ebook img

DTIC ADA548864: On a Conjecture for Balanced Symmetric Boolean Functions PDF

0.22 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA548864: On a Conjecture for Balanced Symmetric Boolean Functions

(cid:13)c deGruyter2009 J.Math.Crypt. 3 (2009),1–18 DOI10.1515/JMC.2009.xxx On a conjecture for balanced symmetric Boolean functions ThomasW.Cusick, YuanLi and PantelimonSta˘nica˘ Communicatedbyxxx Abstract.WegivesomeresultstowardstheconjecturethatX(2t,2t+1(cid:96)−1)aretheonlynonlinear balancedelementarysymmetricpolynomialsoverGF(2), wheretand(cid:96)areanypositiveintegers (cid:80) andX(d,n)= x x ···x . 1≤i1<i2<···<id≤n i1 i2 id Keywords.Cryptography,balancedness,symmetry,Booleanfunctions. AMSclassification.06E30,05A10,11B65,94C10. Balancedness is sometimes required for Boolean functions, since we often desire our cryptographic primitives to be unbiased in output. Symmetry is also often re- quired[2,3],andnaturally,onewouldaskwhenthetwofeatureswillintersect. In[5], weconjecturedthatthepolynomialsX(2t,2t+1(cid:96)−1)aretheonlynonlinearbalanced (cid:88) elementarysymmetricpolynomials,whereX(d,n)= x ···x . i1 id 1≤i1<···<id≤n Inthepresentpaperwegivesomeresultstowardsthisconjecture. Infact,weprove theconjectureformanycasesoftheparametersinvolved,buttherearesomecasesstill open(whichwillbementionedexplicitlylaterinRemark3.19). 1 Preliminaries Throughout, x = (x ,...,x ) and ⊕ is the addition modulo 2. If f: GF(2)n −→ 1 n GF(2), then f can be uniquely expressed in the following form, called the algebraic normalform(ANF): (cid:77) f(x1,x2,...,xn)= ak1k2...knx1k1x2k2···xnkn, k1,k2,...,kn∈GF(2) whereeachcoefficienta isaconstantinGF(2). k1k2...kn The function f(x) is called an affine function if f(x) = a x ⊕···⊕a x ⊕a . 1 1 n n 0 If a = 0, f(x) is also called a linear function. We will denote by F the set of 0 n all functions of n variables and by L the set of affine ones. We will call a function n nonlinearifitisnotinL . Letwt(a)denotetheHammingweightofavectorawith n entries0or1. Thefunctionf(x)iscalledsymmetricifanypermutationofthex leaves i thevalueofthefunctionunchanged. ResearchofthethirdauthorwaspartiallysupportedbytheNavalPostgraduateSchoolRIPfunding. Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2009 2. REPORT TYPE 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER On a conjecture for balanced symmetric Boolean functions 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Postgraduate School,Department of Applied REPORT NUMBER Mathematics,Monterey,CA,93943 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT We give some results towards the conjecture that X(2t; 2t+1‘ &#56256;&#56320; 1) are the only nonlinear balanced elementary symmetric polynomials over GF(2), where t and ‘ are any positive integers and X(d; n) = P 1i1<i2< <idn xi1xi2 xid . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 18 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 ThomasW.Cusick, YuanLi and PantelimonSta˘nica˘ 2 Thebalancednessofelementarysymmetricpolynomialsover GF(2) Definition 2.1.For integers n and d, 1 ≤ d ≤ n we define the elementary symmetric polynomialby (cid:88) X(d,n)= x x ···x . (2.1) i1 i2 id 1≤i1<i2<···<id≤n We summarize here some of the results proven in [5]. We let C(n,k) denote the binomialcoefficient(recallthatifn<k,thenC(n,k)=0). Theorem2.2.TheelementarysymmetricpolynomialX(d,n)isbalancedifandonlyif (cid:80) C(n,j)(−1)C(j,d) =0.IfX(d,n)isbalanced,thend≤(cid:100)n/2(cid:101). Furthermore, 0≤j≤n ift,(cid:96)arepositiveintegers,thenX(2t,2t+1(cid:96)−1)isbalanced. Weconjectured[5]thatthefunctionsinTheorem2.2aretheonlybalancedones. Conjecture 1. There are no nonlinear balanced elementary symmetric polynomials exceptforX(2t,2t+1(cid:96)−1),wheretand(cid:96)areanypositiveintegers. 3 TheResults TheremainderofthepaperwillbedevotedtothestudyofConjecture1andprovingit forvariousvaluesoftheparameterst,(cid:96). ABooleanfunctionf(x)innvariablesissaid to satisfy the Strict Avalanche Criterion (“is SAC” for short) if changing any one of thenbitsintheinputxresultsintheoutputofthefunctionbeingchangedforexactly half of the 2n vectors x with the changed input bit. The SAC concept is relevant for ourworkbecauseof Lemma 3.1.The function f(x) = X(d,n) is SAC if and only if X(d−1,n−1) is balanced. Proof. By definition, f is SAC if and only if f(x)⊕f(x⊕a) is balanced for all a ∈ GF(2)n, with wt(a) = 1. We have f(x)⊕f(x⊕(0,...,0,1)) = X(d−1,n−1), so thelemmaisproved. (cid:50) Bydefinitionanysymmetricfunctioniscompletelydeterminedbytheweightofits input,sowecandefinev (i)for0≤i≤nbyf(x)=v (wt(x)). Moreover,recallthe f f usualalgebraicnormalform(ANF)ofaBooleanfunctionf innvariables n n f(x ,...,x )=(cid:77)λ (i) (cid:77) (cid:89)xuj, 1 n f j i=0 u,wt(u)=ij=1 (cid:77) (cid:77) where v (i) = λ (j), and λ (i) = v (j), over GF(2) (j (cid:22) i means that the f f f f j(cid:22)i j(cid:22)i binary expansion of j is less than the binary expansion of i, in lexicographical order) (see[3,Propositions1and2,p. 2792]). OnaconjectureforbalancedsymmetricBooleanfunctions 3 TheANFofasymmetricfunctionbecomes n (cid:77) f(x ,...,x )= λ (d)X(d,n), (3.1) 1 n f d=0 inournotations. Further,whenf isanelementarysymmetricfunction,thenλ (d)=1 f istheonlynonzerocoefficientintherepresentation(3.1). Moreover, (cid:40) v (i)=(cid:77)λ (j)= λf(d), if d(cid:22)i (3.2) f f 0, otherwise. j(cid:22)i Weneedthefollowingfurtherlemmas. WedefinethewellknownWalshtransform W (w)by f (cid:88) W (w)= (−1)f(x)+x·w. f x∈GF(2)n Lemma3.2.ABooleanfunctionf innvariablesisSACifandonlyifforeveryvector uwithwt(u)=1andeveryvectorv,wehave (cid:88) W (w⊕v)2 =2wt(u¯)+n. f w(cid:22)u¯ Proof. ThisisaspecialcaseofProposition1ofCarlet[4,p. 35]. (cid:50) Lemma3.3.Iff(x)innvariablesisSAC,then (cid:88) (cid:88) W (w)2 = W (w)2 =22n−1. (3.3) f f w:wn=0 w:wn=1 Proof. WeuseLemma3.2withv = 0andu = (0,...,0,1). Itfollowsthatwt(u¯) = n−1,sothefirstsumin(3.3)equals22n−1. Thetwosumsaddupto22n byParseval’s Theorem,sothesecondsumisalso22n−1. (cid:50) Lemma3.4.Iff(x)=X(d,n)isSACanddisodd,then W (0)=2n−2wt(f) andW (1)=2wt(f). (3.4) f f Proof. Thefirstequationin(3.4)isclearforanyf,whetherornotdisodd. Forthesecondequation,weobservethatby(3.2)ourhypothesesimplythatv (k)= f 0forallevenk. Since n (cid:88) Wf(0)= (−1)vf(k)C(n,k)and k=0 n (cid:88) Wf(1)= (−1)vf(k)+kC(n,k), k=0 acomputationgives W (0)+W (1)=2n. f f Nowthesecondequationin(3.4)followsfromthefirstone. (cid:50) 4 ThomasW.Cusick, YuanLi and PantelimonSta˘nica˘ Wedefine A=0,0,1,1; A¯ =1,1,0,0; B =0,1,0,1;B¯ =1,0,1,0; (3.5) C =0,1,1,0; C¯ =1,0,0,1; D =0,0,0,0;D¯ =1,1,1,1. ThenexttwolemmasareusedintheproofofourTheorem3.8. Lemma3.5.(FolkloreLemma[1,Lemma3.7.2])Anyaffinefunctionf onnvariables, n ≥ 2, is a linear string of length 2n made up of 4-bit blocks I ,...,I given as 1 2n−2 follows: 1. ThefirstblockI isoneofA,B,C,D,A¯,B¯,C¯ orD¯. 1 2. ThesecondblockI isI orI¯ . 2 1 1 3. ThenexttwoblocksI ,I areI ,I orI¯ ,I¯ . 3 4 1 2 1 2 ···································· n−1. The2n−3 blocksI ,...,I areI ,...,I orI¯ ,...,I¯ . 2n−3+1 2n−2 1 2n−3 1 2n−3 (cid:88) Lemma3.6.Wehave (−1)x·w =0forallw(cid:54)=0or1. x,wt(x)even Proof. LetE(w)denotethe2n−1-vectorofbitsx·w (mod 2),wherexrunsthrough then-vectorsxofevenweightinlexicographicalorder. ThusE(w)liststheexponents in the sum in the lemma. Consider the 2n−1 by n array of the vectors x with even weight, taken in lexicographical order. By the Folklore Lemma, each column in this array is a 2n−1-vector which gives the truth table of a nonconstant linear function in n − 1 variables. In fact, taking the columns left to right, the functions are simply x ,x ,...,x ,x ⊕x ⊕···⊕x . Thevectorsumofanysubsetofatleastoneand 1 2 n−1 1 2 n−1 atmostn−1ofthencolumns(correspondingtow(cid:54)=0or1)isthusthetruthtableof anonconstantlinearfunctionandsoitisbalanced. EachvectorE(w)isoneofthese vectorsums,sothesuminthelemmais0. (cid:50) Remark3.7.ThesuminLemma3.6isthesumoftheKrawtchoukpolynomials[9,pp. 130and150–153](variabley =wt(w)) k (cid:88) (cid:88) P (y,n) = (−1)x·w = (−1)jC(y,j)C(n−y,k−j) k x,wt(x)=k j=0 ofevendegreekiny. Theorem 3.8.If f(x) = X(d,n) has odd degree d, then W (w) = −W (w¯) for all f f w(cid:54)=0or1. OnaconjectureforbalancedsymmetricBooleanfunctions 5 Proof. Let f be an elementary symmetric function of degree d, that is f = X(d,n). WecomputetheWalshtransform (cid:88) (cid:88) W (w)= (−1)f(x)+x·w = (−1)f(x)+x·(1+w) f x∈GF(2)n x∈GF(2)n n (cid:88) (cid:88) (cid:88) = (−1)f(x)+wt(x)+x·w = (−1)f(x)+wt(x)+x·w (3.6) x∈GF(2)n k=0 x,wt(x)=k n (cid:88) (cid:88) = (−1)vf(k)+k (−1)x·w. k=0 x,wt(x)=k Next, we use (3.2). Since d is odd, then any integer i with d (cid:22) i has to be odd, as well. Itfollowsthatv (k)=0,foranyevenintegerk. Thus,(3.6)becomes f n W (w) = (cid:88)(−1)vf(k)+k (cid:88) (−1)x·w f k=0 x,wt(x)=k n n = (cid:88) (−1)vf(k) (cid:88) (−1)x·w− (cid:88) (−1)vf(k) (cid:88) (−1)x·w k=0,even x,wt(x)=k k=0,odd x,wt(x)=k n = (cid:88) (−1)x·w− (cid:88) (−1)vf(k) (cid:88) (−1)x·w. x,wt(x)=even k=0,odd x,wt(x)=k Since n n W (w) = (cid:88) (−1)vf(k) (cid:88) (−1)x·w+ (cid:88) (−1)vf(k) (cid:88) (−1)x·w f k=0,even x,wt(x)=k k=0,odd x,wt(x)=k n = (cid:88) (−1)x·w+ (cid:88) (−1)vf(k) (cid:88) (−1)x·w, x,wt(x)=even k=0,odd x,wt(x)=k toproveTheorem3.8itwillsufficetoshowthat (cid:88) (−1)x·w =0, x,wt(x)=even aslongasw(cid:54)=0,1,andthatfollowsfromLemma3.6. (cid:50) Theorem3.9.Iff(x)=X(d,n)isSACanddisodd,thenW (0)=W (1). f f Proof. ByTheorem3.8,allofthetermsexceptW (0)2 andW (1)2 inthetwosums f f in (3.3) cancel out (for all other w, W (w) is in one sum and W (w¯) is in the other f f sum). ByLemma3.4,bothsquarerootsarepositiveandwegetTheorem3.9. (cid:50) Corollary3.10.Ifdisoddandf(x)=X(d,n)isSAC,thenwt(f)=2n−2. NowwedeterminewhenX(d,n)isSAC.Todealwiththecasewhendisaneven integer,byLemma3.1,itisenoughtoshow: 6 ThomasW.Cusick, YuanLi and PantelimonSta˘nica˘ Lemma3.11.Ifd>1isodd,thenX(d,n)isnotbalanced. Proof. Formula(3.2)showsthatwhenf = X(d,n)wehavev (i) = 1ifandonlyif f d(cid:22)i. Thuswehave (cid:88) (cid:88) wt(X(d,n))= C(n,i)≤ C(n,i)=2n−1, (3.7) d(cid:22)i,i≤n iodd where the inequality holds because d (cid:22) i and d odd implies i is odd. If d > 1, then d(cid:22)icannotholdforalloddi≤n(inparticular,d(cid:54)(cid:22)d−2),sotheinequalityin(3.7) isstrict. Therefore,X(d,n)isnotbalanced. (cid:50) Lemma3.12.Supposed>1isodd. If d=2t+1andn=2t+1(cid:96)forintegerst>0,(cid:96)>0, (3.8) thenwt(X(d,n))=2n−2. Proof. Firstweobserve (cid:88) wt(X(d,n))= C(n,i) (3.9) d(cid:22)i,i≤n becauseof(3.2),whichshowsthatwhenf =X(d,n)wehavev (i)=1ifandonlyif f d(cid:22)i. By(3.9),weneedtoshowthat (cid:88) wt(X(d,n))= C(n,i)=2n−2 (3.10) d(cid:22)i,i≤n ifandonlyif(3.8)holds. If(3.8)holds,thesumin(3.10)is (cid:88) C(2t+1(cid:96),i) 2t+1(cid:22)i,i≤2t+1(cid:96) = (cid:88) (cid:16)C(2t+1(cid:96)−1,i)+C(2t+1(cid:96)−1,i−1)(cid:17) 2t+1(cid:22)i,i≤2t+1(cid:96) = (cid:88) (cid:16)C(2t+1(cid:96)−1,i)+C(2t+1(cid:96)−1,i−1)(cid:17) 2t(cid:22)i−1,i−1≤2t+1(cid:96)−1 = (cid:88) C(2t+1(cid:96)−1,j)=2n−2, 2t(cid:22)j,j≤2t+1(cid:96)−1 (noteiisnevereveninthefirstthreesums,sincethen2t+1(cid:22)iisfalse;thisjustifies the second last equality, since in the last sum j runs through disjoint pairs of consec- utive integers) where the last sum is wt(X(2t,2t+1(cid:96)−1) by (3.9) and so is 2n−2 by Theorem2.2. Thuswehaveprovedthat(3.8)implies(3.10). (cid:50) We would like to prove the converse of the previous lemma. The following work moves toward that goal, but does not achieve it. Next, we prove five lemmas, which establishmanycasesoftheconverseofLemma3.12. OnaconjectureforbalancedsymmetricBooleanfunctions 7 Lemma 3.13.Let n = 2t+1(cid:96) for some strictly positive integers t,(cid:96). If j is odd and 2t+1<j <2t+1+1,thenwt(X(j,n))<2n−2. Proof. The argument of the previous lemma shows that if (3.8) and (3.10) hold for somegiventand(cid:96),thentheset S(t,(cid:96))={i: 2t+1(cid:22)i, i≤2t+1(cid:96)=n} gives a set of binomial coefficients {C(n,i) : i ∈ S(t,(cid:96))} whose sum is 2n−2. (It is easytoseethatS(t,(cid:96))hasn/4elements,butwedonotneedthisfact.) Nowsuppose that(3.10)holdsforn = 2t+1(cid:96)andforsomeoddd = j,say,satisfying2t+1 < j < 2t+1+1. Thenwt(j)>2,sotheset T(j,n)={i: j (cid:22)i, i≤2t+1(cid:96)=n} isapropersubsetofS(t,(cid:96)). Thereforethesumofthebinomialcoefficientsin{C(n,i): i∈T(j,n)}is<2n−2,contradictingourassumptionthat(3.10)holdswithd=j. (cid:50) Since we refer to it often, we include here for completeness an equation given by Canteaut and Videau in [3] (these sums are called lacunary sums of binomial coeffi- cients, see [8]). Results like this concerning the binomial coefficients are very old. Someproofsandreferencesaregivenin[7]. Lemma3.14.Forpositiveintegersi,n,p,wehave A2p(i)= (cid:88) C(n,j) n 0≤j≤n j≡i (mod2p) (3.11) 2p(cid:88)−1−1(cid:18) (cid:18)jπ(cid:19)(cid:19)n (cid:18)j(n−2i)π(cid:19) =2n−p+21−p 2cos cos 2p 2p j=1 Lemma3.15.Lett,rbepositiveintegers. Supposethata >a ≥a ≥···≥a ,with 1 3 5 J J =2K+1,arenonnegativeintegers. Definethesum (cid:18) (cid:19) (cid:88) jrπ T= a sin . j 2t+1 1≤j≤J IfT=0,thenr ≡0 (mod 2t+1). Proof. Write b = a , for j = 2k +1. For convenience, let α = rπ . Then, using k j 2t+1 Abel’ssummationformula,Tbecomes K (cid:88) T = b sin((2k+1)α) k k=0 K−1 m K (cid:88) (cid:88) (cid:88) = (b −b ) sin((2k+1)α)+b sin((2k+1)α). m m+1 K m=0 k=0 k=0 8 ThomasW.Cusick, YuanLi and PantelimonSta˘nica˘ Note that for the first term where m = 0, we have (b − b )sinα (cid:54)= 0, if r (cid:54)= 0 0 1 (mod 2t+1). Also, (b −b ) ≥ 0, and b ≥ 0. The conclusion follows once we m m+1 K showthat m (cid:88) sinα and sin((2k+1)α) k=0 havethesamesign. Indeed m m (cid:88) 1(cid:88) sinα sin((2k+1)α) = (cos(2kα)−cos((2k+2)α) 2 k=0 k=0 1 = (1−cos((2m+2)α)≥0. 2 Thelemmaisproved. (cid:50) Remark3.16.NotethatTabovehasthesamesignassinα. BecauseofTheorem2.2,thereisnolossofgeneralityintakingn≥2(d−1)inour nextlemma. Lemma3.17.Letr,tbepositiveintegers,d=2t+1,n=2t+1,andr (cid:54)≡0 (mod 2t+1). Thenwt(X(d,n+r))(cid:54)=2n+r−2. Proof. Let d := 1 + 2t be fixed. Now, using Pascal’s identity, we get that S := wt(X(d,n+r))satisfies (cid:88) (cid:88) S = C(n+r,i)= (C(n+r−1,i)+C(n+r−1,i−1)) d(cid:22)i≤n+r d(cid:22)i≤n+r (cid:88) (cid:88) = C(n+r−1,i)+ C(n+r−1,j) d(cid:22)i≤n+r−1 2t(cid:22)j≤n+r−1 jeven (cid:88) (cid:88) = C(n+r−2,i)+ (C(n+r−1,j)+C(n+r−2,j)). d(cid:22)i≤n+r−2 2t(cid:22)j≤n+r−1 jeven OnaconjectureforbalancedsymmetricBooleanfunctions 9 Continuinginthismanner,weobtain r (cid:88) (cid:88) (cid:88) S = C(2t+1,i)+ C(n+r−k,j) d(cid:22)i≤n+r−r 2t(cid:22)j≤n+r−1k=1 jeven r (cid:88) (cid:88) = 2n−2+ C(n+r−k,j) 2t(cid:22)j≤n+r−1k=1 jeven r (cid:88) (cid:88) = 2n−2+ C(n+r−k,j) k=12t(cid:22)j≤n+r−1 jeven r 2t−1−1 (cid:88) (cid:88) (cid:88) = 2n−2+ C(n+r−k,j). k=1 s=0 j≡2s+2t (mod2t+1) 0≤j≤n+r−1 Wepushfurtherthepreviousidentity,bycomputingtheinnermostsum. So, (cid:88) C(n+r−k,j)=A2t+1(2s+2t) N j≡2s+2t (mod2t+1) 0≤j≤n+r−1 inthenotationsofLemma3.14,whereN := n+r−k. Thus,usingequation(3.11), weobtain A2t+1(2s+2t)=2n+r−k−t−1+2−t2(cid:88)t−1(cid:16)2cos aπ (cid:17)Ncosa(N −4s−2t+1)π. N 2t+1 2t+1 a=1 Since a(N −4s−2t+1)π a(N −4s)π cos =(−1)acos , 2t+1 2t+1 weget A2t+1(2s+2t)=2n+r−k−t−1+2−t2(cid:88)t−1(−1)a(cid:16)2cos aπ (cid:17)Ncosa(N −4s)π N 2t+1 2t+1 a=1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.