Chemosphere75(2009)1074–1081 ContentslistsavailableatScienceDirect Chemosphere journal homepage: www.elsevier.com/locate/chemosphere Simulated rainfall-driven dissolution of TNT, Tritonal, Comp B and Octol particles Susan Taylora,*, James H. Levera, Jennifer Faddena, Nancy Perrona, Bonnie Packerb aColdRegionsResearchandEngineeringLaboratory,72LymeRoad,Hanover,NH03755-1290,UnitedStates bUSArmyEnvironmentalCommand,HoadleyRoad,AberdeenProvingGround,MD21010,UnitedStates a r t i c l e i n f o a b s t r a c t Articlehistory: Live-firemilitarytrainingcandepositmillimeter-sizedparticlesofhighexplosives(HE)onsurfacesoils Received7October2008 whenroundsdonotexplodeasintended.Rainfall-drivendissolutionoftheparticlesthenbeginsapro- Receivedinrevisedform8January2009 cesswherebyaqueousHEsolutionscanenterthesoilandgroundwaterascontaminants.Wedripped Accepted9January2009 waterontoindividualparticlesofTNT,Tritonal,CompBandOctoltosimulatehowsurface-deposited Availableonline11February2009 HEparticlesmightdissolveundertheactionofrainfallandtousethedatatoverifyamodelthatpredicts HEdissolutionasafunctionofparticlesize,particlecompositionandrainfallrate.Particlemassesranged Keywords: from1.1to17mganddripratescorrespondedtonominalrainfallratesof6and12mmh(cid:2)1.FortheTNT Dissolutionmodel andTritonalparticles,TNTsolubilitygoverneddissolutiontimescales,whereasthelower-solubilityof Highexplosives RDXcontrolledthedissolutiontimeofbothRDXandTNTinCompB.Thelarge,low-solubilitycrystals Laboratorydriptests TNT ofHMXslowedbutdidnotcontrolthedissolutionofTNTinOctol.Predictionsfromadrop-impingement CompB dissolutionmodelagreewellwithdissolved-masstimeseriesforTNT,TritonalandCompB,providing someconfidencethatthemodelwillalsoworkwellwhenappliedtotherainfall-driven,outdoordisso- lutionoftheseHEparticles. PublishedbyElsevierLtd. 1.Introduction ofparticlesize,compositionandrainfallrateareneededtopredict HEaqueousinfluxtosurfacesoilsattrainingranges. Militaryrangesprovidesoldierstheopportunitytotrainusinga Lynch et al. (2002a,b) and Phelan et al. (2003) conducted, varietyofmunitions.However,live-firetrainingcandeposithigh respectively, stirred-bath and glass-bead-column experiments to explosives(HE)suchas2,4,6-trinitrotoluene(TNT),1,3,5-hexahy- measure the aqueous dissolution rates of collections of HE parti- dro-1,3,5-trinitrotriazine (RDX) and octahydro-1,3,5,7-tetranitro- cles. We followed the method described in Lever et al. (2005) 1,3,5,7-tetrazocine (HMX) on the range. Detonations scatter HE and dripped water on individual, field-collected, mm-sized parti- particlesbroadlyoversurfacesoils.High-orderdetonationsscatter cles of four common high-explosive formulations: TNT, Tritonal lm-sizeHEparticlesandlow-order(LO)detonationsscattermm- (80:20mixofTNTandaluminumflakes),CompositionB(59:39:1 to-cm-sizedHEparticles(Tayloretal.,2006).Giventhelowdrink- mix of RDX:TNT:wax) and Octol (70:30 mix of HMX:TNT). These ing water screening levels for TNT (2.2lgL(cid:2)1) and RDX areallmeltcastexplosiveswherealuminum,RDXandHMXcrys- (0.6lgL(cid:2)1) (EPA, 2008) gram-to-kilogram quantities of these talsareaddedtomoltenTNT.Theexperimentssimulatedtherain- explosivesinaqueoussolutionmaycontaminateanaquifer,asoc- fall-drivendissolutionofHEparticlesscatteredonsurfacesoils.We curred at the Massachusetts Military Reservation (Clausen et al., then used the resulting dissolved-mass timeseries to validate a 2006).Thelowdrinkingwaterlevelsreflecttheirtoxicitytohuman drop-impingementdissolutionmodeldevelopedforCompB(Lever health(ATSDR,1995). etal.,2005).ByexpandingthetypesofHEformulationstestedand RangecharacterizationstudiessummarizedbyPenningtonetal. using two simulated rainfall rates, our intention was to improve (2006)foundHEinsurfacesoilsatall27militaryinstallationssam- confidenceinthemodel’spredictionsofrainfall-driven,dissolution pledandHEwasfoundingroundwateratFortLewisWA(Jenkins ofHEparticlesontrainingranges. et al., 2001), and at three Canadian installations (Martel et al., 1999;Penningtonetal.,2006).DissolutionofHEparticlesbypre- cipitationhastooccurbeforeaqueoustransportorbio-degradation 2.Experimentalmethods oftheHE.ThereforedissolutionratesofHEparticlesasafunction 2.1.HEParticlesamples TNTisasingle-componentexplosive,asisTritonalalbeitwith * Correspondingauthor.Tel.:+16036464239;fax:+16036464785. 20%aluminumflakes,whileCompBandOctolaretwo-component E-mailaddress:[email protected](S.Taylor). 0045-6535/$-seefrontmatterPublishedbyElsevierLtd. doi:10.1016/j.chemosphere.2009.01.031 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED FEB 2009 2. REPORT TYPE 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Simulated Rainfall-Driven Dissolution Of TNT, Tritonal, Comp B And 5b. GRANT NUMBER Octol Particles 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION US Army Environmental Command,Hoadley Road,,Aberdeen Proving REPORT NUMBER Ground,MD,21010 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Chemosphere 75 (2009) 1074-1081 14. ABSTRACT Live-fire military training can deposit millimeter-sized particles of high explosives (HE) on surface soils when rounds do not explode as intended. Rainfall-driven dissolution of the particles then begins a process whereby aqueous HE solutions can enter the soil and groundwater as contaminants. We dripped water onto individual particles of TNT, Tritonal, Comp B and Octol to simulate how surface-deposited HE particles might dissolve under the action of rainfall and to use the data to verify a model that predicts HE dissolution as a function of particle size, particle composition and rainfall rate. Particle masses ranged from 1.1 to 17 mg and drip rates corresponded to nominal rainfall rates of 6 and 12 mm h1. For the TNT and Tritonal particles, TNT solubility governed dissolution time scales, whereas the lower-solubility of RDX controlled the dissolution time of both RDX and TNT in Comp B. The large, low-solubility crystals of HMX slowed but did not control the dissolution of TNT in Octol. Predictions from a drop-impingement dissolution model agree well with dissolved-mass timeseries for TNT, Tritonal and Comp B, providing some confidence that the model will also work well when applied to the rainfall-driven, outdoor dissolution of these HE particles. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 8 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 S.Tayloretal./Chemosphere75(2009)1074–1081 1075 explosives. We tested two particles for each HE formulation, all 2.3.Analyticalmethods collected from training ranges. The TNT samples were collected after a LO detonation of a 155-mm round, the Comp B samples Explosive concentrations were determined following SW-846 werefromtheLOdetonationofan81-mmround,andtheTritonal Method8330B(EPA, 2006). One mL ofthe effluentwas added to sampleswerefromaLOdetonationofa230-kg(500-lb)bomb.We 2mLofde-ionizedwaterandto1mLofacetonitrileandthenfil- obtainedasingleOctolparticlefromsoilssampledonananti-tank teredthrougha0.45lmMilliporesyringefilter.HighPerformance firingrangeandsplitittoformthetwosamplestestedhere. Liquid Chromatography separated TNT, RDX, HMX, and their co- Beforestartingthedripexperiments, weindividuallyweighed contaminantsandbreakdownproducts.WeusedaWatersNovaP- thedryHEparticlesonaMettlerToledoMX5microbalance(uncer- akC8column(3.9mmby150mm)elutedat1.4mLmin(cid:2)1(28(cid:2)C) tainty±0.01mg)andphotographedthemusingacameraattached with85:15water:isopropanolmixanddetectedbyUVat254nm. toabinocularmicroscope.Partwaythroughthetests,were-pho- A commercially available standard (Restek) was used for calibra- tographedtheparticlestodocumentchangestotheirappearance. tion.Weprepared1-ppmand10-ppmdilutionsofthesestandards. Lever et al. (2005) showed that mm-sized Comp B detonation The1ppmstandardswereruneverytensamplesandblankswere residues varied substantially in their RDX/TNT ratios, averaging run before and after each standard run. The 10ppm standards 1.74±0.28(±1standarddeviation)comparedwithanominalcom- wereinterspersedwiththesamplesasinternalchecks,withblanks positionof60/39=1.54.Significantdeviationsincompositionare aftereachtopreventcarryover.Basedontheconcentrationsofthe likelyforfield-recoveredHEparticleswithcomponentcrystalsthat standardsandthe precisionoftheeffluentvolumes,weestimate arelargecomparedwithoverallparticlesize.Tomeasurethisvar- that the cumulative dissolved HE masses have uncertainties of iabilityforTritonal,weweighed21mm-sizedparticlesonaSarto- about±1%. rius electronic balance (uncertainty±0.1mg), dissolved them in acetonitrileandanalyzedtheirTNTcompositions.Wedidnothave 3.Results sufficient Octol to investigate variability in Octol particle compositions. 3.1.Hemassrecovery 2.2.Laboratorysetup Weanalyzed21Tritonalparticlesforcompositionalvariability. ThepercentageofTNTbyweightrangedfrom52%to84%ofparti- Two Cole Palmer multi-syringe pumps allowed us to drip de- cle mass and averaged 77.5%±6.6%. Thus, the average of the 21 ionized water simultaneously onto eight separate particles, two particlesfellwellwithin1standarddeviationofthenominalcom- particlesforeachofthefourHEformulationsattwodifferentdrip positionofTritonal(80%TNT). rates.AneedleoneachsyringedrippedwaterontoanHEparticle Table1liststhedissolutiontestparametersandtherecovered resting on a 10-mm-diameter glass frit at the base of a Buchner massfortheeightdriptestparticles.Thenominaldriprateswere funnelthatdrainedintoa20-or40-mLscintillationvial.Thevials 0.5mLh(cid:2)1and1.0mLh(cid:2)1forthe‘‘1”and‘‘2”particledesignations, werereplaced daily and the volume and HEconcentrationof the respectively. We recovered essentially 100% of the mass for the effluent analyzed. These data provided dissolved HE mass as a two TNT particles and for Comp B 2. The recovered HE mass for function oftime for each ofthe eight particles. At the end of the CompB1(96.5%)wasclosetotheaverage(96%±1%)foundbyLe- tests,weextractedeachfritandfunnelwithacetonitrileandana- veretal.(2005)for30individualCompBparticlesobtainedfrom lyzedthesolutionsforHEmass. the same low-order detonation. The two particles dissolved here The programmed flow rates for each pump were 0.5 and hadRDX/TNTratiosof1.69and1.87,similartotheaverageratio 1.0mLh(cid:2)1. We measured the actual flow rates and number of obtained by Lever et al. (2005) of 1.74±0.28. We measured less drops per hour for each syringe. These averaged 0.47± than1%HMX,animpurityinRDX,intheseCompBparticles. 0.06mLh(cid:2)1 with 26 drops h(cid:2)1 and 0.95±0.09mLh(cid:2)1 with 56 TherecoveredTNTmasswas67.8%and78.5%oftheinitialmass dropsh(cid:2)1atthetwo,programmedrates.Forreference,theseflow for Tritonal 1 and Tritonal 2, respectively. This included TNT ex- ratescorrespondtorainfallratesof5.9and12.0mmh(cid:2)1basedon tractedfromthefrits.Bothparticlesfellwithin2rofthenominal the cross-sectional area of each glass frit. The average volume of Tritonalcomposition.Aluminumgrainsconstitutedtheremaining the arriving drops was larger than that expected for the natural massfortheTritonalparticles. rainfall at the same rates (Pruppacher and Klett, 1997) and each ForOctol1andOctol2,werecovered1.86mgand3.61mgof arrivingdropwettedtheparticleonthefrit.Thede-ionizedwater TNT, representing 28.4% and 20.8% of the initial particle masses, used for the tests was at room temperature and the latter was respectively.Octolnominallycontains30%TNT,butwewouldex- fairly constant throughout the tests at 22±1(cid:2)C. The tests were pect millimeter-sized particles to vary significantly from this va- normally halted over the weekends and the particles allowed to lue owing to the large ((cid:3)1mm) crystals of HMX present in the dry. TNT matrix.Bothdissolutiontestscontinuedfor manydays with Table1 DissolutiontestparametersandtherecoveredmassforHEparticles. Particle Driprate(mLh(cid:2)1) Initialmass(mg) Dissolved-mass(mg) Time(days) %Massrecovered TNT1 0.5 5.34 5.33 201 99.9 TNT2 1.0 9.59 9.70 98 101 Tritonal1 0.5 1.89 1.28 72 67.8* Tritonal2 1.0 6.40 5.02 73 78.5* CompB1 0.5 2.31 2.23 200 96.5 CompB2 1.0 9.09 9.03 141 99.4 Octol1 0.5 6.53 2.15 101 33.9* Octol2 1.0 17.33 9.92 140 57.2* * AlltheTNTmass. 1076 S.Tayloretal./Chemosphere75(2009)1074–1081 tests recovered all the TNT initially present in the two Octol particles. 3.2.Appearanceoftestparticles Fig.1showsphotographsofthe8particlestakenatthebegin- ningandpartwaythroughthedissolutiontests,at30daysforthe 0.5mLh(cid:2)1 tests and at 21days for the 1.0mLh(cid:2)1 tests. The TNT particlesbecamesmootherandsmallerbutretainedtheiroriginal shapes.TheTritonalparticlesbecamesmallerandslightlybumpier asTNTdissolvedexposingthealuminumgrains.TheCompBpar- ticles,onthehand,becamenoticeablybumpierand‘sugary’look- ing as dissolution of the surface TNT revealed the larger ((cid:3) 0.1mm), slower-dissolving RDX crystals. The Octol particles disaggregatedcompletelywhentheirTNTmatrixdissolvedleaving large((cid:3)1mm)HMXcrystals(seeFig.1,Octol2at21d). 3.3.Dissolutionmodelingandcomparisonwithdissolved-mass timeseries Lever et al. (2005) developed and validated a drop-impinge- mentmodelfortherainfall-drivendissolutionofmm-sizedComp Bparticles.Itpertainstothepracticalcasewherespatiallyisolated HEparticlesresideonwell-drainingsurfacesoilsandthusareex- posed to direct impingement by raindrops. The present experi- ments simulated these circumstances. With rare exceptions, water quickly drained through the glass frits so that impinging dropsinteracteddirectlywiththeHEparticles.Thepresentexper- imentsofferadditionaldatatovalidatethismodelforotherHEfor- mulationsandfortwosimulatedrainfallrates. The drop-impingement dissolution model assumes that rain- dropshitandwetanHEparticle.Betweenraindrops,theparticle holds a stagnant water-layer against its surface, which saturates, via diffusion, with HE. Arrival of the next raindrop washes away thedissolvedHEandrefreshesthestagnantlayer.Thedissolution rate,m (gs(cid:2)1)ofHEspeciesj,averagedoveradrop-arrivalinterval, j t (s),isthus d SV m ¼ j l ð1Þ j t d whereS isthesolubilityofspeciesjinwater(gcm(cid:2)3)andV isthe j l water-layervolume(cm3).Forasphericalparticle,awater-layerof thickness h (cm) will effectively saturate (average concentra- tion>0.9S)provided j h2 t > (cid:4)t ð2Þ d D s j whereD isthediffusioncoefficientofspeciesjintowater(cm2s(cid:2)1) j andt definesthelayersaturationtime.Additionally,forEq.(1)to s apply,thevolumeofanarrivingwaterdrop,V ,mustbelargerthan d thevolumeofthestagnantwater-layer,whichgenerallylimitsits applicabilitytomm-sizedandsmallerparticles. EachHEspeciesinaparticlecoulddissolveindependently,fol- lowingEq.(1),ifitisincontactwiththewater-layerandhasasuf- ficientlyhighdiffusioncoefficienttosatisfyEq.(2).However,Comp B and Octol particles consist of low-solubility crystals (RDX and HMX, respectively) embedded in higher-solubility TNT matrixes. Initially,TNTonthesurfaceoftheseparticlescandissolveindepen- Fig.1. Photosandinitialmassesofmm-sizedparticlesusedinthelaboratorytests dentlyintothewater-layer,leadingtohighinitialTNTdissolution pairedwithphotosofthesameparticletakenpartwaythroughthetests. rates.However,thelower-solubilitycrystalseventuallyrestrictthe pathways for TNT molecules to diffuse into the water-layer. TNT nomeasurableTNTinthewatersamples,andwefoundnoaddi- diffusionintothelayerthenbecomesanalogoustomoleculardif- tionalTNTinaseriesofacetonitrileextractionsofthefunnelsand fusion through a porous medium, where porosity and tortuosity frits at the end of the tests. Thus, we think that the dissolution combine to reduce significantly the effective diffusion coefficient S.Tayloretal./Chemosphere75(2009)1074–1081 1077 Table2 Modelparameters.ParticledensitiesarefromArmyMaterielCommand(1971).AqueoussolubilitiesarefromLynchetal.(2001)at22(cid:2)C,anddiffusioncoefficientsarefromLynch etal.(2002b)at25(cid:2)C;listedareTNTvaluesforTNTandTritonal,RDXvaluesforCompB,andHMXvaluesforOctol.ThetwodensitiesforTritonalreflectthedifferentTNT/ aluminumratiosofthetwoparticles. Particle q(gcm(cid:2)3) Sj(gcm(cid:2)3) Dj(cm2s(cid:2)1) td(s) h(mm) ts(s) Vd/Vl TNT1 1.65 1.17E(cid:2)04 6.71E(cid:2)06 138 0.075 8.4 21 TNT2 1.65 1.17E(cid:2)04 6.71E(cid:2)06 64 0.095 13 10 Tritonal1 1.89 1.17E(cid:2)04 6.71E(cid:2)06 138 0.090 12 35 Tritonal2 1.80 1.17E(cid:2)04 6.71E(cid:2)06 64 0.082 10 17 CompB1 1.65 4.02E(cid:2)05 2.20E(cid:2)06 138 0.092 38 28 CompB2 1.65 4.02E(cid:2)05 2.20E(cid:2)06 64 0.110 55 9.1 Octol1 1.80 3.64E(cid:2)06 1.50E(cid:2)04 138 0.12 1.0 12 Octol2 1.80 3.64E(cid:2)06 1.50E(cid:2)04 64 0.19 2.4 3.5 6.0 5.0 TNT 1 g) m 4.0 s ( s a M 3.0 d e v ol s 2.0 s Di 1.0 0.0 0 50 100 150 200 250 Time (d) 12.0 10.0 TNT 2 g) m 8.0 s ( s a M 6.0 d e v ol s 4.0 s Di 2.0 0.0 0 20 40 60 80 100 120 Time (d) Fig.2. Dissolved-massversustimefortheTNTtestparticles(symbolsaremeasuredvalues,smoothcurvesaremodeledvalues). q (Bear,1972;ChambreandPigford,1984).Consequently,TNTwill m ¼m TNT ð3Þ TNT RDXq notsaturatethewater-layerbetweendropsanditseffectivedisso- RDX lutionratewilldecrease. whereq andq arethemassdensitiesofeachspeciesinthe Lever et al. (2005) observed this effect during laboratory drip TNT RDX originalCompBparticle.Thisapproachensuredthatthetimescale tests of Comp B particles. They implemented the limiting case for RDX dissolution controlled the predicted TNT dissolution rate. where RDX dissolution controls the dissolution of TNT by using We applied this approach for both Comp B and Octol particles, Eq. (1) for RDX and assuming that TNT dissolves at a rate that substitutingq forq inEq.(3)forOctol. maintainsthebulkRDX/TNTmassratio: HMX RDX 1078 S.Tayloretal./Chemosphere75(2009)1074–1081 We implemented the drop-impingement model for the eight Fig.4showsthemeasuredandpredicteddissolved-massesfor test particles by treating each particle as a sphere of equivalent the two Comp B particles. The predicted RDX dissolution agrees mass,sothatthewater-layervolumeissimply quite well with the measured results for both particles. In both tests,TNTinitiallydissolvedquicklybuteventuallywascontrolled 4 Vl¼3p½ðaþhÞ3(cid:2)a3(cid:5) ð4Þ bytheslowerdissolutionofRDX.Themodelpredictsthisbehavior reasonablywellusingthelimitingcaseofRDXcontrolofTNTdis- whereaissphereradius(cm).Becausewecouldnotmeasurethe solution(Eq.(3)).Bycomparison,itpredictsmuchfasterdissolu- water-layerthicknesses,wedeterminedhbyfittingthepredictions tion under the assumption that TNT dissolves independently of tothemeasureddissolved-masstimeseriesfortheslower-dissolv- RDX.Interestingly,thefastestdissolutionratesobservednearthe ingspeciesineachparticle.Effectsofnon-sphericalparticleshape beginningofthetestsdoapproximatethoseforindependentTNT are thereby folded into h. Table 2 summarizes the parameters dissolution. The transition from independent TNT dissolution to neededtorunthedrop-impingementmodelandtocheckitsvalid- RDX-controlleddissolutionprobablyreflectsrestrictionofTNTdif- ity(td>ts,Vd>Vl). fusionintothewater-layerbytheporousmediumofRDXcrystals. Figs. 2 and 3 show the measured and predicted dissolved- The fitted water-layer thicknesses average 0.101±0.013mm massesfortheTNTandTritonalparticles,respectively.Thesepar- for the two Comp B particles (Table 2). This compares well with ticlescontainonlyTNT,soEq.(1)appliesdirectly.Themodelpre- theaveragevalue(0.13±0.05mm)obtainedforthefourCompB dicts the dissolution of all four particles quite well. The average particlestestedbyLeveretal.(2005).ForbothCompBparticles, layer thicknesses for the TNT and Tritonal particles were essen- thedrop volumeswerelargerthanthe water-layervolumes,and tiallythesameat0.085±0.014mmand0.086±0.006mm,respec- thedrop-arrivaltimeswerelongerthantheRDXsaturationtimes tively. Note that for the particles, the drop-arrival times were (Table2).TNTsaturationtimesmustincreasetoaccountforeven- longer than the water-layer saturation times, and the drop vol- tualRDXcontrolofTNTdissolution. umes were larger than the water-layer volumes (Table 2) as re- Fig.5showsthemeasuredandpredicteddissolved-massesfor quiredbyEq.(1). thetwoOctolparticles.AswithCompB,measuredTNTdissolution 1.4 1.2 Tritonal 1 g) 1.0 m s ( s 0.8 a M d ve 0.6 ol s s Di 0.4 0.2 0.0 0 20 40 60 80 100 Time (d) 6.0 5.0 Tritonal 2 g) m 4.0 s ( s a M 3.0 d e v ol s 2.0 s Di 1.0 0.0 0 20 40 60 80 100 Time (d) Fig.3. Dissolved-massversustimefortheTritonaltestparticles(symbolsaremeasuredvalues,smoothcurvesaremodeledvalues). S.Tayloretal./Chemosphere75(2009)1074–1081 1079 1.6 RDX 1.4 CompB 1 1.2 g) m s ( 1.0 Independent as TNT TNT M 0.8 d e v ol 0.6 s s Di 0.4 Controlled TNT 0.2 0.0 0 50 100 150 200 250 Time (d) 7.0 RDX 6.0 CompB 2 g) 5.0 m s ( s 4.0 a M Independent d TNT TNT e 3.0 v ol s s Di 2.0 Controlled TNT 1.0 0.0 0 20 40 60 80 100 120 140 160 Time (d) Fig.4. Dissolved-massversustimefortheCompBtestparticles(symbolsaremeasuredvalues,smoothcurvesaremodeledvalues).DissolutionofRDXeventuallycontrols dissolutionofTNT(modeledviaEq.(3)).IndependentTNTdissolutionwouldoccurmuchfaster. initially proceeded quickly, with maximum dissolution rates andRDXmassrecoveriesfromallparticleswereverygood;HMX approachingthepredictedratesforindependentTNTdissolution. massrecoverywascomplicatedbyitslow-solubilityanddisaggre- UnlikeCompB,however,thelargerHMXcrystalsdidnoteventu- gationoftheOctolparticlesfollowingcompleteTNTdissolution. ally controlTNT dissolution,and alltheTNT dissolved fromboth Changesintheappearanceoftheparticlesprovidedinsightinto particles, leaving HMX crystals. We terminated both tests after their dissolution mechanics. The single HE-species particles, TNT many days with no TNT in the water samples. The fitted water- and Tritonal, essentially retained their original morphologies as layer thicknesses averaged 0.155±0.049mm, much larger than they dissolved, and their dissolution timeseries are fairly simple thosefortheotherparticles(Table2).Nevertheless,thecalculated curves.TheconcentrationofaluminumgrainsinTritonalisappar- saturation times (Eq. (2)) based on either TNT or HMX diffusion entlytoolowtodisruptdissolutionoftheTNT.Bycomparison,the werelessthanthedrop-arrivaltimes,andthewater-filmvolumes CompBandOctolparticlesquicklybecamelumpyassurfaceTNT werelessthanthedropvolumes,asrequiredbythemodel. dissolved to reveal underlying RDX and HMX crystals. Subse- quently,theCompBparticlesbecamesmallerconglomerationsof 4.Discussion RDXcrystalsshieldinginternalTNT,whiletheOctolparticleslost alltheirTNTanddisaggregatedintocollectionsofHMXcrystals. The laboratory tests dripped water on individual HE particles We do not understand the reasons for discontinuities in the collected from field detonations. They more closely simulate the measureddissolutionratesforsomeparticles(e.g.,TNT1,Tritonal physicalcircumstancesofHEparticlesexposedtorainfallonsur- 2andCompB1).Thediscontinuitiesdonotcoincidewiththedates facesoilsthandostirred-bath(Lynchetal.,2002a,b)orglass-bead ofparticleremovalforphotographingorobservedsplittingofthe columnexperiments(Phelanetal.,2003).Theyyieldestimatesof particles, the good mass balances confirm that the particles did aqueousHEinfluxtosurfacesoilsasfunctionsofparticlesize,par- notlosepiecesduringhandling,andseveralparticlesdidnotdis- ticlecompositionandrainfallratewhileavoidingthecomplexityof playdiscontinuitiesbeyondrandomfluctuations. aqueous-phaseHE-soilinteractionsthatoccurduringsoil-column Thedrop-impingementdissolutionmodelpredictsverywellthe experiments (Pennington et al., 2006; Morley et al., 2006). TNT dissolved-mass timeseries of the TNT and Tritonal particles. The 1080 S.Tayloretal./Chemosphere75(2009)1074–1081 2.0 Independent 1.8 TNT TNT 1.6 g) 1.4 m s ( 1.2 s a Octol 1 M 1.0 d e v 0.8 ol s s 0.6 Di 0.4 HMX 0.2 Controlled TNT 0.0 0 20 40 60 80 100 120 Time (d) 4.0 Independent 3.5 TNT TNT 3.0 g) m s ( 2.5 s a M 2.0 HMX d ve Octol 2 ol 1.5 s s Di 1.0 0.5 Controlled TNT 0.0 0 20 40 60 80 100 120 140 160 Time (d) Fig.5. Dissolved-massversustimefortheOctoltestparticles(symbolsaremeasuredvalues,smoothcurvesaremodeledvalues).TNTdissolutionrateapparentlywasneither controlledby,norindependentof,HMXdissolution. singletuningparameter,water-layerthickness,h,wasreasonably Thedrop-impingementmodelaccountsfordifferencesinrain- consistent among the four particles, averaging 0.086±0.009mm. fall rates via differences in average drop-arrival time, t , in Eq. d The model also predicts well the overall dissolution behavior of (1).Thegenerallygoodagreementbetweentheobservedandpre- theCompBparticlesandprovidesinsightintothegoverningpro- dicteddissolutiondataattwosimulatedrainfallratessuggeststhat cesses.InitiallyTNTdissolvesindependentlyofRDX,butincreasing t doesindeedscaledissolutionrate. d restrictionofTNTdiffusionbytheRDXcrystalseventuallycauses We have initiated a series of outdoor dissolution tests where TNT dissolution to be controlled by RDX dissolution. With addi- cm-sizedchunksofHEareexposedtonaturalweatherconditions. tionalwork,wehopetoquantifythiseffectbymodelingTNTdiffu- ThesetestsshouldcloselysimulatethedissolutionofisolatedHE sionwithinachangingporousRDXmedium. pieces on range soils and provide a more realistic validation of The model does not predict well the TNT dissolved-mass thedrop-impingementmodel.Wearedevelopinga‘‘large-particle” timeseries for the Octol particles. The large, low-solubility HMX version of the model to circumvent the restriction that raindrop crystals appeared to impede but not control TNT dissolution. volumebegreaterthanwater-filmvolume.Nevertheless,themod- That is, neither limiting model case (independent or HMX-con- el predicts quite well the dissolution of millimeter-size TNT, Tri- trolled dissolution) fits the observed TNT data. The reduced tonal and Comp B particles. This provides confidence it will also influence of HMX on TNT dissolution, compared with the con- workwellwhenappliedtotherainfall-driven,outdoordissolution trolling role of RDX in Comp B, is consistent with less constraint oftheseHEmaterials. ofTNTdiffusionintothesurroundingwater-layer.Thehigherfit- tedvaluesoflayerthickness(0.155±0.049mm)couldreflectthe Acknowledgements creation of surface area as the Octol particles disaggregated fol- lowing TNT loss. These values give reasonable agreement to the We thank Dr. Jeffrey Marqusee and Dr. Andrea Leeson of the limitedHMXdissolutiondata,butmoreworkisneededtoquan- StrategicEnvironmentalResearchandDevelopmentProgram(SER- tify the impeding effect of HMX crystals on TNT dissolution in DP)forfundingourproject(ER-1482)andCareyLiandPamelaCol- Octol. linsforhelprunningthelaboratorytests. S.Tayloretal./Chemosphere75(2009)1074–1081 1081 References Lynch, J.C., Brannon, J.M., Delfino, J.J., 2002a. Effect of component interactions on the aqueous solubilities and dissolution rates of the explosive formulations Octol, Composition B and LX-14. J. Chem. Eng. Data 47, ArmyMaterielCommand,1971.EngineeringDesignHandbook:ExplosivesSeries, 542–549. Properties of Explosives of Military Interest. Army Materiel Command, Lynch, J.C., Brannon, J.M., Delfino, J.J., 2002b. Dissolution rates of three Alexander,VA. high explosive compounds: TNT, RDX and HMX. Chemosphere 47, 725– ATSDR, 1995. Toxicological profile for 2,4,6-trinitrotoluene and RDX. US 734. DepartmentofHealthandHumanServices,PublicHealthService,Agencyfor Martel R., Mailloux, M., Lefebvre, R., Michaud, Y., Parent, M., Ampleman, G., ToxicSubstancesandDiseaseRegistry,Atlanta,GA. Thiboutot,S.,JeanS.,RoyN.,1999.Energeticmaterialsbehavioringroundwater Bear,J.,1972.DynamicsofFluidsinPorousMedia.DoverPublications,NewYork. at the Arnhem Anti-Tank Range, CFB Valcartier, Quebec, Canada. INRS- Chambre,P.L.,Pigford,T.H.,1984.Predictionofwasteperformanceinageological GeoresourcesReport1999-02. repository.Mat.Res.Soc.Symp.Proc.,ElsevierSciencePublishingCo.,vol.26, Morley,M.C.,Yamamoto,H.,Speitel,G.E.,Clausen,J.,2006.Dissolutionkineticsof 985–1008. highexplosivesparticlesinasaturatedsandysoil.J.Contam.Hydrol.85,141– Clausen,J.L.,Korte,N.,Dodson,M.,Robb,J.,RievenS.,2006.ConceptualModelfor 158. theTransportofEnergeticResiduesfromSurfaceSoiltoGroundwaterbyRange Pennington, J.C., Jenkins, T.F., Ampleman, G., Thiboutot, S., Brannon, J.M., Activities.ERDC-CRRELTM-06-18. Hewitt, A. D., Lewis, J., Brochu, S., Diaz, E., Walsh, M.R., Walsh, M.E., EnvironmentalProtectionAgency,2008.Region6HumanHealthMedium-Specific Taylor, S., Lynch, J.C., Clausen, J., Ranney, T.A., Ramsey, C.A., Hayes, C.A., ScreeningLevels.www.epa.gov/Region6/6pd/rcra_c/pd-n/screen.htm. Grant, C.L., Collins, C.M., Bigl, S.R., Yost, S., Dontsova K., 2006. Distribution Environmental Protection Agency, 2006. Nitroaromatics, Nitramines and Nitrate and fate of energetics on DoD test and training ranges: final report. ERDC EstersbyHPLC,SW-846Method8330B. TR-06-13. Jenkins,T.J.,Pennington,J.C.,Ranney,T.A.,BerryJr.,T.E,Miyares,P.H.,Walsh,M.E., Phelan J.M., Webb, S.W. Romero, J.V. Barnett, Griffin F., Eliassi M., 2003. Hewitt, A.D., Perron, N.M., Parker, L.V., Hayes C.A., Wahlgren E.G., 2001. MeasurementandModelingofEnergeticMaterialMasstransfertoSoilPore Characterizationofexplosivescontaminationatmilitaryfiringranges,ERDC/ Water-ProjectCP-1227.SandiaReport2003-0153. CRRELTR-01-5. Pruppacher,H.R.,Klett,J.D.,1997.MicrophysicsofCloudsandPrecipitation.Kluwer Lever, J., Taylor, S., Perovich, L., Bjella, K., Packer, B., 2005. Dissolution of AcademicPublishers,Boston. CompositionBResiduals.Environ.Sci.Technol.39,8803–8811. Taylor,S.,Campbell,E.,Perovich,L.,Lever,J.H.,Pennington,J.,2006.Characteristics Lynch, J.C., Myers, K.F., Brannon, J.M., Delfino, J.J., 2001. Effects of pH and ofCompositionBParticlesfromBlow-in-PlaceDetonations.Chemosphere65, temperatureontheaqueoussolubilityanddissolutionrateofTNT,RDXand 1405–1413. HMX.J.Chem.Eng.Data46,1549–1555.