ebook img

DTIC ADA601090: Experimental Robustness Study of Positive Position Feedback Control for Active Vibration Suppression PDF

5 Pages·0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA601090: Experimental Robustness Study of Positive Position Feedback Control for Active Vibration Suppression

J.GUIDANCE,VOL.25,NO.1: ENGINEERINGNOTES 179 analysis14yieldsthebounds° ° ° where,to(cid:142)rstorderin Experimental Robustness Study of max¸ ¸ min thesmall±, Positive Position Feedback Control r I .I I / 3±.1 I =I / for Active Vibration Suppression ° 3 2¡ 3 § C 2 3 (14) max;min ¼ I ¢ .I I / 3±.1 I =I / 1 1¡ 2 ¨ C 2 1 Again, thesequantitieswill be more sensitiveif the momentsof G.Song ¤ inertiaareclosethaniftheyarewidelyspaced.Foravehiclewith UniversityofAkron,Akron,Ohio44325-3903 nominalinertiassatisfyingI 2I andI 1:5I ,andthe1%nor- 1D 3 2D 3 and malizedinertiaperturbationsconsideredearlier,arctan° canvary S.P.Schmidt†andB.N.Agrawal‡ from31.8to38.7deg,atotalrangeof6.9deg.UsingEqs.(13)and (14)togetherallowsthepossiblevariationsinabsoluteseparatrix NavalPostgraduateSchool,Monterey,California93943 directionstobequanti(cid:142)edasafunctionoftheinertiaerrorbound±, thusprovidingthedesiredinsightintosizing±yasafunctionof±. I. Introduction Conclusions POSITIVEpositionfeedback(PPF)controlwasintroducedby GohandCaugheyin1985tocontrolvibrationsoflarge(cid:143)ex- ThisNotehasderivedadesignprocedurethatpreventsaspace- iblespacestructures.1 APPF controllerhasseveraldistinguished craftwithastuck-onthrusterfromexperiencingalargenetlinear advantagesascomparedtothenwidelyusedvelocityfeedbackcon- accelerationand,hence,asigni(cid:142)cantperturbationtoitsorbit.Itwas trollaws. It is insensitiveto spillover,2 where contributionsfrom shownthatsuchanaccelerationismostlikelytoariseforathruster unmodeledmodesaffectthecontrolofthemodesofinterest.3;4As thatgeneratesatorquethatisnominallyabouttheintermediateaxis asecond-orderlow-pass(cid:142)lter,aPPFcontrollerrollsoffquicklyat ofanasymmetricvehicle,butthatisinrealityslightlyoffsetfrom highfrequenciesandiswellsuitedtocontrollingthelowermodes it.Thesimpletechniquethatwasdevelopedtoavoidthismakesuse ofa structurewith wellseparatedmodes.3;5 Becauseofthesead- of a small shiftin thrusterposition.Expressionswere derivedto vantages,PPF controlleralongwithsmartmaterials,inparticular allowthisshifttobesizedtoproducerobustresultsdespitesmall PZT(leadzirconatetitanate)typeofpiezoelectricmaterial,hasbeen uncertaintiesinthegeometryandmasspropertiesofthevehicle. appliedtomany(cid:143)exiblesystemstoachieveactivedamping.6 9The ¡ designofaPPFcontrollerrequiresthenaturalfrequencyofastruc- Acknowledgments ture.Inpractice,thestructuralnaturalfrequencymaynotbeknown ThisworkwassupportedinpartbytheAutomation,Robotics,and exactlyoritmayvarywithtime.WhenthefrequencyusedinthePPF SimulationDivisionatNASA JohnsonSpaceCenterunderGrant controllerisdifferentfromthatofthestructure,theperformanceof NAG9-874,withTechnicalMonitorKeithGrimm.Theauthorsalso the PPF controlwilladverselyaffected.Despitethat PPF control wishtothanktheAssociateEditorandreviewerformanyhelpful iswidelyresearchedinliterature,robustnessstudyofPPFcontrol suggestions. when naturalfrequencyis inexactlyknown is not reported.This motivatestheauthorstoconductexperimentalstudyofrobustness References ofPPF controlinactivevibrationsuppressionofa smart(cid:143)exible 1GeminiSummaryConference,NASASP-138,Feb.1967,pp.52,165. structure. 2Hope,A.S.,andMiddour,J.W.,“ClementineMissionManeuverPer- II. PPFControl formanceandNavigationControlfortheSpinningPhase,”Guidanceand Control1995,AdvancesintheAstronauticalSciences,Vol.88,Univelt,San PPFcontrolrequiresthatthesensoriscollocatedornearlycollo- Diego,1995,pp.463–476. catedwiththeactuator.InPPFcontrolstructuralpositioninforma- 3WIREMishapInvestigationBoardReport,NASA,June1999,pp.14, tionisfedtoacompensator.Theoutputofthecompensator,mag- 15. ni(cid:142)edbyagain,isfeddirectlybacktothestructure.Theequations 4Leimanis, E., The General Problemof the Motionof CoupledRigid describingPPFoperationaregivenas BodiesAboutaFixedPoint,Springer-Verlag,Berlin,1965,pp.136–178. 5Chobotov,V.A., SpacecraftAttitudeDynamicsandControl,Krieger, » 2‡!» !2» G!2´ (1) R C PC D Malabar,FL,1991,pp.26–29. 6Randall,L.A.,Longuski,J.M.,andBeck,R.A.,“ComplexAnalyticSo- ´RC2‡c!c2´PC!c2´D!c2» (2) lutionsforaSpinningRigidBodySubjecttoConstantTransverseTorques,” where»isamodalcoordinatedescribingdisplacementofthestruc- Astrodynamics1995,AdvancesintheAstronauticalSciences,Vol.90,Pt.I, Univelt,SanDiego,1995,pp.593–607. ture,‡isthedampingratioofthestructure,!isthenaturalfrequency 7Tsiotras,P.,andLonguski,J. M.,“AComplexAnalyticSolutionfor ofthestructure,Gisafeedbackgain,´isthecompensatorcoordi- theAttitudeMotionofaNear-SymmetricRigidBodyUnderBody-Fixed nate,‡c isthecompensatordampingratio,and!c isthefrequency Torques,”CelestialMechanicsandDynamicalAstronomy,Vol.51,No.3, of the compensator.For the closed loop being stable,0<G<1 1991,pp.281–301. (Ref.4). 8Williams,T. W.,andTanygin,S.,“Dynamics of aNear-Symmetrical Toillustratetheoperationofa PPF controller,assumea single Spacecraft Driven by a ConstantThrust,”Proceedingsof6th AAS/AIAA degree-of-freedomvibrationofthebeamintheformof Space(cid:143)ightMechanicsMeeting, Advances inthe AstronauticalSciences, Vol.93,Pt.II,Univelt,SanDiego,1996,pp.925–944. ».t/ ®ei!t (3) D 9Livneh,R.,andWie,B.,“NewResultsforanAsymmetricRigidBody the output of the compensator at the steady state, provided the with Constant Body-FixedTorques,” Journalof Guidance,Control,and closed-loopsystemisstable,willbe Dynamics,Vol.20,No.5,1997,pp.873–881. 10Williams,T.W.,andTanygin,S.,“DynamicsofanAsymmetricSpace- ´.t/ ¯ei.!t¡Á/ (4) D craftDrivenbyaConstantThrust:PerturbationStudies,”Proceedingsof7th AAS/AIAASpace(cid:143)ightMechanicsMeeting,AdvancesintheAstronautical Received2April2001;revisionreceived30July2001;acceptedforpub- Sciences,Vol.95,Pt.I,Univelt,SanDiego,CA,1997,pp.211–229. lication7 September2001.Thismaterial isdeclared a workoftheU.S. 11Bracewell, B. N., and Garriott, O. K., “Rotationof Arti(cid:142)cial Earth GovernmentandisnotsubjecttocopyrightprotectionintheUnitedStates. Satellites,”Nature,Vol.182,No.4638,1958,pp.760–762. Copiesofthispapermaybemadeforpersonalorinternaluse,oncondi- 12Kaplan,M.H.,ModernSpacecraftDynamicsandControl,Wiley,New tionthatthecopierpaythe$10.00per-copyfeetotheCopyrightClearance York,1976,pp.60,61. Center,Inc.,222RosewoodDrive,Danvers,MA01923;includethecode 13Tanygin, S., “The General Problem of Attitude Motion,” Ph.D. 0731-5090/02$10.00incorrespondencewiththeCCC. Dissertation, Dept. of Aerospace Engineering, Univ. of Cincinnati, AssistantProfessor,DepartmentofMechanicalEngineering. ¤ Cincinnati,OH,Feb.1999,pp.14–19. †Student,DepartmentofAeronauticsandAstronautics. 14Wilkinson,J. H., The Algebraic EigenvalueProblem, Oxford Univ. ‡Professor,DepartmentofAeronauticsandAstronautics.AssociateFel- Press,Oxford,England,U.K.,1965,pp.69–75. lowAIAA. Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2001 2. REPORT TYPE 00-00-2001 to 00-00-2001 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Experimental Robustness Study of Positive Position Feedback Control for 5b. GRANT NUMBER Active Vibration Suppression 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Postgraduate School,Department of Aeronautics and REPORT NUMBER Astronautics,Monterey,CA,93943 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 4 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 180 J.GUIDANCE,VOL.25,NO.1: ENGINEERINGNOTES InEq.(4),themagnitude¯isgivenas III. ExperimentalSetup A.!=! / Aschematicoftheequipmentsetupforvibrationcontrolusing ¯ D q¡1 !2¯!2¢2 c£2‡ .!=! /¤2 ParPeFshisoswhonwinnTinabFlieg.12).iAsucsaendtialesvthereeodbajleucmtfionruvmibbreaatmion(ictsopnrtorople.rTtihees ¡ c C c c beamhasaPZTsensorandthreePZTactuators.ThePZTsensor where A ®.! =!/. actuallyconsistsofapairofPZTpatches,oneoneachsideofthe D c InEq.(4),thephaseangleÁisgivenas beam.EachPZTactuatoralsoconsistsofapairofPZTpatches,one " # oneachsideofthebeam.ThePZTsensorcanbeconsiderednearly 2‡ .!=! / collocatedwithPZTactuator1.PropertiesofthePZTareshownin ÁDtan¡1 1 c¡!2¯!c2¢ (5) Table2.Thealuminumbeamisclampedsuchthatitslengthwas ¡ c Table1 Cantileveredbeamproperties Whenthestructuralmodalfrequencyismuchlowerthanthecom- (aluminumbeamtype:7075T-6) pensatornaturalfrequency,thephaseangleÁ approacheszeroac- cording to Eq. (5). Substituting Eq. (4) with Á=0 into Eq. (1) Quantity Description Value resultsin tb Beamthickness 1.95mm » 2‡!» .!2 G¯!2/» 0 (6) wb Beamwidth 76.2mm RC P C ¡ D L Beamlength 1.176m ItisclearfromEq.(6)thatthePPFcompensatorinthiscaseresults ½b Beamdensity 2800kg/m3 inthestiffnesstermbeingdecreased,whichiscalledactive(cid:143)exibil- Eb Young’smodulus 7:1£1010N/m2 ity.Whenthecompensatorandthestructurehavethesamenatural frequency,it can be derivedfrom Eq. (6) that the phase angleÁ Table2 Propertiesofthepiezoceramicactuators approaches¼/2.SubstitutingEq.(4)withÁ ¼/2intoEq.(1),the andsensor[Type:PZT-5A(NavytypeII)] D structuralequationbecomes Quantity Description Value Equation(7)show»RsCth.a2t‡th!eCPPGF¯c!om/»PpCen!sa2t»orDin0thiscaseresults(7in) dE3p1 LYoatuenragl’sstmraoinduclouesf(cid:142)cient 1:68:£3£101¡01100CNo/mul2/N aWpnehniesnanctrtoehrae,stsheteriunpchtthausereedafarnmegqlpueienÁngcatypepirsmrom,auwcchhheiscgh¼re.iasStuecrbaltslhteiatdnuattihcnatgitvEoeqfd.tah(4em)cpwoinmitgh-. "½twp3Tpp APPPZZZbTTTsodaaluccetttnuuesaapittteooyrrrmaainntddtivssieetnnyssoorrtwhiidckthness 1:75:£7£31080.15.¡10m83mFmkmagr/amd3/m ÁD¼ intoEq.(1)resultsin La LengthofPZTactuators 63.5mm » 2‡!» .!2 G¯!2/» 0 (8) Ls LengthofPZTsensor 25.4mm RC P C C D ItisclearthatfromEq.(8)thatthePPF compensatorinthiscase resultsinanincreaseinthestiffnessterm,whichiscalledactivestiff- ness.Toachievemaximumdamping,! shouldbecloselymatched c to!. Also,anystructuralnaturalmodebelow! willexperience c increased(cid:143)exibility. Theeffectofthedampingratio‡ isdiscussedasfollows.Larger c valuesofthedampingratio‡ willresultinalesssteepslopethereby c increasingtheregionofactivedamping.Figure1showsthebode plotfor‡ 0.5andfor‡ 0.1.Thedifferenceintheslopesofthe cD cD phaseanglecanbeeasilyseen.Alargervalueof‡ ensuresalarger c regionofactivedampingandthereforewillincreasetherobustness of the compensatorwith respectto uncertainmodal frequencies. However,itisexpectedtoresultinslightlylesseffectivedamping andresultinincreased(cid:143)exibilityatlowermodesasatradeoff. Fig.2 Experimentalsetupschematic. Fig.1 BodeplotforPPFwith‡c=0:5(left)and‡c=0:1(right). J.GUIDANCE,VOL.25,NO.1: ENGINEERINGNOTES 181 paralleltothegranitetablebelowit.Thisallowedthebendingto bestrictlyinthehorizontalplane.Adigitalcontrolsystem,called ModularControlPatch,isusedtoimplementvibrationsuppression algorithms.It usesa TMS320C30 microprocessor.A digitaldata acquisitionsystem using a TMS320C40 digital signal processor wasusedtorecordtheexperimentaldata. IV. ExperimentalProcedure Bothopen-andclosed-looptestswereperformed.Alltestswere startedbymanuallyexcitingthebeam.Thiswasa simpleandan effectivemethodtoexcitethebeam.Forsingle-modevibrationsup- pressiontestscanberunwitheitherallthreeactuatoroperational,or onlythe(cid:142)rstactuatoroperational.Formultimodesuppressiononly the(cid:142)rstPZT actuatorwasused.Becauseofmodalshapesforthe highermodesofthe(cid:143)exiblebeam,thesecondandthethirdactuators adverselyimpactdampingofhighermodeswhenthefeedbackstrain informationfromtheonlyPZTsensorisused.ItisclearfromFig.2 thatthePZTsensorisnotcollocatedornearcollocatedwiththese twoactuators.Foreachtestdatawererecordedforatimeinterval of15safterbeamexcitation.Thisallowedampletimetomeasure dampingeffects.Theexperimentaldatawerethenprocessedtoshow Fig.4 Robustnessresultsfordifferent‡c. effectivenessofthetestedcontrolalgorithm.AfastFouriertrans- formwasperformedtoprovideapowerspectraldensity(PSD)plot affected.TotesttherobustnessofPPFwithrespecttothemodalfre- ofthebeamresponse.PSDgivesameasureofsignalenergylevelat quency,experimentsofPPFwithinaccuratemodalfrequencyfrom differentfrequencies.Acomparisonoftheratiosofthelast-second 25to400%ofthenominalvaluewereconducted.Experimentswith modalenergylevelindecibelstotheinitialoneprovidesanindi- differentvalueof‡ werealsotested.Threevalueswereusedfor cationofthedampingeffectivenessonthisparticularmode.Also, c ‡ :1,0.5,and0.25.Thissetofexperimentswascarriedouttostudy a directcomparisonof the modal energylevel drop with that of c theimpactofcompensatordampingratiooncompensatorrobust- anopen-loopresponsecanindicatetheeffectivenessofthecontrol nessandonpossibleincreased(cid:143)exibilityatlowermodes.Fromthe algorithm. analysisinSec.II,increasingthevalueofthedampingratiowill Figure3showsthePSDplotsforamultimodeopen-loopvibra- providea widerfrequencyrangeforactivedamping,butitisex- tion.Thesolidlineisforthe(cid:142)rstsecondofthe15-stestandthe pectedthatitseffectivenessatthetargetfrequencywillbereduced. dashed line for the last second.A program was written to iden- IntheseexperimentsonlyPZTactuatoroneisusedalongwiththe tifythemodesexcitedandtocomputethedifferencebetweenthe PZTsensor.ThePPFcontrolleremploysG 0:086. initial and (cid:142)nal energy level in the decibelunit at the identi(cid:142)ed D Theexperimentalresultsofsuppressionof(cid:142)rstmodalvibration modalfrequencies.Thefollowingdatashowenergyleveldropsin usingthePPFcontrolareplottedinFig.4.Inthis(cid:142)gurethepercent- decibelsforthe(cid:142)rstfourmodesinthe15-sfreevibration:(cid:142)rstmode agevaluesindicatepercentageincreaseofthemodalenergydropin (1.33Hz),9.52dB;secondmode(7.1Hz),22.38dB;thirdmode decibelswithPPFcontrolascomparedtothatinthecaseoffreevi- (19.0Hz),48.98dB;fourthmode(38.2Hz),61.94dB.Itisclear bration.Itcanbeseenfromthis(cid:142)gurethattherobustnessincreases that vibrationsof the third and fourth modes quickly damp out. as‡ isincreased.Thisisasexpected.TheeffectivenessofthePPF The(cid:142)rstandsecondmodesbecomethemajorconcernforvibration c atthetargetfrequencyof1.3Hzwasonlyslightlyreducedwhen suppression. changingdampingratiofrom0.25to1.0.Thisobservationrecom- mendsusinghighervalueof‡ inthePPFcompensatordesignto c V. ExperimentalRobustnessStudyofPPF achieverobustnessbecauseeffectivenessatthetargetedmodewill inSingleModeVibrationSuppression notbemuchaffectedbyahigher‡ .PPFcontrolshowedpositive c OneofthedocumenteddrawbacksofPPFisthatitsdesignre- dampingonallfrequenciestestedbutdroppedoffrapidlywhengo- quirestheknowledgeofmodalfrequency.Ifthetargetedfrequency ingbelow75%ofthetargetedfrequencyor200%aboveit.Overall, isalteredorissimplymiscalculated,PPFdampingwouldbeseverely PPF controlisrobustto modal frequencyvariations.In addition, increased(cid:143)exibilitywas not measurableevenat300% abovethe fundamentalfrequency.Anoptimal‡ foragivenstructurewould c dependonhowaccuratethemodesareknownandhowmuchthey wouldbeexpectedtochange,buta‡ ofatleast0.5shouldbechosen c forrobustness. VI. ExperimentalRobustnessStudyofPPF inMultimodeVibrationSuppression PPF controlswere testedformultimodevibrationsuppression. TwoPPF(cid:142)ltersareused.The(cid:142)rstPPF(cid:142)ltertargetedthe(cid:142)rstmode, andthesecondPPF(cid:142)ltertargetedthesecondmode.ThetwoPPF (cid:142)ltersareinaparallelconnection.Onlyactuator1alongwiththe senoris used.Experimentswere conductedto investigatethe ro- bustnessof thistypeofcontroller.Table3shows thetest results. Inthistablethepercentagevaluesindicatepercentageincreaseof themodalenergydropindecibelswithPPFcontrolascomparedto thatinthecaseoffreevibration.‡ 0:5isusedforboth(cid:142)lters.For cD the(cid:142)rst(cid:142)lterG 0:086,andforthesecond(cid:142)lterG 0:003.Both D D compensatorfrequenciesaremovedprogressivelyhigherthanthe targetednaturalfrequency.As seenfromthetable,the(cid:142)rstmode dampingfallsoffmuchquickerthanthesecondmode.Partofthe reasonforthisistheincreasedstiffnessregionofthe(cid:142)rst(cid:142)lteris Fig.3 PSDplotsoffreevibrationofthebeam. movingclosertothesecondmode,therebyhelpingtoincreasethe 182 J.GUIDANCE,VOL.25,NO.1: ENGINEERINGNOTES Table3 RobustnessresultsfortwoPPF 5Bang, H., and Agrawal, B. N., “A Generalized Second Order Com- (cid:142)ltercombination pensator Design for Vibration Control of Flexible Structures,” 35th AIAA/ASME/ASCE/AHS/ASCStructures,StructuralDynamics,andMateri- Firstmode Secondmode alsConference,Part5,AIAA,Washington,DC,1994,pp.2438–2448. PPFmodalfrequency, decibeldrop decibeldrop 6Sciulli,D.,andInman,D.J.,“IsolationDesignforaFlexibleSystem,” Hz (%increase) (%increase) JournalofSoundandVibration,Vol.216,No.2,1998,pp.251–267. !!!!!!!!!!cccccccccc1212121212DDDDDDDDDD1717171717::::::::::3131313131££££££££££1111111122::::::::DD002255775555DDDD21DDDD:417116:::18:2120319::::268625:427575555 5433182607.....3111836418(((((53228148183306%%%%%))))) 4333248626.....0139500597(((((9764170279%%%%%))))) SASJpP2or2auuceut9789pptcsurDMS.ppshnaiorr,eaot”eeenonylnssJgrossoeoso,iiyrf,oou,f”GeSnnrJraJmn..,o,ooLFaKauSffll.rr,e.cotanaHxKhfMaimaSAbS.l,rapoeliwreatdraifenonetcSSr,lgdseotilpSrtcaiunoKuarl.nasngccwPfdt,eatu.SWaa,nErkFtndae.rn,lnduBUeSgMdcVxit.str,niiiu.AbubAenrKclreggegeatrr.ur,iStaUAanirw“mowegtpDnsia,aalp,,lyVilr,VeVz,tnoniBoBoMnaldll..m.g..a2aN1N7git1Pc8e.,e.4,ir9,NMaei,U,a“znNoNAlosod.oiaoedc1nS.nl.teg,eGoid1lv1cin,4SnetM91gr,gm9i9V,2oc8G9aa0id,nbr6S.0upt,dr,e0l“appaMn,VVt.prisp9oii.aoCpbb15tnr.oerr3s–2aarSn1–itt1atauii30rnoo7lpo14,dnn–”-l.. Approximate Equations for the Coplanar Restricted Three-Body Problem MayerHumi ¤ WorcesterPolytechnicInstitute, Worcester,Massachusetts01609 Introduction THE fuel-optimalrendezvousproblemfora spacecraftwitha satelliteinacentralforce(cid:142)eldhasbeenthesubjectofseveral papers1 6inthelastdecade.InthisNoteweaddresstherendezvous ¡ problemof a spacecraftwith a moon,comet,or asteroid(whose gravitational(cid:142)eldisnotnegligible) inthe centralforce(cid:142)eld ofa (large)thirdbody.Inthissettingwe derivereducedequationsfor the motion of the spacecraftin the vicinity of the smaller body Fig.5 PSDplotfortwoPPF(cid:142)lters(compensatorfrequenciesare1.5 (moon) in three dimensions.We present a generalization,under timesthetargetedmodalfrequencies.). somerestrictions,totheJacobiintegral.7 Clearlythe problemwe considerhereis closelyrelatedto the restrictedthree-bodyproblem in two dimensions,7;8 which deals dampingeffect.JustasinthesinglePPFcase,thePPFcombination withthemotionofa bodyofnegligiblemassinthegravitational showsgoodrobustnessforbothmodes.Theseresultssuggestthat (cid:142)eldoftwoothercelestialbodies.Howeverinthissettingallthree alongwithbeingrobustthetwoPPF(cid:142)ltercombinationiseffectivein bodiesareassumedtoremainalwaysinoneplane. dampingmultiplemodesoverarangeoffrequencies.APSDplotfor Toputourresultsinproperperspective,wenotethatEdelbaum9 thesamecontrollergraphicallyillustratingdampingeffectivenessis madeoneofthe(cid:142)rstattemptstoaddresstherendezvousproblem showninFig.5. betweenaspacecraftandasatelliteinanearcircularorbit.Asimpler modelwasderivedbyClohessyandWiltshire,10 whoseequations VII. Conclusions canbefoundnowinbooksonorbitalmechanics.4CarterandHumi,1 Thisresearchpresentstheexperimentalresultsrobustnessstudy Humi,2andCarterandBrient3foundsomeanalyticalsolutionsfor ofvibrationsuppressionofa(cid:143)exiblestructureusingPPFcontrol. therendezvousproblemwhenthesatelliteisinageneralKeplerian The(cid:143)exiblestructureisacantileveredbeamwithPZTsensorsand orbitandderivedageneralization2 oftheseequationsinthepres- PZT actuators.PPF controls were implemented for single-mode enceofa generalcentralforce(cid:142)eld. Currentlyan effortisunder vibrationsuppressionandformultimodevibrationsuppression.Ex- waytoincludetheeffectofdrag(linearandquadratic)intheren- perimentsfoundthatPPFcontrolisrobusttofrequencyvariations dezvousequations.6 (For a moreextensivelistofcontributionsto forsingle-modeandformultimodevibrationsuppressions. therendezvousproblem,seethereferencelistsinRefs.1and6). Acknowledgments DerivationoftheReducedEquations TheauthorswouldliketothankA.BronowickiandE.Rohleen, Inaninertialcoordinatesystemwhoseoriginisatthecenterof bothofTRW,fortheirsupportinsettingupModularControlPatch. the centralbody E, we let R, ½ denotethe positionof themoon and thespacecraft,respectively,andr therelativepositionofthe References 1Goh,C.J.,andCaughey,T.K.,“OntheStabilityProblemCausedby FinitedActuatorDynamicsintheControlofLargeSpaceStructures,”Inter- nationalJournalofControl,Vol.41,No.3,1985,pp.787–802. Received12December2000;revisionreceived11June2001;accepted 2Balas,M.J.,“ActiveControlofFlexibleSystems,”JournalofOptimiza- forpublication22August2001.Copyright c 2001bytheAmerican In- ° tionTheoryandApplications,Vol.25,No.3,1978,pp.415–435. stituteofAeronauticsandAstronautics,Inc.Allrightsreserved.Copiesof 3Friswell,M.I.,andInman,D.,“TheRelationshipBetweenPositivePosi- thispapermaybemadeforpersonalorinternaluse,onconditionthatthe tionFeedbackandOutputFeedbackControllers,”JournalofSmartMaterials copierpaythe$10.00per-copyfeetotheCopyrightClearanceCenter,Inc., andStructures,Vol.8,No.3,1999,pp.285–291. 222RosewoodDrive,Danvers,MA01923;includethecode0731-5090/02 4Fanson,J. L.,andCaughey,T. K., “PositivePositionFeedback Con- $10.00incorrespondencewiththeCCC. trol for Large Space Structures,” AIAA Journal, Vol. 28, No. 4, 1990, Professor of Mathematics, Department of Mathematical Sciences; ¤ pp.717–724. [email protected].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.