i) b∆−α mapsfunctions definedonbNtofunctionsdefinedonb−αN. (ii)u(t)= b∆−nf(t), n∈N,satisfiestheinitialvalueproblem ∇nbu(t)=f(t), t∈ bN, u(b−j+1)=0, j=1,2,...,n. (16) (iii)theCauchyfunction (ρ(s)−t)(n−1) vanishesats=t+1,t+2,...,t+(n−1). (n−1)! Regardingthenablaleftfractionalsumweobservethefollowing: (i)∇−aα mapsfunctions definedonNa tofunctions definedonNa+1. (ii)∇−anf(t)satisfiesthen-thorderdiscreteinitialvalueproblem ∇ny(t)=f(t), ∇iy(a)=0, i=0,1,...,n−1 (17) (iii)TheCauchyfunction (t−ρ(s))n−1 satisfies∇ny(t)=0. Γ(n) Regardingthenablarightfractionalsumweobservethefollowing: (i) b∇−α mapsfunctions definedon bNtofunctions definedon b−1N. (ii)b∇−nf(t)satisfiesthen-thorderdiscreteinitialvalueproblem a∆ny(t)=f(t), a∆iy(a)=0, i=0,1,...,n−1. (18) Theproofcanbedoneinductively. Namely,assumingitistrueforn,wehave a∆n+1 b∇−(n+1)f(t)= a∆n[−∆b∇−(n+1)f(t)]. (19) Bythehelpof(10),itfollowsthat a∆n+1 b∇−(n+1)f(t)= a∆n b∇−nf(t)=f(t). (20) Theotherpartisclearbyusingtheconvention that t =0, s>t. Pk=s (iii)TheCauchyfunction (s−ρΓ((tn)))n−1 satisfiesa∆ny(t)=0. 3 Definition 2.2. (i)[8] The (delta) left fractional sum of order α>0 (starting from a ) is defined by: t−(n−α) ∆αaf(t)=∆n∆−a(n−α)f(t)= Γ(n1−α) X (t−σ(s))(n−α−1)f(s), t∈Na+(n−α) (21) s=a (ii) [12] The (delta) right fractional difference of order α>0(ending at b) is defined by: b b∆αf(t)=(−1)n∇n b∆−(n−α)f(t)= Γ(n1−α) X (s−σ(t))(n−α−1)f(s), t∈ b−(n−α)N s=t+(n−α) (22) (iii) The (nabla) left fractional difference of order α>0 (starting from a ) isdefined by: t ∇αaf(t)=∇n∇−a(n−α)f(t)= Γ(n1−α) X (t−ρ(s))n−α−1f(s), t∈Na+1 (23) s=a+1 (iv) The (nabla) right fractional difference of order α>0 (ending at b )is defined by: b∇αf(t)=(−1)n∆n b∇−(n−α)f(t)= Γ(n1−α)bX−1(s−ρ(t))n−α−1f(s), t∈ b−1N (24) s=t Regardingthedomainsofthefractionaltypedifferences weobserve: (i)Thedeltaleftfractionaldifference∆αa mapsfunctionsdefinedonNa tofunctionsdefinedon Na+(n−α). (ii)Thedeltarightfractionaldifference b∆αmapsfunctionsdefinedon bNtofunctionsdefined on b−(n−α)N. (iii) The nabla left fractional difference ∇αa maps functions defined on Na to functions defined onNa+1−n. (iv)Thenablarightfractionaldifference b∇αmapsfunctionsdefinedon bNtofunctionsdefined on b−1+nN. Lemma 2.1. [3] For any α>0, the following equality holds: ∆−α∆f(t)=∆∆−αf(t)− (t−a)α−1f(a). a a Γ(α) Lemma 2.2. [12] For any α>0, the following equality holds: b∆−α∇bf(t)=∇b b∆−αf(t)− (b−t)α−1f(b). Γ(α) Lemma 2.3. [7] For any α>0, the following equality holds: ∇−α ∇f(t)=∇∇−α− (t−a+1)α−1f(a) (25) a+1 a Γ(α) The resultof Lemma2.3was obtained in[7] byapplying the nabla leftfractional sum starting fromanotfroma+1. NextwillprovidetheversionofLemma2.3byapplyingthedefinitioninthis article. Lemma 2.4. For any α>0, the following equality holds: ∇−α∇f(t)=∇∇−α− (t−a)α−1f(a). (26) a a Γ(α) Proof. Bythehelpofthefollowingbypartsidentity ∇s[(t−s)α−1f(s)]=∇s(t−s)α−1f(s)+(t−ρ(s))α−1∇sf(s) (27) =−(α−1)(t−ρ(s))α−2f(s)+(t−ρ(s))α−1∇sf(s) wehave t ∇−aα∇f(t)= Γ(1α) X (t−ρ(s))α−1∇sf(s)= s=a+1 4 t Γ(1α)[(t−s)α−1f(s)|ta+(α−1) X (t−ρ(s))α−2f(s)]= (28) s=a+1 − (t−a)α−1f(a)+ 1 Xt (t−ρ(s))α−2f(s) (29) Γ(α) Γ(α−1) s=a+1 Ontheother hand ∇∇−αf(t)= a t t 1 X ∇t(t−ρ(s))α−1f(s)= 1 X (t−ρ(s))α−2f(s) (30) Γ(α) Γ(α−1) s=a+1 s=a+1 Remark 2.1. Let α>0 and n=[α]+1. Then, by the help of Lemma 2.4 we have ∇∇αaf(t)=∇∇n(∇−a(n−α)f(t))=∇n(∇∇−a(n−α)f(t)). (31) or ∇∇αaf(t)=∇n[∇−a(n−α)∇f(t)+ (t−Γ(an)−n−αα)−1f(a)] (32) Then, using the identity (t−a)n−α−1 (t−a)−α−1 ∇n = (33) Γ(n−α) Γ(−α) we infer that (26) is valid for any real α. By the help of Lemma 2.4, Remark 2.1 and the identity ∇(t−a)α−1 =(α−1)(t−a)α−2, we arriveinductivelyatthefollowinggeneralization. Theorem 2.5. For any real number α and any positive integerp, the following equality holds: ∇−aα ∇pf(t)=∇p∇−aαf(t)−pX−1Γ((αt−+ak)α−−pp++k1)∇kf(a). (34) k=0 where f isdefined on Na . Lemma 2.6. For any α>0, the following equality holds: b∇−α a∆f(t)= a∆ b∇−αf(t)− (b−t)α−1f(b) (35) Γ(α) Proof. Bythehelpofthefollowingdiscretebypartsformula: ∆s[(ρ(s)−ρ(t))α−1f(s)]= (α−1)(s−ρ(t))α−2f(s)+(s−ρ(t))α−1∆f(s) (36) wehave b−1 b∇−α a∆f(t)=− 1 X(s−ρ(t))α−1∆f(s)= Γ(α) s=t b−1 b−1 1 [−X∆s((ρ(s)−ρ(t))α−1f(s))+(α−1)X(s−ρ(t))α−2f(s)]= (37) Γ(α) s=t s=t 1 bX−1(s−ρ(t))α−2f(s)− (b−t)α−1f(b). (38) Γ(α−1) Γ(α) s=t Ontheother hand, a∆b∇−αf(t)= b−1 b−1 − 1 X∆t(s−ρ(t))α−1f(s)= 1 X(s−ρ(t))α−2f(s) (39) Γ(α) Γ(α−1) s=t s=t wheretheidentity ∆t(s−ρ(t))α−1 =−(α−1)(s−ρ(t))α−2 andtheconvention that(0)α−1 =0areused. 5 Remark 2.2. Let α>0 and n=[α]+1. Then, by the help of Lemma 2.6 we can have a∆ b∇αf(t)= a∆ a∆n( b∇−(n−α)f(t))= a∆n( a∆ b∇−(n−α)f(t)) (40) or a∆ b∇αf(t)= a∆n[ b∇−(n−α) a∆f(t)+ (b−t)n−α−1f(b)] (41) Γ(n−α) Then, using the identity (b−t)n−α−1 (b−t)−α−1 a∆n = (42) Γ(n−α) Γ(−α) we infer that (35) is valid for any real α. By the help of Lemma 2.6, Remark 2.2 and the identity ∆(b−t)α−1 =−(α−1)(b−t)α−2, if wefollowinductivelywearriveatthefollowinggeneralization Theorem 2.7. For any real number α and any positive integerp, the following equality holds: b∇−α a∆pf(t)= a∆p b∇−αf(t)−pX−1 (b−t)α−p+k a∆kf(b) (43) Γ(α+k−p+1) k=0 where f isdefined on bN and we remind that a∆kf(t)=(−1)k∆kf(t). 3 Dual identities for right fractional sums and dif- ferences The dual relations for left fractional sums and differences were investigated in [5]. Indeed, the followingtwolemmasaredualrelationsbetweenthedeltaleftfractionalsums(differences)andthe nablaleftfractionalsums(differences). Lemma3.1. [5]Let0≤n−1<α≤nandlety(t)bedefinedonNa. Thenthefollowingstatements are valid. ((ii)i)(∆(∆αa)−ayα(t)y−(tα+)=α)∇=αa∇y(−at)αyfo(rt)tf∈orNtn∈+aN.a. Lemma 3.2. [5] Let 0 ≤ n−1 < α ≤ n and let y(t) be defined on Nα−n. Then the following statementsare valid. (i)∆αα−ny(t)=(∇αα−ny)(t+α) for t∈N−n. (ii) ∆−α−(nn−α)y(t)=(∇−α−(nn−α)y)(t−n+α) for t∈N0. Weremindthattheabovetwoduallemmasforleftfractionalsumsanddifferenceswereobtained whenthenablaleftfractionalsumwasdefinedby t ∇−aαf(t)= Γ(1α) X(t−ρ(s))α−1f(s), t∈Na (44) s=a Now, in analogous to Lemma 3.1 and Lemma 3.2, for the right fractional summations and differencesweobtain Lemma 3.3. Let y(t) be defined on b+1N. Then the following statementsare valid. (i)( b∆α)y(t+α)= b+1∇αy(t) for t∈ b−nN. (ii) ( b∆−α)y(t−α)= b+1∇−αy(t) for t∈ bN. Proof. Weproveonly(i). Theproofof(ii)issimilarandeasier. (b∆α)y(t+α)=(−1)n∇n b∆−(n−α)y(t+α)= (−1)n∇n Xb (s−t−1−α)(n−α−1)y(s)= (−1)n∆n Xb (s−t−1−+n−α)(n−α−1)y(s) (45) Γ(n−α) Γ(n−α) s=t+n s=t 6 Usingtheidentitytα=(t+α−1)(α),wearriveat (b∆α)y(t+α)= (−1)n∆n Xb (s−ρ(t))n−α−1y(s)= Γ(n−α) s=t (−1)n∆n b+1∇−(n−α)y(t)= b+1∇αy(t). (46) Lemma 3.4. Let 0 ≤ n−1 < α ≤ n and let y(t) be defined on n−αN. Then the following statementsare valid. (i) n−α∆αy(t)= n−α+1∇αy(t−α), t∈ nN (ii) n−α∆−(n−α)y(t)= n−α+1∇−(n−α)y(t+n−α), t∈ 0N Proof. Weprove(i),theproofof(ii)issimilar. Bythedefinitionofrightnabladifferencewehave n−α n−α+1∇αy(t−α)= a∆n 1 X (s−ρ(t−α))n−α−1y(s)= Γ(n−α) s=t−α n−α n−α a∆nΓ(n1−α) X (s−ρ(t−α))n−α−1y(s)=∇nbΓ(n1−α) X (s−ρ(t+n−α))n−α−1y(s) s=t−α s=t+n−α (47) Byusing(9)itfollowsthat n−α n−α+1∇αy(t−α)=∇nbΓ(n1−α) X (s−σ(t))(n−α−1)y(s)= n−α∆αy(t) (48) s=t+n−α Note that the above two dual lemmas for rightfractional differences can not be obtained ifwe applythedefinitionofthedeltarightfractionaldifferenceintroducedin[14]and[6]. Lemma 3.5. [12] Let α>0, µ>0. Then, b−µ∆−α(b−t)(µ) = Γ(µ+1) (b−t)(µ+α) (49) Γ(µ+α+1) Thefollowingcommutative propertyfordeltarightfractionalsumsisTheorem9in[12]. Theorem 3.6. Let α>0, µ>0. Then, for all t such that t≡b−(µ+α) (mod 1), we have b∆−α[ b∆−µf(t)]= b∆−(µ+α)f(t)= b∆−µ[ b∆−αf(t)] (50) where f isdefined on bN. Proposition 3.7. Let f be a real valued function defined on bN, and let α,β>0. Then b∇−α[ b∇−βf(t)]= b∇−(α+β)f(t)= b∇−β[ b∇−αf(t)] (51) Proof. TheprooffollowsbyapplyingLemma3.3(ii)andTheorem3.6above. Indeed, b∇−α[b∇−βf(t)]= b∇−α b−1∆−βf(t−β)= b−1∆−α b−1∆−βf(t−(α+β))= b−1∆−(α+β)f(t−(α+µ))= b∇−(α+β)y(t) (52) Thefollowingpowerrulefornablarightfractionaldifferencesplaysanimportantrule. Proposition 3.8. Let α,µ>0. Then, fort∈ bN , we have b∇−α(b−t)µ= Γ(µ+1) (b−t)α+µ (53) Γ(α+µ+1) 7 Proof. Bythedualformula(ii)ofLemma3.3,wehave b∇−α(b−t)µ= b−1∆−α(b−r)µ|r=t−α= b−1 1 X(s−t+α−1)(α−1)(b−s)µ. (54) Γ(α) s=t Thenbytheidentitytα=(t+α−1)(α−1) andusingthechangeofvariabler=s−µ+1,itfollows that b∇−α(b−t)µ= b−µ 1 X (r−σ(t−α−µ+1))(α−1)(b−r)µ=(b−µ∆−α(b−u)µ)|u=−α−µ+1+t. (55) Γ(α) r=t−µ+1 WhichbyLemma3.5leadsto b∇−α(b−t)µ= Γ(µ+1) Γ(µ+1) (b−t+α+µ−1)(α+µ) = (b−t)α+µ (56) Γ(α+µ+1) Γ(α+µ+1) Similarly,forthenablaleftfractionalsumwecanhavethefollowingpowerformulaandexponent law Proposition 3.9. Let α,µ>0. Then, fort∈Na , we have ∇−α(t−a)µ= Γ(µ+1) (t−a)α+µ (57) a Γ(α+µ+1) Proposition 3.10. Let f be areal valued function defined on Na, and let α,β>0. Then ∇−aα[∇−aβf(t)]=∇−a(α+β)f(t)=∇−aβ[∇−aαf(t)] (58) Proof. The proof can be achieved as in Theorem 2.1 [5], by expressing the left hand side of (58), interchanging the order of summation and using the power formula (57). Alternatively, the proof canbedonebyfollowingasintheproofofProposition3.7withthehelpofthedualformulaforleft fractionalsuminLemma3.1afteritsarrangementaccordingtoourdefinitions. 4 Integration by parts for fractional sums and dif- ferences Wefirststatetheintegrationbypartsfordeltafractionalsumsanddifferences. Proposition 4.1. [12] Let α>0, a,b∈R such that a<b and b≡a+α (mod 1). If f is defined on Na and g is defined on bN, thenwe have b b−α X (∆−aαf)(s)g(s)= Xf(s) b∆−αg(s). (59) s=a+α s=a Proposition 4.2. [12] Let α>0 be non-integerand assume that b≡a+(n−α) (mod 1). If f is defined on bN and g is defined on Na, then b−n+1 b−(n−α)+1 X f(s)∆αag(s)= X g(s) b∇αf(s). (60) s=a+(n−α)−1 s=a+n−1 Proposition 4.3. For α>0, a,b∈R, f defined on Na and g defined on bN, we have b−1 b−1 X g(s)∇−aαf(s)= X f(s) b∇−αg(s). (61) s=a+1 s=a+1 8 Proof. Bythedefinitionofthenablaleftfractionalsumwehave b−1 b−1 s X g(s)∇−aαf(s)= Γ(1α) X g(s) X (s−ρ(r))α−1f(r). (62) s=a+1 s=a+1 r=a+1 Ifweinterchange theorderofsummationwereachat(61). BythehelpofTheorem 2.5,Proposition3.10,(17)andthat ∇−a(n−α)f(a)=0,wecan, forthe nablaleftsumsanddifferences,obtain Proposition 4.4. For α>0, and f defined in a suitable domain Na, we have ∇α∇−αf(t)=f(t), (63) a a ∇−α∇αf(t)=f(t), when α∈/N, (64) a a and ∇−aα∇αaf(t)=f(t)−nX−1(t−k!a)k∇kf(a),,when α=n∈N. (65) k=0 We recall that (64) is valid in the usual fractional case for sufficiently good functions such as continuous functions. As a result of this it was possible to obtain an integration by parts in the Riemann fractional derivative case for certain class of functions (see [11] page 76, and for more details see [10]). Since discrete functions are continuous we see that the term ∇a−(1−α)f(t)|t=a, for 0 < α < 1 disappears in (64), with the application of the convention that a f(s) = 0. Ps=a+1 However,intheCaputocasetheinitialtypeconditionsstartingfromaappearasweshallseeinthe next sections. By this connection, we would like to ask the reader to compare with [7], where the term∇−a(1−α)f(t)|t=a=f(a)appearsandhenceitwaspossibletoemploytheRiemanntypeinitial value fractional difference equation to obtain a discrete fractional version of Gronwall’s inequality. However,weremindthattheauthorsthereobey[18]indefiningthenablaleftfractionalsum. Inour casetheCaputofractionaldifferencewillbethemoresuitabletooltoobtainsuchfractionalversion ofGronwall’sinequality. BythehelpofTheorem2.7,Proposition3.7,(18)andthat b∇−(n−α)f(b)=0,wecan,forthe nablarightsumsanddifferences,obtain Proposition 4.5. For α>0, and f defined in a suitable domain bN, we have b∇α b∇−αf(t)=f(t), (66) b∇−α b∇αf(t)=f(t), when α∈/N, (67) and b∇−α b∇αf(t)=f(t)−nX−1(b−t)k a∆kf(b),when α=n∈N. (68) k! k=0 Proposition 4.6. Let α>0 be non-integer. If f is defined on bN and g is defined on Na, then b−1 b−1 X f(s)∇αag(s)= X g(s) b∇αf(s). (69) s=a+1 s=a+1 Proof. Bythehelpofequation (67)ofProposition4.5wecanwrite b−1 b−1 X f(s)∆αg(s)= X b∇−α(b∇αf(s))∇αag(s) (70) s=a+1 s=a+1 andbyProposition4.1wehave b−1 b−1 X f(s)∆αg(s)= X b∇αf(s)∇−aα∇αag(s). (71) s=a+1 s=a+1 Thentheresultfollowsbyequation(64)ofProposition4.4. 9 5 Caputo fractional differences Inanalogous totheusualfractionalcalculuswecanformulatethefollowingdefinition Definition 5.1. Let α>0, α∈/N. Then, (i)[1]thedeltaα−orderCaputoleftfractionaldifferenceofafunctionf definedonNa isdefined by t−(n−α) C∆αaf(t),∆−a(n−α)∆nf(t)= Γ(n1−α) X (t−σ(s))(n−α−1)∆nsf(s) (72) s=a (ii) [1] the delta α− order Caputo right fractional difference of a function f defined on bN is defined by b Cb∆αf(t), b∆−(n−α)∇nbf(t)= Γ(n1−α) X (s−σ(t))(n−α−1)∇nbf(s) (73) s=t+(n−α) where n=[α]+1. If α=n∈N, then C∆αf(t),∆nf(t) and C∆αf(t),∇nf(t) a b b (iii)thenablaα−orderCaputoleftfractionaldifferenceofafunctionf definedonNa isdefined by t−(n−α) C∇αaf(t),∇−a(n−α)∇nf(t)= Γ(n1−α) X (t−ρ(s))n−α−1∆nf(s) (74) s=a+1 (iv)thenablaα−orderCaputoleftfractionaldifferenceofafunctionf definedon bNisdefined by b−1 Cb∇αf(t), b∇−(n−α) a∆nf(t)= Γ(n1−α)X(s−ρ(t))n−α−1 a∆nf(s) (75) s=t Ifα=n∈N,then C∇αaf(t),∇nf(t) and Cb∇αf(t), a∆nf(t) Itisclearthat C∆αa mapsfunctionsdefinedonNa tofunctionsdefinedonNa+(n−α),andthat Cb∆αmapsfunctionsdefinedonbNtofunctionsdefinedonb−(n−α)N. Also,itisclearthatthenabla leftfractionaldifference ∇αa mapsfunctions defined onNa tofunctions defined onNa+1−n andthe nablarightfractionaldifference b∇αmapsfunctionsdefinedon bNtofunctionsdefinedon b−1+nN. RiemannandCaputodeltafractionaldifferences arerelatedbythefollowingtheorem Theorem 5.1. [1] For any α>0, we have n−1 (t−a)(k−α) C∆αaf(t)=∆αaf(t)−X Γ(k−α+1)∆kf(a) (76) k=0 and n−1 (b−t)(k−α) Cb∆αf(t)= b∆αf(t)−X Γ(k−α+1)∇kbf(b). (77) k=0 In particular, when 0<α<1, we have (t−a)(−α) C∆af(t)=∆αaf(t)− Γ(1−α) f(a). (78) (b−t)(−α) Cb∆f(t)= b∆αf(t)− Γ(1−α) f(b) (79) OnecannotethattheRiemannandCaputofractionaldifferences,for0<α<1,coincidewhen f vanishes attheendpoints. The following identity is useful to transform delta type Caputo fractional difference equations intofractionalsummations. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.