MODFLOWandMore2003:UnderstandingthroughModeling-ConferenceProceedings,Poeter,Zheng,Hill&Doherty-www.mines.edu/igwmc/ Transmissivity Resolution Obtained from the Inversion of Transient and Pseudo-Steady Drawdown Measurements. (cid:0) (cid:0) (cid:1) (cid:2) TomClemo ,PaulMichaels ,R.MichaelLehman (cid:3) BoiseStateUniversity,[email protected],[email protected],Boise,IDUSA IdahoNationalEnvironmentalandEngineeringLaboratory,[email protected],IdahoFalls,IDUSA ABSTRACT Akeyaspectofestimatingtransmissivitydistributionsfrompumpingtestsisthespatialresolutionofthe estimation. Someassumptionofspatialstructureisneededtomakeaninversionpossible. Boththenature ofgroundwater(cid:3)owandassumedstructurecauseasmearedestimate. Thisresearchisfocusedonthe howinformationcontentofthedatasmearstheestimate. Theinversionprocedurenearthesolutionis approximatedasiterativelinearupdates. Linearresolutionanalysisofthedistributedsensitivityto transmissivityindicatesthelimitofdetailpossiblefromtheinversion. Toenablethisresearch,adjoint-sensitivitycalculationswereaddedtoMODFLOW-2000. The adjoint-sensitivitycalculationssigni(cid:2)cantlyspeedthecalculationofthesensitivitymatrix. Tohighlighttheconcepts,weuseahomogeneousaquiferwithknownstorativity. Theanalysisindicates resolutionoftransmissivityis(cid:2)nernearthepumpingandmonitoringwellsthanintheregionsbetween wells. Transientdataarehighlyredundantwithrespecttotransmissivityinformation. Veryearlytimedata doprovidedifferentspatialinformationthanlatertimedatado. INTRODUCTION Animportantquestioninanyendeavoris(cid:147)Howwellcanwedoit?(cid:148) Thisisoftenaverycomplicated question. Boundingtheanswerratherthanansweringitdirectlyoftenturnsadif(cid:2)cultquestionintoonewe cananswer. Ourendeavoristoestimatesubsurfaceproperties. Resolutionanalysisprovidesinsightinto howwellwecanestimatetheproperties. Resolutionanalysisisacommontechniqueinthegeophysical community(Menke,1989;Tarantola,1987). WiththeexceptionofVasco et. al. (1997),resolutionanalysis hasnotreceivedattentioninthegroundwaterliterature. Resolutionanalysisusesalinearapproximationofthedependenceofmeasurementsonestimated parameterstodeterminehowtheinversionestimatesrelatetotheactualsubsurfaceproperties. Thisis trulyaboundinganalysisbecauseweassumethatourgroundwatermodelisaccurateandthatthe estimatedparametersarecloseenoughtocorrectthatnon-linearitycanbeignored. Wealsopartially neglectthein(cid:3)uenceoferrorsinthemeasurementsusedintheinversion. Inthispaper,weconsidertheestimationofthedistributionoftransmissivityinahypotheticalaquiferfrom drawdownmeasurementsinobservationwellsaboutapumpingwell. Theemphasisisontheresolution analysisnotonaspeci(cid:2)cinversionprocedure. AsthisisaconferenceonMODFLOW,theadditionofthe adjointstatemethod(Sun,1994;TownleyandWilson,1985)ofcalculatingsensitivestoMODFLOW-2000 (Harbaughetal.,2000;Hilletal.,2000)anditsuseinthisinvestigationishighlighted. SENSITIVITYCALCULATIONS Thesimulatedhypotheticalaquiferhasacentralregion12.9mby7.6mofconstantgridspacingof0.25 m. TwelvewellsarepositionedinroughlyconcentricringsaboutthecentralwellasshowninFigure1. The centralregionissurroundedbyagridthatexpandswithagrowthratioof1.5to150m. Thegridextends (cid:1) beyondthecentralregionfarenoughthatnoappreciabledrawdownoccursattheboundaryduringthe simulationperiod. Aconstantstorativityof0.3isused. Auniformtransmissivityof0.0032m /sisused. A constantpumpingrateof5l/sismaintainedfor10,000s(170min). Noappreciabledrawdownoccursat theboundaryduringthesimulationperiod. Atotalof122observationsweremadefromdrawdownatthe wells. Fourdrawdownobservationsperlogbasetentimeintervalwererecorded. Earlyobservations, beforeawellresponds,werenotincluded. (cid:4)(cid:6)(cid:5)(cid:8)(cid:7) Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2003 2. REPORT TYPE 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Transmissivity Resolution Obtained From The Inversion Of Transient 5b. GRANT NUMBER And Pseudo-Steady Drawdown Measurements 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Boise State University,Boise,ID,83725 REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES MODFLOW and More 2003: Understanding through Modeling - Conference Proceedings, Government or Federal Purpose Rights License 14. ABSTRACT A key aspect of estimating transmissivity distributions from pumping tests is the spatial resolution of the estimation. Some assumption of spatial structure is needed to make an inversion possible. Both the nature of groundwater flow and assumed structure cause a smeared estimate. This research is focused on the how information content of the data smears the estimate. The inversion procedure near the solution is approximated as iterative linear updates. Linear resolution analysis of the distributed sensitivity to transmissivity indicates the limit of detail possible from the inversion. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 7 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 MODFLOWandMore2003:UnderstandingthroughModeling-ConferenceProceedings,Poeter,Zheng,Hill&Doherty-www.mines.edu/igwmc/ 10 Themodelhasatotalof9409cells. Estimatingadistributionof transmissivityreferstoallowingeachcelloftheMODFLOWmodel C6 C1 tobeassignedadifferentvalue. Asaconsequence,amatrixof 5 s parametersensitivities,thesensitivitiesofthedrawdown Meter B6 B1 B2 observationstotransmissivity,mustbecalculatedforeachcellinthe e in 0 C5 A1 C2 meqoudaetli.onCaplrcoucleastisngofthMeOsDeFnLsiOtivWit-y2m00a0trrixequusiirnegstahesespeanrsaitteivictyalculation nc B5 B3 a B4 foreachcell. Thiscalculationrequired19hona1GHzPC.These st Di calculationsagreewellwiththeanalyticsolutionspresentedbyOliver −5 C3 (1993). Anadjointstatesbasedcalculationofdrawdownsensitivityto hydraulic conductivity was added to MODFLOW-2000 following the C4 proceduredescribedinCarreraandMedina(1994). −10 −10 −5 0 5 10 . Distance in Meters The procedure of Carrera and Medina requires one adjoint states calculationperobservationlocation. Thesecalculationstook2.3min- X4Figure1WellField utes. Thecalculationswerenotsuf(cid:2)cientlyaccurateforourpurpose. Theydisagreeby10%to20%withthesensitivityequationbased calculations. Errorswerelargerforcellswithsmallsensitivitybuttheseerrorsarenotrelevant. The inaccuracymayrepresentacodingerrororafundamentallimitation. Improvementstothecalculationsare beinginvestigated. Whilenotsuf(cid:2)cientfortheresolutionanalysis,20%accuracymaybeacceptableforthe earlystagesofaninversionwherenon-linearitymakesanycalculationinaccurate. Theadjointsensitivitycalculationsthatwereusedwerebasedonaseparateadjointstatescalculationfor eachofthe122observations. Thesecalculationstook94minutestocomplete,12timesfasterthanthe sensitivityequationcalculation. Errorsforsigni(cid:2)cantsensitiveswerelessthan0.1%forobservationsthat coincidedwiththeendofatimestepandbetween0.1%and2%forinterpolatedobservations. Improvementstospeedareanticipated. Wehavenotedthatifonlythe(cid:2)rstthirdoftheadjointstates calculationwereperformedanadditionfactorofthreespeed-upcouldbeobtainedwithoutappreciable increaseinerror. RESOLUTIONMATRIX Theresolutionmatrixisbasedonthesensitivitycalculationofthelaststepofanon-linearinversionproce- dure(Tarantola,1987). Atthelaststeptheinversioncanbelinearizedto (cid:9)(cid:11)(cid:10)(cid:13)(cid:12)(cid:13)(cid:14) (cid:15) 1) (cid:9) (cid:10) (cid:14) where isthesensitivitymatrix, isanunknownerrorinthetransmissivityparameters,and isthe (cid:9) (cid:10)(cid:17)(cid:12)(cid:18)(cid:9)(cid:20)(cid:19)(cid:22)(cid:21)(cid:23)(cid:14) (cid:9) differencebetweentheobservationwiththecurrentparameterestimat(cid:16)esandthemeasuredobservations. If couldbeinverted,wecouldupdatethetransmissivityestimateby ,but isa138by9409 matrixwhichdoesnothaveaninverse. Instead,wewritetheupdateas (cid:10)(cid:13)(cid:12)(cid:18)(cid:9) (cid:19)(cid:25)(cid:24) (cid:14) (cid:15) (cid:16) 2) (cid:26)(cid:27)(cid:19)(cid:25)(cid:28) (cid:10) (cid:10) (cid:16) isreferredtoasthegeneralizedinverse. Theupdate, ,canberelatedtotheerror, ,by combining1and2. (cid:10)(cid:17)(cid:12)(cid:17)(cid:9) (cid:19)(cid:29)(cid:24) (cid:9)(cid:11)(cid:10) (cid:15) (cid:16) 3) (cid:9) (cid:19)(cid:25)(cid:24) (cid:9) (cid:9)(cid:20)(cid:19)(cid:29)(cid:24) (cid:9) R= istheresolutionmatrix(Menke,1989;Tarantola,1987). Theresolutionmatrixdescribeshowthe transmissivityupdateisrelatedtothetransmissivityerror. Because isnottheinverseof ,theupdate isnotequaltotheerror. Itcanbeshownthat,ifthetransmissivityestimateisnearlycorrectthennon-linear effectsarenotimportantandequation3holdsforthetransmissivityestimateitself. Thatis, (cid:30) (cid:31)"!$# (cid:12)&% (cid:30)’#)(+*,(cid:31) (cid:15) 4) (cid:4).-./ MODFLOWandMore2003:UnderstandingthroughModeling-ConferenceProceedings,Poeter,Zheng,Hill&Doherty-www.mines.edu/igwmc/ (cid:30) (cid:31)"!$# (cid:30)(cid:11)#0(1*,(cid:31) where isthetransmissivityestimateoftheinversionand istherealtransmissivity. Equation4 neglectserrorsinthemodel,measurementserrors,andotherplaguesofinversion. Thesecaveatsaside, theresolutionmatrixprovidesuswithatoolthatwecanusetosetourexpectations,designexperiments, andcomparedifferentinversionstrategies. ANALYSISUSINGTRUNCATEDSINGULARVALUEDECOMPOSITION (cid:9)2(cid:19)(cid:25)(cid:24) In equation 2, incorporates the constraints used in the inversion. These 0 constraintsmayincludepriorinformation,regularizationequationstoimposea structureonthesolution,orapriorcovariancestructurearisingfromaBayesian formulation of the inversion problem. The constraints must be included in the ( )( )llgg1010−2 rbeysuosluintigontraunnacalytseidssoifnaguplaarrtvicaululaerdinevceormsiopnospitrioocn(cid:9)ea(cid:19)(cid:25)sss(cid:24) .thWeewsaiymopflifcyaltchuelaatninaglytshies oo ll generalizedinverse. Menke(1989)referstothis asthenaturalgeneralized −4 inverse. It is natural because it constrains the estimated distribution to only have variations that are distinguishable from the measurements. Any form of regularization introduces a bias into the estimation. The bias of the truncated 50 100 singular decomposition approach is based on the information content in the eeiiggeennvveeccttoorr iinnddeexx data. Ifavariation intransmissivitycannotbeclearlysupportedbythedata,it isleftoutofthesolution. Figure2Normalized (cid:9) . eigenvaluesobtained Thesingularvaluedecompositionof resultsin fromsingular (cid:9)3(cid:12)5476(cid:22)8(cid:11)9 (cid:15) decompositionofthe 5) sensitivitymatrix. 6 4 8 :(cid:25); 4 8 where isadiagonalmatrixofeigenvalues, ,and and arematricescontainingtheassociated eigenvectors. Wereferto asthedataeigenvectorsand asthetransmissivityeigenvectors. 4 8 Becauseoftheorthogonalityandnormalitypropertiesof and (cid:9) (cid:19)(cid:25)(cid:24) (cid:12)<8 6 (cid:19)(cid:22)(cid:21) 4 9 (cid:15) 6) (cid:19)?> (cid:21) = @BA where isadiagonalmatrixwithdiagonalelements . Verysmalleigenvaluesindicatearedundancy intheinformationaboutthetransmissivitycontainedintheobservations. Twomeasurementswithexactly thesameinformationcontentwouldproduceaneigenvaluewithavalueofzero. Figure2plotsthenormalizedeigenvaluesfromsingulardecompositionofthesensitivitymatrixusinga semi-logscale. Theeigenvectorsarenormalizedwithrespecttothelargesteigenvalue. The(cid:2)gureshows arapiddeclineintheeigenvaluesimplyingalargeredundancyininformation. Twosetsofeigenvaluesare plotted. Oneusingallthe138observationsandoneusingonlythe13observationsacquiredat10,000s, thelasttimestepofthesimulation. Theeigenvaluesofthese13observationsnearlycoincidewiththe thirteenlargesteigenvaluesofthefulldataset. Theoverlapofthetwosetssuggeststhatobservations fromdifferentlocationsprovidemuchmorenewinformationthancanbeobtainedbyaddingalarge numberofnewobservationsatcurrentlocations,aconclusionthatissupportedbytheresolutionanalysis presentedbelow. (cid:10)DC (cid:16) Aconsequenceofsmalleigenvaluesisthatthereareweightedcombinationsoftransmissivity, that E 8 E hav;eaverysmallin(cid:3)uenceonthecalculateddrawdownobservations. Thesecombinationsarede(cid:2)nedby (cid:14) C 4 8 (cid:14) ; ,where iFsa; constant. Thereisacorresp;ondin; gweightedcombinationofdrawdownmeasurements, (cid:14) (cid:21) (cid:10) de(cid:2)nedby thatare; in(cid:3)uencedbythe .@BAIf isimperfect,asofcourse(cid:16)itw;illbeusingmeasured data,thentheerrorsin willbemagni(cid:2)edby intheresultingp:(cid:29)r;edictionof . Toavoidthisproblem, wetruncatethesingularvaluedecompositionatsomeminimum . Thisisthemethodwherebyonly variationsintransmissivitythatcanbesupportedbythedataareretained. Theappropriatetruncationlevel isrelatedtotheuncertaintyintheobservations. Vogel(2003)providesanalgorithmforselectingan appropriatetruncationlevel. (cid:4).-HG MODFLOWandMore2003:UnderstandingthroughModeling-ConferenceProceedings,Poeter,Zheng,Hill&Doherty-www.mines.edu/igwmc/ RESOLUTIONOFTRANSMISSIVITYESTIMATES Theresolutionmatrixislarge;numberofparametersbynumberofparameters. Thespreadfunction providesonewayofreducingtheresolutionmatrixtoacomprehensiblelevel. Menke(1989,pg68)de(cid:2)nes thespreadfunctionfortheresolutionmatrixas N(cid:29)OQP N %(cid:22)J (cid:12) L K LN K % JSR (cid:15) I I ; ; spread ;M (cid:21) M (cid:21) 7) T where istheidentitymatrix. Wede(cid:2)nethespreOadofeacN(cid:22)hOQcPeN llas U (cid:12)WV LN K % JSR (cid:15) ; I ; ; M (cid:21) 8) Avalueof1foracellimpliesthatthecellcanbeestimatedwithgoodaccuracy. Italsoimpliesthatthe estimateforthecellisnotin(cid:3)uencedbythetransmissivityofothercells. Asmallvalueimpliesthatthe estimatesoftransmissivityforacellarestronglyin(cid:3)uencedbyothercells. Avaluenearzeroindicatesthe thetransmissivityestimateforthecellwillnotrelatedtotheactualtransmissivityofthecell. Figure3plotsthespreadfunctionsforthreeseparatecases;a)usingalltheeigenvectorsofthe138 observations,b)usingthelargest29eigenvectors,andc)usingonlythe13observationsacquiredatthe lasttimestepofthesimulation. Theplotsarecolorbasedandeachplotisrescaledsothatthelargest valuesarepurpleandandsmallvaluesarered. Thecolorscaleisdrawntotherightofeachplot. Cells withvaluesbelowthecutoffonthecolorscalearenotdrawn. 10 10 − 0.992 − 0.568 5 − 0.908 5 − 0.517 ers − 0.815 ers − 0.46 et − 0.722 et − 0.404 e in M 0 −− 00..563269 e in M 0 −− 00..32497 nc − 0.443 nc − 0.233 Dista−5 −− 00..235469 Dista−5 −− 00..11726 − 0.163 − 0.0628 − 0.0699 − 0.00605 −10 −10 −10 −5 0 5 10 −10 −5 0 5 10 Distance in Meters Distance in Meters (a) (b) (c) Figure3Spreadfunctionsoftheresolutionmatrix. a)Usingalltheeigenvectors. b)Using eigenvectorsofthe29largesteigenvaluesc)Usingonly10,000sobservations. Plot3awouldbeappropriateiftheeigenvalueswereallapproximatelythesamesizeindicatingthatallof theeigenvectorscouldberesolvedbytheinversionprocess. Theplotshowsvaluesnear1forthecells immediatelyadjacenttothepumpingwellandrelativelylargevaluesinthevicinityofthewell,indicating (cid:4).-(cid:6)(cid:5) MODFLOWandMore2003:UnderstandingthroughModeling-ConferenceProceedings,Poeter,Zheng,Hill&Doherty-www.mines.edu/igwmc/ thatthetransmissivityofadisturbedzonecouldberesolvedatthisgridsize. Awayfromthewellthe spreadfunctiondiminishesrapidlywithonlya3mdiametercircleshowingastronganticipatedcorrelation betweentheestimateandtheactuallocaltransmissivity. Thecellsimmediatelyadjacenttotheobservation wellswouldalsobecorrelatedwiththeirestimates. Ifobservationswereacquiredmoreoften,thenaplot similartoplot3awouldindicatehigherresolution,anunrealisticconclusion. XZY (cid:19)(cid:29)[ Plot3bismorerealistic. Onlythe29eigenvectorsassociatedwithnormalizedeigenvalueslargerthan wereusedtocreatethespreadfunction. Theplotindicatesthatnowherecantransmissivitybe resolvedatthe25cmscaleofthegrid. Withalowercutoffof0.01,thelargeredareadoesnotindicatea regionofevenmoderateresolution. Aswiththeeigenvaluecomparisonofthefullobservationsetwithjust oneobservationateachwell,acomparisonofplots3cto3bindicatesthatthefullsetofobservationsonly providesasmallimprovementasweconcludedearlierfromFigure2. Onemightconcludethattransientdataarenotofvalueinestimatingatransmissivitydistribution. Wedo notbelievethatsuchaconclusionisjusti(cid:2)ed. Investigationsofthesensitivitymatrixindicatethatsensitivity isdifferentduringtheearlyportionofthedrawdowncomparedtothelateportionandthattheshapeofthe sensitivity(cid:2)eldchangesrapidlyinthisregion. Thissuggeststhatmoremeasurementsatearlytimesmay bevaluable. Thecruxofthematterliesinthesignaltonoiseratioofthemeasurements. Alargersignalto noiseratiocorrelateswithalowereigenvaluecutoff,moreretainedeigenvectorsandmore(cid:2)nely determinedtransmissivity. Unfortunately,themostimportantdataisrelatedtosmallvaluesofdrawdown. Theresolution matrixcan beused to de(cid:2)nezoneswhere transmissivity canbeestimatedwithcon(cid:2)dence. Thesizeofthezonescanbetailored to optimize resolution uncertainty trade-off. Figure 4 demonstrates the trade-off in a crude fashion. Zones of 16 grid cells each were de(cid:2)ned (cid:1) andthe resolution determined forthiszonation. Inthe centerthe zones are1m . Attheedgeofthe(cid:2)gure,thezonesarelargerbecauseofthe grid expansion. Potential resolution near the monitoring wells is larger than revealed in the (cid:2)gure because the zonation pattern is combining cells with positive observation sensitivity to transmissivity with cells of negativesensitivity. CONCLUSIONS Wehavepresentedresolutionanalysisasatoolforinvestigatingtheabilityofinversiontoestimatea distributionoftransmissivity. Theanalysisrequirescalculationofthesensitivityofeachobservationtothe transmissivityofeachcellinthemodel. Incorporationofanadjointstatesbasedsensitivitycalculationinto theMODFLOW-2000programsigni(cid:2)cantlyspeedsthedetermination ofthesensitivitymatrix. Byusing truncatedsingularvaluedecompositionwehaveshownforourhypotheticalexamplethatmultiple measurementsofdrawdownatasinglelocationhavesimilarinformationcontentswithrespectto transmissivity. Resolutionanalysiscanprovideavaluabletoolforbothassessinganddesigningan inversionprocedure. Figure4Resolutionfor1m zones ACKNOWLEGMENTS ThisworkhasbeensupportedthroughInlandNorthwestResearchAlliancegrantBSU003andArmy ResearchOf(cid:2)cegrantDAAD1900-1-0454. WethankMaryHillforencouragingtheadjointsensitivity calulations. CGISScontribution124. REFERENCES Carrera,J.,andA.Medina,1994,inComputationalMethodsinWaterResourcesX,editedbyPeterset.al. (Kluwer,Dordrecht,Netherlands),pp.199(cid:150)206. Harbaugh,A.,E.Banta,M.Hill,andM.McDonald,2000,MODFLOW-2000,theU.S.GeologicalSurvey modularground-watermodel(cid:150)UserguidetomodularizationconceptsandtheGround-WaterFlow Process,OpenFileReport00-92,U.S.GeologicalSurvey,Denver,CO. (cid:4).-.- MODFLOWandMore2003:UnderstandingthroughModeling-ConferenceProceedings,Poeter,Zheng,Hill&Doherty-www.mines.edu/igwmc/ Hill,M.,E.Banta,A.Harbaugh,andE.Anderman,2000,MODFLOW-2000,theU.S.GeologicalSurvey ModularGround-WaterModel(cid:150)UserguidetotheObservation,Sensitivity,and Parameter-EstimationProcessesandThreePost-ProcessingPrograms,OpenFileReport00-184, U.S.GeologicalSurvey,Denver,CO. Menke,W.,1989,GeophysicalDataAnalysis: DiscreteInverseTheory(AcademicPress,SanDiego). Oliver,D.,1993,WaterResourcesResearch29(1),169. Sun,N.-Z.,1994,InverseProblemsinGroundwaterModeling(KluwerAcademicPublishers,Dordrecht, Netherlands). Tarantola,A.,1987,InverseProblemTheroy-MethodsforDataFittingandModelParameterEstimation (ElseviorSciencePublishers). Townley,L.,andJ.Wilson,1985,WaterResourcesResearch21(12),1851. Vasco,D.,A.Datta-Gupta,andJ.C.S.Long,1997,WaterResourcesResearch33(3),379. Vogel,C.,2002,Computational MethodsforInverseProblems(SIAM). . (cid:4).-(cid:8)\