MaterialsandDesignxxx(2011)xxx–xxx ContentslistsavailableatScienceDirect Materials and Design journal homepage: www.elsevier.com/locate/matdes Bio-inspired armor protective material systems for ballistic shock mitigation Jinhua Huanga,⇑, Helen Durdena, Mostafiz Chowdhuryb aM4Engineering,Inc.,4020LongBeachBlvd.,LongBeach,CA90807,USA bArmyResearchLaboratoryLiaison,2511JeffersonDavisHwy.,Arlington,VA22202,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Severetransientballisticshocksfromprojectileimpacts,mineblasts,oroverheadartilleryattackscan Received29January2011 incapacitateanoccupantatlowfrequencies,orsensitiveequipmentathighfrequencies,iftheyarenot Accepted25March2011 properlyattenuatedbyarmorprotectivesystems.Uniquechallengesexistindevelopingarmorprotective Availableonlinexxxx systems formitigating both low and high frequency ballistic shocks due to the lack of robust design methodology,theseveredynamicloadingconditions,andtheuncertaintiesinpredictingballisticshock Keywords: responses. B.Foams Natureoffersengineersablueprintofhighlyeffective,efficient,andadaptivematerialdesignstopro- E.Impactandballistic tectcertainregionsfromexternalthreats.Thispaperpresentsthemodeling,analysis,design,optimiza- G.Coupontesting tion, fabrication, and experimental validation of bone-inspired armor protective material systems for reducingprojectilepenetrationsandalleviatingballisticshocksatbothlowandhighfrequencies.The optimizedbone-inspiredarmorprotectivematerialsystemhasasoft–stiff–soft–stiffmaterialdistribu- tion pattern based on bone-foramen and osteonal-bone material systems. Analysis and experimental resultsdemonstratedthatthebone-inspiredarmorprotectivematerialsystemshaveexcellentcapabili- tiesfordrasticballisticshockmitigation,weightsavings,andsignificantreductionsinpenetrationand loadtransmissionunderballisticloadingconditions. (cid:2)2011ElsevierLtd.Allrightsreserved. 1.Introduction Thisisduetotheseveredynamicloadingconditions,theuncertain- tiesinpredictingballisticshockresponses,thedifficultyinselect- Thenecessityofconsideringballisticshockeffectsinnewvehi- ing proper constituent materials, and difficulties in determining cledesignshas beenwellrecognizedin thecombatvehiclecom- criticalmaterialandgeometrydesignvariables. munity during the past two decades [1]. A ballistic shock results In ballistic shock analysis, finite element based commercial fromasignificantamountofconcentratedenergydepositedfrom software, especially LS-Dyna, has been predominately utilized to caliberprojectileimpacts,mineblasts,oroverheadartilleryattacks calculatethetargetshockresponsesincludingaccelerationhisto- ontoasmallareaofamilitaryvehicle[2].Thisenergymaybetrans- ries, shock response spectra, deformation, penetration, velocities, mittedthroughoutthevehicleincludingareasfarawayfromand andseverityindices[4–6].Duetothehighfrequencyrangeofbal- not exposed to the incident agent. At low frequencies (up to listicshock,thefiniteelementbasedmethodscanbecomeintrac- 1kHz), the ballistic shock response is dominated by high load table for large structures. A statistical energy analysis (SEA) transmissionsandlarge-magnitudeflexuralvibrations,whichcan method was investigated for the prediction of ballistic shock in be fatal to humansin a demanding high-g environment. A shock combatvehicles[1].Comparedtoconventionalanalysismethods, of100gfor3msor40gfor50mswillcausesevereinjury[3].At theSEAmethodresultsinfastermodelconstruction,smallermod- highfrequencies(above1kHz),theballisticshockresponseisdom- elsizes,shorterrunningtime,andareducedsetofinputparame- inatedbythepropagationofthestresswavesinthevehiclemate- ters. However, the SEA predictions at some locations within the rials, which will damage the light, intricate, frequency-sensitive testcomponentmightdisagreesignificantlyfromtheexperimental componentssuchaselectronicsandoptics.Despitetherecognized measurements[1]. increasing demand for innovative lightweight armor protective Manyeffortshavebeenmadetomitigateballisticshocks.Trabia systemscapableofmitigatingbothlowandhighfrequencyballistic etal.,employedsideandbottomL-shapepaneljointsforacombat shocks, the development of the enabling techniques to support vehicletomitigateballisticshocksfromprojectileandblastattacks sucharmorprotectivesystemanalysisanddesignhasbeenslow. [5,6]. The optimization results showed that the average of the meanofaccelerationsatcriticallocationsincommanderanddriver seats and instrumentation panels could be reduced considerably ⇑ Correspondingauthor.Tel.:+15629817797;fax:+15624908568. by extending the joint and reducing its thickness. One drawback E-mailaddress:[email protected](J.Huang). of the panel joint approach is its strong dependence on applied 0261-3069/$-seefrontmatter(cid:2)2011ElsevierLtd.Allrightsreserved. doi:10.1016/j.matdes.2011.03.061 Pleasecitethisarticleinpressas:HuangJetal.Bio-inspiredarmorprotectivematerialsystemsforballisticshockmitigation.JMaterDesign(2011), doi:10.1016/j.matdes.2011.03.061 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED JAN 2011 2. REPORT TYPE 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Bio-inspired armor protective material systems for ballistic shock 5b. GRANT NUMBER mitigation 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Army Research Laboratory Liaison,2511 Jefferson Davis REPORT NUMBER Hwy,Arlington,VA,22202 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Severe transient ballistic shocks from projectile impacts, mine blasts, or overhead artillery attacks can incapacitate an occupant at low frequencies, or sensitive equipment at high frequencies, if they are not properly attenuated by armor protective systems. Unique challenges exist in developing armor protective systems for mitigating both low and high frequency ballistic shocks due to the lack of robust design methodology, the severe dynamic loading conditions, and the uncertainties in predicting ballistic shock responses. Nature offers engineers a blueprint of highly effective, efficient, and adaptive material designs to protect certain regions from external threats. This paper presents the modeling, analysis, design, optimization fabrication, and experimental validation of bone-inspired armor protective material systems for reducing projectile penetrations and alleviating ballistic shocks at both low and high frequencies. The optimized bone-inspired armor protective material system has a soft?stiff?soft?stiff material distribution pattern based on bone-foramen and osteonal-bone material systems. Analysis and experimental results demonstrated that the bone-inspired armor protective material systems have excellent capabilities for drastic ballistic shock mitigation, weight savings, and significant reductions in penetration and load transmission under ballistic loading conditions. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 9 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 J.Huangetal./MaterialsandDesignxxx(2011)xxx–xxx load locations. Doney and Sen studied the shock mitigation effi- 2.Conceptformulationofbone-inspiredarmorprotective ciencyofmetallictaperedchains(highlyscalablegranularmedia) materialsystems [7].Whilethemetallictaperedchainarmordemonstratesnotice- ableshockabsorption,itlacksgoodpenetration-resistancecapabil- 2.1.Naturalboneprotectionmaterialsystems ity, its heavy weight scarifies the vehicle’s mobility, and its fabrication is not cheap. Polymer–matrix composite (PMC) based Thebone-foramen(Fig.1)andosteonal-bone(Fig.2)protective armorwasdevelopedtoimprovetheballisticperformanceofrap- systems of the equine third metacarpus (MC3) consist of foam idly deployable lightweight vehicles [8]. However, revolutionary materials. The homogenized elastic modulus (E ) and strength bone improvementsinPMC-basedarmordesignsarerequiredtoreach (r ) of these foam materials increase with the bone apparent bone Armymyriadperformancegoalsforballistic,structural,shock,fire, density (q ) and can be expressed by the following power law bone cost, and signature. Dharmasena et al., investigated the dynamic functions[12–14]: mechanical response of square honeycomb panels made from a super-austeniticstainlesssteelalloy[9].Thebenefitsofthesquare Ebone¼aqbbone ð1Þ honeycombpanelsforblastmitigationareparticularlyevidentat low impulsive levels, but at high impulse levels, the benefits r ¼aqb ð2Þ bone bone diminish. Through millions of years of evolution to solve load-bearing wherea,a,b,andbareconstantsandb/b=0.5forosteonalbones. problems and adapt to a given environment, nature offers Experimental measurements and property correlations for the engineers a blueprint of highly effective, efficient, and adaptive bone-foramenandosteonal-bonematerialsystemsrevealedthefol- material designs to protect certain regions from external threats lowingimportantfeatures[12,13,15]: [10–12].Thebone-foramenmaterialsysteminaregionofahorse’s third metacarpus (Fig. 1), which is located in the forelimb of the (cid:2) Thematerialdensityandpropertyarespatiallygraded. horse, consists of a foramen (natural hole) and foam materials, (cid:2) Thereexiststiff,strongregionsandsoft,weakregions. andissubjecttoimpactloading.Thenormalhorsethirdmetacar- (cid:2) Thereisnodiscontinuityindensityorpropertydistributionsat pus is osteonal-bone that is composed of interstitial (lamellae), thejuncturebetweendifferentregions. cementline,andosteons(Haversiansystems)(Fig.2).Bothbone- (cid:2) Materialpropertyvariations are limitedtoregionsaround the foramenandosteonal-bonematerialsystemshavedevelopedvery foramenandwithinthecementlineandintra-osteon. robustdesignpatternstoprotectbloodvesselsandnerves.Exper- (cid:2) Thereexistspecialfiberorientationdistributionpatternsincer- imental measurements on bone-foramen and osteonal-bone tainregionsasopposedtonormalfiberorientations. material systems have revealed stiffness distribution patterns (cid:2) Osteonal-bonehasaneffectivecrack-stoppingmechanism[15]. due to functionally graded density variations [12,13]. The bone- foramen material system has a soft region near the foramen and 2.2.Parallelsbetweenboneandengineeringdesigns astifferregionsomedistanceaway,comparedwithnormalbone properties (far field). The modulus in the osteonal-bone material Inbothbone-foramenandosteonal-bonematerialsystems,the system has a relatively high value in the interstitial matrix field designsareachievedthroughmechanicalpropertygradationunder andgraduallybecomessmallerinthecementline.Itreachesahigh weightconstraintsandimpactloadingconditionsandthedesigns valueagainintheintra-osteonregion. aimtoprotectinternalregionsfromexternalthreats.Inthevehicle Greatparallelsexistbetweenthehorse’sthirdmetacarpusand armorprotectivesystemdesign,theweightisalsoconstraineddue engineering armor protective systems in material constituents, tomobilityrequirementandthedesignalsoaimstoprotectinter- loading conditions, design goals, design constraints, and design nal regions from external threats due to projectile impacts and methodology[12].ThisledustoaUSArmysponsoredefforttode- mine blasts. The design spaces for both bone and vehicle armor velopaninnovative,lightweightbone-inspiredfunctionallygraded protectivesystemsareverylimited. armorprotectivematerialsystemforballisticshockmitigationand Similartotheutilizationoffoamsinbone-foramenandosteo- penetrationreduction.Thecurrentpaperpresentstheresearchre- nal-bone protective system designs, metallic foams have found sultsforthebone-inspiredarmorproject.Inwhatfollows,wefirst applications in vehicle armor designs [16,17]. For both bone and describe the concept formulation of bone-inspired armor protec- metallic foams, the material properties (modulus, strength, tivematerialsystems.Next,wepresenttheanalysisandoptimiza- Poisson’s ratio, etc.) depend on density. The bone-foramen and tionofbone-inspiredarmorprotectivematerialsystems.Then,the osteonal-bone material systems optimize mechanical property enhancement of the optimized bone-inspired armor protective gradationsbyspatiallyvaryingthebonefoammaterial’svoidand material system is discussed. Experimental validation is given in solid phase distributions. Similarly, the spaced vehicle armor de- Section5.Finally,wedrawconclusionsinSection6. sign utilizes the spatial void (spaces between plates) and solid Second Third Metacarpus Metacarpus a) P G s ( u ul d Proximal mo Proximal Phalanx Sesamoids al n Middle Phalanx udi git Distal Phalanx n Distal Sesamoids Lo Fig.1. Horseforelimbbones(left),thirdmetacarpuspalmarandphotomicrographoftheforamen(middle),andmodulusdistributionalongforamenmediolateralline(right). Pleasecitethisarticleinpressas:HuangJetal.Bio-inspiredarmorprotectivematerialsystemsforballisticshockmitigation.JMaterDesign(2011), doi:10.1016/j.matdes.2011.03.061 J.Huangetal./MaterialsandDesignxxx(2011)xxx–xxx 3 Interstitial Intra-osteon Cement Cement material Line line s u Interstitial ul Material od M Intra-osteon Haversian Canal Mediolateral line through aHaversian canal Fig.2. Featuresoftypicalosteonal-bone(left)andmodulusvariationthroughanosteon. (plates) phase distributions. Compared to spaced armor designs, fieldwidth,q istheminimumalloweddensity,q isthemax- min max the bone-foramen and osteonal-bone designs have functionally imumalloweddensity,q isthefarfielddensity,q (i=0,...,10) far i gradedvoidand solidphase distribution, whichismore effective arethefoamdensitycontrollers,andt (i=0,...,10)aretheloca- i instrengtheningtheprotectioncapability. tions for the foam density controllers. When q and q are set 9 10 equaltoq ,theabovefunctionssatisfyC1continuityinthenear far 2.3.Bone-inspiredarmorprotectivematerialsystems andfarfieldsandC1continuityatthenearandfarfieldintersection. When the values of the density controllers are varied, the Bezier Design of vehicle armor is based on plate panels. Spaced, flat, curveisupdatedaccordingly. sloped,orotherarmordesignsareconstructedusingthesepanels. Therefore,aflatplategeometrywithaspecifiedthicknesswascon- 2.4.Materialdescription sidered for bone-inspired armor protective material systems for ballistic shock mitigation. In accordance with the parallels be- A number of metallic foams are suitable for the design of the tweenbone and engineering designs,a bone-inspired armorpro- bone-inspiredarmorprotectivematerialsystem.Inthispaper,alu- tective system was constructed using functionally graded foam minum foam from Alulight America was selected and modeled/ materials. The bone-inspired armor plate was divided along its analyzed as typical honeycomb orthotropic crush material [18]. thickness direction into a near field (X ) in the protection side Inthehoneycombcrushmodel,thematerialbehavioriscomposed n and a far field (Xf) in the external loading side as shown in ofthreephases:linearelasticloadingwithmodulusEe,volumetric Fig. 3. The far field has constant density and material properties. crushtostrainecatconstantcrushstressry,andhardeningtofull Thedensityandmaterialpropertiesvarycontinuouslyinthenear compactionwithmodulusEc.TheparametersEe,ec,andryareex- fieldandsmoothlybridgeintothefarfield. pressedasexplicitfunctionsofdensitybasedonclosed-cellmetal- Asthemechanicalpropertiesofafoammaterialdependonits licfoams[16]andmaterialpropertydataprovidedbyAlulight: density,thebone-inspiredarmordesignproblembecomes:deter- (cid:2)q(cid:3)1:6 minethethrough-thicknessfarandnearfieldfoamdensitydistri- E ¼69 ðGPaÞ ð4Þ e q butioncurvessothattheballisticshockresponsecanbemitigated. s The curve for maximum ballistic shock mitigation is achieved throughanoptimizationmethod.Duringtheoptimizationprocess, r ¼43:89"0:5(cid:2)q(cid:3)2=3þ0:3(cid:2)q(cid:3)#ðMPaÞ ð5Þ any density distribution curve could be generated. The following y q q s s Bezierfunctionswereemployedtorepresentarbitrarydensitydis- tributioncurves: " q (cid:2)q(cid:3)3# 8t ¼ i t ði¼0;1;...;10Þ ec¼0:95 1(cid:3)1:4q þ0:4 q ð6Þ >>>>>>>>>>><ti¼Pi1¼1000(cid:2)ne1air0(cid:3)tisið1(cid:3)sÞ10(cid:3)i ð06s61;06t6tnearÞ whTeroetaqkiesitnhteodaeccnossuitnytatnhdeqstssraisinthreatdeeenfsfeitcyt,oafstthreesssoelindhcaenlclewmaelln.t >>>>>>>>>>>:qðq0m6in66s6qq1¼¼;0Pqi¼860(cid:2)t616i0q(cid:3)tnqeairsÞiðð1t(cid:3)s6Þ10t(cid:3)i6þtqfarsþ9ðt10Þ(cid:3)9sÞ6qmax 3ccor.ueAsfnfihacinileygnssitstroaefnss1d.o5onptttihmimeeiAszlatuhtliieognhsttaatliucmstirneusms wfoaasmumseadtetroiaml[o1d8e]l. the min far max near near far ð3Þ Agasguntestscenariowassimulatedfortheevaluationofthe (cid:2) (cid:3) 10 where ¼ 10! ,sisthenormalizedthicknesscoordinate,qis bone-inspiredprotectivematerialsystembyutilizingarectangular i i!ð10(cid:3)iÞ! coupon.Inthisscenario,thecouponwasheldwithasteelsupport thedensityatcoordinates,t isthenearfieldwidth,t isthefar near far with a central hole for measurement access, and a high-speed cylindrical projectile was shot towards the coupon front face (Fig.4).Thecouponisrepresentedbyitscrosssectionedgelength, Near field tnear nearandfarfieldwidths,aswellasthefarfielddensity,qfarand mour the near field density controllers q0, through q10 with tar q9=q10=qfar for continuity consideration. The coupon accelera- Far field tionhistoryatthebackfaceinthepenetrationdirectionwassim- ulatedusingLS-Dyna.Allsimulationswereterminatedatatimeof 15ms.Thecorrespondingshockresponsespectrumwasobtained through a MATLAB program based on Kelly–Richman algorithm Fig.3. Nearandfarfieldsforabone-inspiredarmorprotectivematerialsystem.The arrowrepresentsloadlocationanddirection. [19]. Pleasecitethisarticleinpressas:HuangJetal.Bio-inspiredarmorprotectivematerialsystemsforballisticshockmitigation.JMaterDesign(2011), doi:10.1016/j.matdes.2011.03.061 4 J.Huangetal./MaterialsandDesignxxx(2011)xxx–xxx Bone-inspired coupon High speed projectile Rectangular steel support Cylindrical steel support Fig.4. Modelsforbone-inspireddesignsimulationunderhigh-speedprojectileloadingconditions. Tocomparetheshockmitigationperformanceofbone-inspired x 105 10 coupons,baselineanalyseswithuniformAlulightaluminumfoam 350 kg/m3 densitiesof 350kg/m3, 419kg/m3, 650kg/m3, 710kg/m3, 980kg/ 9 650 kg/m3 m3, and 1370kg/m3 wereperformed.The maximumacceleration 710 kg/m3 8 vfosa.mdesnasriteydciusprvlaeyaenddinthFeigshs.o5ckanredsp6o.nsespectrafortheseuniform 2m/s) 7 980 kg/m3 For the bone-inspired coupon optimization, the maximum n ( 6 acceleration(maAcc)atthecouponprotectionpoint(backfacecen- o ter)wasselectedastheobjectivefunction.Thedesignvariablesare erati 5 tthherofuagrhfiqel8d.Tdheensnietya,rqfifearldanddentshietynceoanrtfiroelllderdseqn9siatnydcoqn1t0rowlleerressqe0t k accel 4 equal to qfar to satisfy C1 density distribution continuity require- Pea 3 mentatthenearandfarfieldintersection.Theoverallaverageden- sity q 6710kg/m3 constraint was used for weight-based 2 average vehiclemobilityconsiderationsandalldensitieswereconstrained 1 bytheavailablematerialrangeexceptanarrowbandnearthepro- tectionsidewherethedensitieswereallowedtoreachthevalueof 00 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 the solid cell wall. The optimization problem was found to have Natural frequency (Hz) many local optima due to numerical noise. To find a relatively robust solution, a gradient-based optimization method was Fig. 6. Simulated shock response spectra for uniform Alulight aluminum foam employedwithmultipleinitialpoints.Thebestpointsarereported couponsatthedensitiesof350kg/m3,650kg/m3,710kg/m3,and980kg/m3. inthispaper.Theoptimumthrough-thicknessdensitydistribution curveispresentedinFig.7.Thecorrespondingaccelerationmagni- tude history and shock response spectrum results are separately plottedinFigs.8and9.AsummaryisshowninTable1. Protection side Load side For uniform density coupons, the maximum acceleration changes only slightly when the density is increased (Fig. 5). In somecases,arelativedensityincreasegivesrisetoanincreasein 3m) Near field Far field g/ k y ( Osteonal-bone pattern 10x 105 ensit d m 9 a o f ) 8 m 2on (m/s 7 Aluminu ati 6 Bone-foramen pattern er cel 5 ac Through-thickness distance to protection side (m) m 4 u m Fig.7. Optimizedbone-inspiredthrough-thicknessfoamdensitydistributionunder axi 3 theweightconstraintofqaverage6710kg/m3. M 2 1 themaximumacceleration.Intheshockresponsespectra,increas- 0 ingthedensityincreasesthepeakaccelerationatlowfrequencies 350 413 476 539 602 665 728 791 854 917 980 upto2800Hz(Fig.6).Suchlowfrequencyreactionscanbefatalto Density (kg/m3) humans.Thereisnosingleuniformdensityaluminumfoamcou- pon that can both decrease the maximum acceleration and the Fig. 5. Simulated maximum acceleration vs. density curve for uniform density aluminumfoamcoupons. lowfrequencypeakaccelerationsfromtheshockresponsespectra. Pleasecitethisarticleinpressas:HuangJetal.Bio-inspiredarmorprotectivematerialsystemsforballisticshockmitigation.JMaterDesign(2011), doi:10.1016/j.matdes.2011.03.061 J.Huangetal./MaterialsandDesignxxx(2011)xxx–xxx 5 x 105 designs utilize the osteonal-bone material design mechanism. 6 Thereisanarrowbandinthestiffregionneartheprotectionside wherethedensityvariesfrom1370kg/m3tothevalueofthesolid cell wall. This high density band can be produced by pre- 5 compressing low density aluminum foams or can be replaced by solidmaterials. 4 unuifnoifromrm A lAulliuglhigt hfto faomam Themaximumaccelerationfortheoptimizedbone-inspiredde- 2) opotipmtiimzeidz ebdo nbeio-i-ninspsipreirded signisonlyasmallfractionofthecorrespondingmaximumaccel- s m/ erationoftheuniformfoamdesignofthesameweight(Table1and c ( 3 Fig.8).Moreimportantly,theoptimizedbone-inspireddesigncan c A dramatically reduce the peak accelerations at both low and high 2 frequencies (Fig. 9). The optimization results demonstrated that minimizingthemaximumaccelerationminimizesthepeakaccel- erationsoverallfrequenciesintheshockresponsespectra. 1 Due to the high numerical noise in the finite element-based analyses, the solution from the gradient-based method might be 0 stilllocaloptima.Withamorerobustoptimizationalgorithmsuch 0 0.5 1 1.5 2 2.5 3 3.5 4 asacombinedgeneticandgradientmethod[12],theballisticshock Time (sec) x 10-3 responseis expectedto be furthermitigatedat a relatively small averagedensityconstraint. Fig. 8. Simulated acceleration magnitude histories for the qaverage6710kg/m3 constrainedoptimizedbone-inspireddesignandfortheuniformdesignofthesame weight(q=708kg/m3). 4.Enhancementofoptimizeddesign As shown in Fig. 7, the optimized foam density distribution x 105 shows a very dense, stiff layer on the protection side. Thin steel platesreplacingtheprotectionsidedenselayerwereinvestigated 6 asenhancementstotheoptimizeddesign.Theenhancedoptimized bone-inspired design has an average density of 1275kg/m3. The 5 acceleration magnitude histories and the shock response spectra 2) fortheenhanced,theoptimized,andtheuniformdensitydesigns m/s ofthesameweightareshowninFigs.10and11. n ( 4 uunnifiofromrm A lAulliughlitg hfota mfoam Theinclusionofathinstiffmetallic(steel)plateintotheopti- o ooppttiimmizizeedd b bioo-innes-piinresdpired ati mized bone-inspired design has a particularly effective response eler 3 forballisticshockmitigation,withthemaximumaccelerationre- c ac ducedbynearlyafactoroftenfromtheuniformfoamcouponof eak 2 thesameweight(Fig.10)andthepeakaccelerationsintheshock P responsespectrareducedtoverylowlevelsinthefrequencyrange between10Hzand10,000Hz(Fig.11). 1 5.Experimentalvalidation 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Natural frequency (Hz) 5.1.Coupongasgunvalidationtests Fig.9. Simulatedshockresponsespectrafortheqaverage6710kg/m3constrained Inthegasgunvalidationtests,bothuniformdensityandbone- optimizedbone-inspireddesignandfortheuniformdesignofthesameweight (q=708kg/m3). inspired coupons were subjected to the loading of a cylindrical hardsteelprojectileshotfromagasgunaroundagivenvelocity. Toreducethefabricationcost,thebone-inspiredcouponswerede- signed through trade-studies using discrete layers and a small Theoptimizedbone-inspireddesignsshowfeaturesfromboth numberofaluminumfoamdensitiestoapproximatethematerial bone-foramen and osteonal-bone material systems (Fig. 7). The distributionpatternshowninFig.7.Athinsteelplatewasbonded optimized designs between the far field and the soft region (the totheprotectionsidetoenhancetheshockmitigationcapabilityof lowest density point in Fig. 7) in the near field utilize the bone- thebone-inspireddesigns.Theuniformdensitycouponshavethe foramenmaterialdesignmechanism.Betweenthetwostiffregions same dimensionsas the bone-inspired designmodels. For all gas (the two relatively high density points in Fig. 7), the optimized gun tests, the acceleration history in the penetration direction at a back face point (protection side) was recorded using an accelerometer. Table1 Simulated maximum accelerations and average densities for the optimized bone- inspireddesignincomparisonwiththeresultsoftheuniformdesignofthesame 5.1.1.Gasguntestsetup weight. Thegasguntestconfigurationconsistsofagasgun,asteelpro- Designs Maximum Averagedensity jectile,andacouponclampedbetweenafrontfaceconstraintanda acceleration(m/s2) (kg/m3) backfacesupportasshowninFig.12.Boththefrontfaceconstraint Optimizedbone-inspired, 1.97(cid:4)105 708 and back face support were made of rectangular steel plates and qaverage6710kg/m3 havedimensionsof139.7mm(cid:4)139.7mm(cid:4)9.65mmwithacen- Uniformdesignwithq=708kg/m3 5.6(cid:4)105 708 tralholeof85.7mmdiameter.Thesteelprojectilehasadiameter Pleasecitethisarticleinpressas:HuangJetal.Bio-inspiredarmorprotectivematerialsystemsforballisticshockmitigation.JMaterDesign(2011), doi:10.1016/j.matdes.2011.03.061 6 J.Huangetal./MaterialsandDesignxxx(2011)xxx–xxx 5 x 10 6 uniform, density =708 kg/m3 x uniform, density = 1275 kg/m3 5 optimized bone-inspired,average density=708 kg/m3 x * optimized bone-inspired & enhanced by solid steel,avearge density =1275 kg/m3 2) 4 s m/ n ( o 3 x ati x er x x el c x c 2 A x x 1 x x x x x * x x x x x x x x 0 * * * * * * * * * ** * * * * 0 0.5 1 1.5 2 2.5 -3 Time (sec) x 10 Fig.10. Simulatedaccelerationmagnitudehistorieswithrespecttotheoptimizedbone-inspireddesign,enhancedoptimizeddesignwithathinsteelplate,and708kg/m3 and1275kg/m3uniformdensitydesigns. x 105 8 uniform, density =708 kg/m3 X uniform, density = 1275 kg/m3 7 optimized bone-inspired,average density=708 kg/m3 * optimized bone-inspired & enhanced by solid steel,avearge density =1275 kg/m3 6 2) s m/ 5 n ( X X o X erati 4 cl c a k 3 a e P 2 1 * * * * * * * 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Natural frequency (Hz) Fig.11. Simulatedshockresponsespectrawithrespecttotheoptimizedbone-inspireddesign,enhancedoptimizeddesignwithathinsteelplate,and708kg/m3and 1275kg/m3uniformdensitydesigns. of12.7mmandaheightof38.1mm.Theshootingvelocitywasde- 5.1.3.Couponfabrication signedtobe200m/s. Raw 25.4mm-thick aluminum foam plates with densities in Fig. 13 were ordered from Alulight America, and cut into 5.1.2.Coupondesignundergasguntestconditions 101.6mm(cid:4)101.6mmsize.Thethinsteelmetalplateandthema- Theoptimizedbone-inspiredcouponhas demonstrateda spe- chinedfoamplateswereassembledusingadhesivematerials.The cialsoft–stiff–soft–stiffmaterialdistribution(Fig.7).Thismaterial uniform density aluminum foam coupons were fabricated using distributionpattern wasutilized todesignthe bone-inspired test thesamemethod. couponsusingdiscretelayersandasmallnumberoffoamdensi- The test coupons were classified into A, B, E, and S groups. ties.Thecouponwasdividedintofiveregionsalongthethickness GroupSisasampleconsistingoflowandhighdensitiesandwas direction:Soft1,Stiff1,Soft2,Stiff2,andthinSteelplateasshown usedtoadjusttheelectronicinstrumentandtheprojectilevelocity. inFig.13.Basedontrade-studiesandtheavailabledensitiesfrom GroupEistheenhancedbone-inspiredcouponasshowninFig.13. theAlulightwarehouse,thefiveregionaldensitiesforgoodshock GroupAhasauniformdensityof520kg/m3andGroupBhasauni- mitigationweredeterminedasshowninFig.13.Theaverageden- formdensityof770kg/m3.Higherdensityuniformcouponswere sityforthisenhancedbone-inspireddesignisabout1320kg/m3. nottestedduetolackofavailablematerial. Pleasecitethisarticleinpressas:HuangJetal.Bio-inspiredarmorprotectivematerialsystemsforballisticshockmitigation.JMaterDesign(2011), doi:10.1016/j.matdes.2011.03.061 J.Huangetal./MaterialsandDesignxxx(2011)xxx–xxx 7 Steel projectile Front face constraint Bone-inspired or uniform coupon Back face support Gas gun Fig.12. Coupongasguntestsetup. Load Side m 4 m Soft 1, 470 kg/m3 5. 2 m 6 mm 5.4 m Stiff 1, 850 kg/m3 1. 2 0 1 m 4 m Soft 2, 520 kg/m3 5. 2 m m Stiff 2, 1260 kg/m3 7 1 Steel plate, 7800 kg/m3 Protection Side 101.6 mm Fig.13. Enhancedbone-inspiredcouponthicknessdivisionintodifferentregionsandthecorrespondingdensities. Group E: Group A: Group B: =1320 kg/m3 = 520 kg/m3 = 770 kg/m3 average 44% penetration 100% penetration 80% penetration uniform uniform bone-inspired Fig.14. Penetrationsforbothuniformandenhancedbone-inspiredtestcoupons. Table2 Maximumaccelerationsforbothuniformandenhancedbone-inspiredcouponsforthegasguntests. Group Aa(uniform) B(uniform) E(bone-inspired) Firstcentralhit Secondcentralhit 3rdoffsethit Averagedensity(kg/m3) 520 770 1320 1320 1320 Maxacceleration(m/s2) 3(cid:4)104 6(cid:4)104 1.1(cid:4)104 1.75(cid:4)104 2.3(cid:4)104 a Completepenetrationobserved. 5.1.4.Gasgunvalidationresults the enhanced bone-inspired coupon (Group E) test, a very small Thetestresultsincludecouponpenetrations,accelerationhisto- maximum acceleration was observed and recorded in the first riesinthepenetrationdirections, andmaterialflowpatterns.For central hit, but unfortunately the full acceleration history was Pleasecitethisarticleinpressas:HuangJetal.Bio-inspiredarmorprotectivematerialsystemsforballisticshockmitigation.JMaterDesign(2011), doi:10.1016/j.matdes.2011.03.061 8 J.Huangetal./MaterialsandDesignxxx(2011)xxx–xxx x 104 accelerationsarelistedinTable2.Themeasuredaccelerationhis- 6 toriesinthepenetrationdirectionandthecorrespondingshockre- uniform coupon, density=770 kg/m3 sponsespectraforGroupBandE(secondandthirdoffsethits)are 4 enhanced bone-inspired coupon,second offset hit plottedinFigs.15and16. 2)s * enhanced bone-inspired coupon,third offset hit Theprojectilecompletelypenetratedthe520kg/m3lowdensity m/ uniformcouponandpenetrated80%ofthe770kg/m3highdensity on ( 2 * uniform coupon (Fig. 14). The enhanced bone-inspired coupon elerati 0 * * * * * * * * *** * * ** * p44ro%veodftvheerycoeufpfeocntitvheiciknneressdu(Fciign.g1p4)r.ojectile penetration, to only cc The experimental results demonstrated that the maximum s a -2 * * acceleration doubled when the uniform coupon density was in- axi creased from 520kg/m3 to 770kg/m3. However, the actual z- maximum acceleration of the 520kg/m3 uniform density cou- -4 pon might be higher than the recorded value due to the com- plete penetration. The measured maximum acceleration of the -6 enhanced bone-inspired coupon is significantly lower than 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 -3 either uniform density coupon result (Table 2 and Fig. 15), Time (sec) x 10 which is consistent with the previous LS-Dyna analysis results (Fig. 10). Fig.15. Gasgunexperimentalaccelerationhistoriesinthepenetrationdirectionfor theenhancedbone-inspiredandthe770kg/m3uniformdensitytestcoupons. Theexperimentalpeakaccelerationsoftheenhancedbone-in- spiredcouponinthecorrespondingshockresponsespectrumare greatly reduced over a wide range of frequencies compared to the770kg/m3uniformdensitycoupon(Fig.16). x 104 To investigate the shock mitigation mechanism of bone- 15 inspired armor protective material systems, two tested coupons werecutacrossthepenetrationhole.Onewasthe520kg/m3uni- form density coupon from Group A that had full penetration as 2) shown in Fig. 17 (left). The other was the fully penetrated non- m/s 10 uniform sample coupon from Group S (Fig. 17 (right)) that was n ( used to setup the facilities. The density distributions of this atio uniform coupon, density=770 kg/m3 non-uniform sample coupon is shown in the same figure. Other er enhanced bone-inspired coupon,second offset hit coupons had only partial penetrations and were not cut as they el enhanced bone-inspired coupon,third offset hit contained hard steel projectile, but some observations could be Acc 5 made for visible portion. Based on the foam material flow * * * * * patterns across the cut cross sections, the following important * observations are obtained: * * 0 (cid:2) For both uniform and non-uniform (including the bone- 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 inspired) coupons, the material flows in both penetration and Natural frequency (Hz) x 104 lateraldirections. (cid:2) Uniformdensitycouponshaveamuchmoreuniformpenetra- Fig. 16. Gas gun experimental shock response spectra for the enhanced bone- inspiredandthe770kg/m3uniformdensitytestcoupons. tionholesize(Fig.17(left)). (cid:2) Fornon-uniformcoupons,thedenselayershaverelativelysmall penetrationholes(Fig.17(right)). notrecorded.Inasecondattempt,theprojectilewentoutfromone (cid:2) At the interface between low- and high-density layers, the lateralside.Inthethirdattempt,theprojectilehada1–5%higher foam has more lateral material flow, which contributes to velocity and some rotation. The penetrations for Group A, B, and the relaxation of the through-thickness shock and load E(firstcentralhit)areshowninFig.14.Themeasuredmaximum transmissions. Penetration Fig.17. Through-thicknesscrosssectioncutsforthe520kg/m3uniformdensity(GroupA,left)andthenon-uniform(GroupS,right)testcoupons. Pleasecitethisarticleinpressas:HuangJetal.Bio-inspiredarmorprotectivematerialsystemsforballisticshockmitigation.JMaterDesign(2011), doi:10.1016/j.matdes.2011.03.061 J.Huangetal./MaterialsandDesignxxx(2011)xxx–xxx 9 6.Conclusions References The bone-inspired armor protective material systems have [1] LoperB,FrymanA,BermanM,LiD.Validationofballisticshockprediction modelsandtechniquesforuseinthecrusadercombatvehicleprogram(U). great potentials for reducing load transmission, weight savings, 11thAnnualUSarmygroundvehiclesurvivabilitysymposium;March27–30, projectile penetration reduction, and shock mitigation at both 2000. lowandhighfrequenciesunderhigh-speedprojectileloadingcon- [2] Klopcic JT, Robinson WT, Petty DW, Sivack MR. An experimental, analysis, and model of ballistic shock. US Army Research Laboratory, ARL-MR-368; ditions. The optimized bone-inspired armor protective material 1997. system has a special soft–stiff–soft–stiff stiffness distribution. [3] ShmulevichI,AsafZ.Goingballistic,vehicleballisticsprotectionandtesting- Theperformanceoftheoptimizeddesigncanbesignificantlyen- defense.ManageJ1999;44. [4] Chowdhury MR, Bouland A. Ballistic shock FEM and parametric study of hancedbyaninclusionofathinstiffmetallicplateattheprotec- the FCS/SAC-11 vehicle. US Army Research Laboratory, ARL-TR-4331; tion side. The enhanced optimized bone-inspired design can be 2007. approximated by using a limited number of discrete densities [5] Trabia M, Huang J, O’Toole B, Sakaray U. Optimization of joint design for bottompanelofamilitaryvehicleforshockreductionunderblastloading. and a thin steel plate. Experimental results demonstrated that 77thShock&vibrationsymposium,Monterey,CA;2006. theperformanceoftheenhancedapproximateddesign(enhanced [6] TrabiaM,O’TooleB,LadkanyS,NaraparajuJ,HuangJ.Optimizationofjoint bone-inspired coupon using discrete densities and a thin steel designforsidepanelofamilitaryvehicleforshockreduction.76thShock& vibrationsymposium,Orlando,FL;2005. plate)canmatchtheenhancedoptimizeddesign(enhancedopti- [7] Doney R, Sen S. Ordered and highly scalably granular media for shock mized bone-inspired design using functionally grade metallic mitigation.USArmyResearchLaboratory,ARL-TR-3612;2005. foamsandathinsteelplate). [8] FinkBK.Performancemetricsforcompositeintegralarmor.USArmyResearch Thethrough-thicknessdensityandmaterialpropertydistribu- Laboratory,ARL-RP-8;2000. [9] DharmasenaKP,WadleyHNG,XueA,HutchinsonJW.Mechanicalresponseof tions of bone-inspired armor protective material systems play a metallichoneycombsandwichpanelstructurestohighly-intensitydynamic critical role in mitigating ballistic shocks and in reducing load loading.IntJImpactEng2008;35:1063–74. transmissions and projectile penetrations. The stiff layers reflect [10] Brutchey RL, Morse DE. Temperature-free, low-temperature synthesis of crystalline barium titanate nanoparticles under bio-inspired conditions. the ballistic shock waves and change some of the shock wave AngewChemIntEd2006;45:6564–6. transmission paths from the penetration direction to the lateral [11] FantnerGE,RabinovychO,SchitterG,ThurnerP,KindtJH,FinchMM,etal. direction while the soft layers dissipating the kinetic energy Hierarchicalinterconnectionsinthenano-compositematerialbone:fibrillar cross-links resist fracture on several length scales. Compos Sci Technol throughfoammaterialcrushing. 2006;66:1202–8. Theenhancedbone-inspiredcouponsweredesignedandfabri- [12] Huang J, Venkataraman S, Haftka RT, Rapoff AJ. Design for stress cated using a small number of aluminum foam densities due to concentrationsnearholesviabiomimetics.FinalReport–NASASBIRPhase 2Contract#99-2-05.04-9943;2003. time and budgetary constraints. With a generic optimized bone- [13] MartinRB.Determinantsofthemechanicalpropertiesofbones.JBiomech inspireddesign,anintegratedfabricationmethod,andcomprehen- 1991;24(S1):79–88. siveexplorationofothermetallicfoamsystemsandthinstiffplate [14] Martin RB, Burr DB, Sharkey NA. Skeletal tissue mechanics. Springer; 1998. enhancements, greatly improved experimental results are ex- [15] HuangJ,RapoffAJ,HaftkaRT.Attractingcracksforarrestmentinbone-like pected for the bone-inspired material systems for ballistic shock composites.MaterDes2006;27(6):461–9. mitigationandpenetrationreductionunderuser-specifiedweight [16] AshbyMF,EvansA,FleckNA,GibsonLJ,HutchinsonJW,WadleyHHG.Metal constraintandvariousdynamicloadingconditions. foams:adesignguide.Heinemann:Butterworth;2000. [17] GamaBA,BogettiTA,FinkBK,YuCJ,ClaarTD,EifertHH,etal.Aluminumfoam integral armor: a new dimension in armor design. Compos Struct Acknowledgements 2001;52:381–95. [18] Chowdhury MR, Tabiei A. Air gun launch simulation modeling and finite element model sensitivity analysis. US Army Research Laboratory, ARL-TR- Research presented in this paper is funded through Army 3703;2006. Research Laboratory via the M4 Engineering Inc., SBIR Contract [19] KellyR,RichmanG.Principlesandtechniquesofshockdataanalysis,SVM-5. W911QX-10-C-0043:Bone-Foramen-InspiredMaterialSystemfor The Shock and Vibration Information Center, United States Department of Defense,Washington,DC;1969. BallisticShockMitigation. Pleasecitethisarticleinpressas:HuangJetal.Bio-inspiredarmorprotectivematerialsystemsforballisticshockmitigation.JMaterDesign(2011), doi:10.1016/j.matdes.2011.03.061