CorrosionSciencexxx(2010)xxx–xxx ContentslistsavailableatScienceDirect Corrosion Science journal homepage: www.elsevier.com/locate/corsci Classification of corrosion defects in NiAl bronze through image analysis Ramana M. Pidapartia,*, Babak Seyed Aghazadeha, Angela Whitfieldb, A.S. Raob,1, Gerald P. Mercierb aDepartmentofMechanicalEngineering,VirginiaCommonwealthUniversity,401WestMainStreet,Richmond,VA23284,USA bDepartmentofAlloyDevelopmentandMechanics,CarderockDivision,NavalSurfaceWarfareCenter,9500MacArthurBlvd,WestBethesda,MD20817,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Corrosionsurfacedamageintheformofpittingandmicro-cracksisobservedinmanymetals.Cracksusu- Received22March2010 allyinitiatefromthepitsandgrowundercyclicstressesandeventuallyleadtomaterialfailure.Animage Accepted7July2010 analysisbasedonwavelettransformsandfractalswasusedtostudythecorrosionmorphologyofnickel Availableonlinexxxx aluminumbronzemetalundervaryingcorrosionconditionsandappliedstresses.Imagefeatureparam- eterswereextractedandanalyzedtoclassifythepits/cracksinthemetalsamples.Theresultsobtained Keywords: indicatethatclassificationofpits/cracksispossiblewithimageanalysisandmaybeusedforcorrelating A.Nickel service/failureconditionsbasedoncorrosionmorphology. B.SEM (cid:2)2010ElsevierLtd.Allrightsreserved. B.ModelingStudies C.PittingCorrosion C.AcidCorrosion C.CorrosionFatigue 1.Introduction Micro-cracksusuallyinitiatefromthecorrosionpitsitesinthe material. Under the interaction of cyclic load and the corrosive Engineering components made from nickel aluminum bronze environment, cyclic loading facilitates the pitting process, and (NAB)metalarebeingusedintheNavy’sshipandpropellercom- corrosionpits,actingasgeometricaldiscontinuities,leadtocrack ponentsduetotheirhightoughness.However, thismetalissub- initiation and propagation and then final failure [6–9]. Corrosion jected to pits and stress corrosion cracking due to the operating canleadtoacceleratedfailureofstructuralcomponentsunderfa- conditionsofsaltwaterenvironment.Inordertoreducethemain- tigue loading conditions. Understanding and predicting corrosion tenancerequirements,expediterepair,andextendthelifeofnaval damage morphology in the form of pits/cracks is therefore very nickel aluminum bronze components, engineering studies are importantforthestructuralintegrityofmaterialsandstructures. beingcarriedouttoinvestigatethemechanismofstresscorrosion ElectrochemicalprobetechniquessuchasScanningReferenceElec- crackinitiationthroughexperimentsandmodeling. trode Technique (SRET), Scanning Vibrating Electrode Technique Pittingandstresscorrosioncrackingareknowntobesomeof (SVET),andLocalizedImpedanceSpectroscopy(LEIS)[10–13]have the major damage mechanisms affecting the integrity of NAB beenusedforelectrochemicalmeasurementsatthemetalsurface. materialsandstructuresinnuclearandnavalengineering.Corro- There are no probe related techniques that quantitatively assess sionpitsgenerallyinitiateduetosomechemicalorphysicalheter- thecorrosionmorphologyintheformofpitsandstresscorrosion ogeneityatthesurface,suchasinclusions,secondphaseparticles, cracking in metals. Recently, Pidaparti et al. [14,15] developed a flaws,mechanicaldamage,ordislocations.ManyNABalloyscon- computational methodology to predict stresses around pits and tainnumerousconstituentparticles,whichplayanimportantrole foundthatpitinducedstressesreachesaplateauaftercertaincor- incorrosionpitformation[1–5].Tobetterunderstandparticle-in- rosion time and may lead to crack initiation after that, and this duced pitting corrosion, optical microscopy, Scanning Electron phenomenachangeswithcorrosionenvironment. Microscopy (SEM) and Transmission Electron Microscopy (TEM) Image analysis has been used to characterize corrosion mor- techniques have been used. Due to operating and special service phology in materials subjected to a variety of environmental environments (e.g. saltwater), corrosion pits and stress corrosion conditions.Kapsalasetal.[16]proposedamethodtodetectcorro- cracking are readily formed between the constituent particles sionsizeandtopologyinstoneworksurfacesbytestingandeval- andthesurroundingmatrixinthesealloys[5]. uating image segmentation schemes. They have showed that their results are in good agreement with assessments based on chemical analyses performed on the same surfaces. Choi et al. [17] have analyzed the corrosion surface damage using digital * Correspondingauthor.Tel.:+18048273742;fax:+18048277030. imageprocessingtechniques.TheyemployedHISmodelinterpre- E-mailaddress:[email protected](R.M.Pidaparti). 1 Presentaddress:NuclearRegulatoryCommission,Washington,DC,USA. tation,co-occurrencematrix,andmultidimensionalscalingproce- 0010-938X/$-seefrontmatter(cid:2)2010ElsevierLtd.Allrightsreserved. doi:10.1016/j.corsci.2010.07.017 Please cite thisarticle inpress as: R.M.Pidaparti et al.,Classification of corrosion defects inNiAl bronze through image analysis,Corros.Sci. (2010), doi:10.1016/j.corsci.2010.07.017 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED MAR 2010 2. REPORT TYPE 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Classification of corrosion defects in NiAl bronze through image analysis 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Surface Warfare Center Carderock Division,Department of Alloy REPORT NUMBER Development and Mechanics,9500 Mac Arthur Blvd,West Bethesda,MD,20817 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Corrosion surface damage in the form of pitting and micro-cracks is observed in many metals. Cracks usually initiate from the pits and grow under cyclic stresses and eventually lead to material failure. An image analysis based on wavelet transforms and fractals was used to study the corrosion morphology of nickel aluminum bronze metal under varying corrosion conditions and applied stresses. Image feature parameters were extracted and analyzed to classify the pits/cracks in the metal samples. The results obtained indicate that classification of pits/cracks is possible with image analysis and may be used for correlating service/failure conditions based on corrosion morphology. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 6 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 R.M.Pidapartietal./CorrosionSciencexxx(2010)xxx–xxx duretocharacterizeimagesbythreecategoriesofcolour,texture, Cpþ1 ¼XXgðmÞhðnÞCp 4kþ2;ði;jÞ k;ðmþ2i;nþ2jÞ andshapefeatures.Wangetal.[18]usedwaveletpacketdecom- m n positionenergiesofimagesatdifferentwaveletsub-bandsasfea- Cpþ1 ¼XXgðmÞgðnÞCp ð1Þ 4kþ3;ði;jÞ k;ðmþ2i;nþ2jÞ turestostudytheatmosphericcorrosionbehaviorofzincsamples. m n Theyacquiredarelationshipbetweentheselectedimagefeatures whereC0istheimageAandkisanindexofthenodesinthewave- and the corrosionweightloss. Tao etal. [19]analyzed theatmo- 0 letpackettreedenotingeachsub-band.handgarethefiltercoef- sphericcorrosionoffieldexposurehighstrengthaluminumalloys. ficients of low-pass and high-pass filters, respectively. Supposing They used wavelet packed decomposition energies at different that Haar basis has been used, h¼f(cid:3)0:7071;0:7071g; and g¼ sub-bandstoestimatethecorrosionlossoffivetypesofaluminum f0:7071;0:7071g: At each step, the image Cp is decomposed into alloys. It was found that the values of sub-image energies de- k fourquarter-sizeimagesCpþ1,Cpþ1 ,Cpþ1 ,andCpþ1 :Thecapitallet- creased with increasing exposure time. There are no studies in 4k 4kþ1 4kþ2 4kþ3 ters (N or M) are maximum constants defined by the image size. theliteratureonclassificationofpits/cracksinNABmetalsunder However,smallletters(morn)aredefinedateachstep.Forexam- combinedcorrosionandcyclicstresses. ple,whenp=5,pcanbe1,2,3,or4andsoon. In order to qualitatively and quantitatively characterize the TheShannonentropyindifferentsub-bandsiscomputedfrom early stage damage mechanisms in NAB metals under corrosion thesub-bandcoefficientmatrixas: and cyclic stresses, image analysis of corrosion morphology may beusedasatooltopredictthenucleationofcracksresultingfrom Entropy ðkÞ¼(cid:3)XXjCp j2logjCp j2 ð2Þ p k;ði;jÞ k;ði;jÞ initiationandgrowthofpits.Inthisstudy,imageanalysisbasedon i j wavelet transforms and fractals was used to study the corrosion morphologyofNickelAluminumBronzemetalundervaryingcor- Energy ðkÞ¼XXjCp j2 ð3Þ rosionconditionsandappliedcyclicstresses.Imagefeatureparam- p k;ði;jÞ i j eterswereextractedandanalyzedtoclassifythepits/cracksinthe NABmetalsamples. whereEnergypðkÞandEntropypðkÞaretheenergyandentropyofthe image projected onto the subspace at node ðp;kÞ. The entropy of each sub-band providesa measure of the image characteristics in 2.Imageanalysismethods that sub-band. The energy distribution has important discrimina- tory properties for images and as such can be used as a feature Severalimageanalysismethodsareavailableforcharacterizing fortextureclassification.Fromtheequationsabove,itfollowsthat the corrosion surface morphology. In this study, wavelet trans- thewaveletentropyisminimumwhentheimagerepresentsanor- formsandfractalswereusedfortheimageanalysisbasedonour dered activity characterized by a narrow frequency distribution, experience,andaredescribedbelowbriefly. whereastheentropyishighwhenanimagecontainsabroadspec- trumoffrequencydistribution. 2.1.Waveletpackettransform Inthisstudy,firstlytheSEMimagesofthesurfaceshavebeen transformedfromTIFtoJPGtoexporttoMATLABsoftware.Haar In order to improve the images obtained from microscopy motherwaveletwasemployedtodecomposethegrayscalecorro- techniques such as SEM and others, multi-resolution wavelet sion images to the second level of decomposition and Shannon transformscanbeused.Thedetailsofstandardwavelettransfor- entropiesofsub-imagesateachsub-bandhavebeenusedasimage mationscanbefoundintheliterature[20].Asanextensionofthe features.Theprocesshasbeendoneusingthewavelettoolboxof standardwavelets,waveletpackets(WPs)whichrepresentagener- MATLABsoftwareonaPentiumDual-Coreand1.66GHzprocessor alization of the multi-resolution analysis use the entire family of speedPCcomputer. sub-band decompositions to generate a complete representation ofimages.Therearemanyoutstandingpropertiesofwaveletpack- 2.2.Fractalanalysis ets, which encourage researchers to employ them in widespread fields.Ithasbeenshownthatsparsityofcoefficients’matrix,com- Thefractaldimension(FD)isamathematicalconcepttoclassify putationalefficiency,multiresolutionandtime–frequencyanalysis certain sets in more detail than the topological dimension can. canbeusefulindealingwithmanyengineeringproblems.Thehier- There are many interesting and aesthetic examples of such sets archicalWPtransformusesafamilyofwaveletfunctionsandtheir (knownas‘‘fractalsets”)thatcanbecreated.Manyscientistsinlife associatedscalingfunctionstodecomposetheoriginaltimeseries/ and material sciences and engineering use the fractal dimension signal into subsequent sub-bands. The decomposition process is (FD)asaparametertocharacterizeroughlinesorsurfaces.Inother recursivelyappliedtoboththelowandhighfrequencysub-bands words,thefractaldimensionisameasureofthemorphology,tex- togeneratethenextlevelofthehierarchy. ture,androughnessinthesurface(orimages).FDcannumerically Two-dimensional discrete wavelet packet transform (DWPT) characterizethevariationinsurfacestructurecausedbycorrosion, decomposition allows us to analyze an image simultaneously at which corresponds to morphology changes in grey value images differentresolutionlevelsandorientations.In2-DDWPTmethod, capturedbymicroscopytechniquessuchasSEMorAFM.Various animageisdecomposedintooneapproximationandthreedetail methodshavebeenproposedtoestimatefractalvalues[21]:Fou- images.Theapproximationandthedetailimagesarethendecom- rier,Kolmogorov,Korcak,Minkowski,rootmeansquare,slitisland, posed into a second-level approximation and detail images, and etc. These methods differ in computational efficiency, numerical the process is repeated. The standard 2-D DWPT can be imple- precisionandestimationboundary.However,astrongcorrelation mentedwithalow-passfilterandahigh-passfilter[20].The2-D was reported between the relative ranking of fractal values ob- DWPT of an N(cid:2)M discrete image A up to level Pþ1 ðP6 tainedfromdifferentfractalmeasuringtechniques[21,22].Among minðlog N;log MÞÞ is recursively defined in terms of the coeffi- 2 2 thesemethodstheFourieranalyticaltechniqueisthemostprom- cientsatlevelpasfollows: isingoneinthatithasseveraladvantages.First,theFouriermeth- Cpþ1 ¼XXhðmÞhðnÞCp od is relatively insensitive to the presence of noise in images; 4k;ði;jÞ k;ðmþ2i;nþ2jÞ m n second,thereexistsafastalgorithm,theFFT,whichprovideseffi- Cpþ1 ¼XXhðmÞgðnÞCp cientimplementationparticularlyforonlineapplication;andthird, 4kþ1;ði;jÞ k;ðmþ2i;nþ2jÞ m n the computationof fractal values is based on an explicit formula Please cite this article inpress as: R.M.Pidaparti et al.,Classification of corrosion defects inNiAl bronze through image analysis, Corros.Sci. (2010), doi:10.1016/j.corsci.2010.07.017 R.M.Pidapartietal./CorrosionSciencexxx(2010)xxx–xxx 3 and is potentially more accurate computationally. For these rea- sonsFourieranalysiswasadoptedtoestimatefractalvaluesinthis study. Forasurfaceimagefðx;yÞ,thepowerspectraldensity(PSD)is calculatedas: Sðu;vÞ¼jFðu;vÞj2; ð4Þ whereF(u,v)istheFouriertransformoff(x,y),anduandvarethe spatialfrequencies(numberofwavesperunitwavelength)inthex and y directions, respectively. The PSD Sðu;vÞ is converted to the polarcoordinatesystemS(f)suchthatf ¼pffiuffiffi2ffiffiffiþffiffiffiffiffivffiffiffi2ffiffi.Thevaluesof SðfÞ,ateachradialfrequencyf,areaveragedoverangulardistribu- tions.Forafractalsurface,thepowerspectrumshowsalinearvar- iation between the logarithm of SðfÞ and the logarithm of the frequencyf[23].Theslopeofthelinearregressionlinebisrelated totheFDbyequation[24]: FD¼ð7(cid:3)bÞ=2 ð5Þ Inthisstudy,FDanalysiswascarriedoutonSEMimagesofcor- rodedspecimensundervaryingconditionswithagoalofdifferen- tiatingpitsandcracksinthem. 3.Experimentaldata Nickel aluminum bronze alloy metal samples were cut into 50mm(cid:2)5mm(cid:2)1mm dimensions from a plate. The chemical composition of the NAB plate (wt.%) [1] is 8.7–9.5% Al; 4.0–4.8% Ni; 3.5–4.3% Fe; 1.2–2.0% Mn; 0.1% Si; 0.02% Pb and the rest is Cu with an average tensile strength of 731MPa and Rockwell B Hardness of 203 (HRB). The NAB plate’s typical microstructure consistsofcontinuousequiaxedcrystalswithsmallareasofmeta- stablebphases.kPhaseprecipitatesarefoundatgrainboundaries in a phase and b phases areas [1]. Initially, the specimens were firstinspectedvisuallyanddiamondpolisheduptoasurfacefinish of 3lm before the corrosion testing. These specimens were immersed in 10% ammonia (NH OH) (by vol.) – 90% seawater 4 (by vol.) prepared as per ASTM D1141 standard and the cyclic stress was applied under three point bending according to ASTM G39.Thechemicalcompositionofthesimulatedseawaterisasfol- lows: initially salt solution was prepared using salts NaCl 0.413moldm(cid:3)3; MgCl 0.0546moldm(cid:3)3; Na SO 0.0288mol 2 2 4 dm(cid:3)3;CaCl 0.0105moldm(cid:3)3;andKCl0.0009moldm(cid:3)3,anddis- 2 solving them in 1000mL of de-ionized distilled water. Concen- tratedammoniasolutionof100mLwasthenaddedto900mLof thesaltsolutiontoobtainthesimulated. Afterexposingthespecimensforaspecificcorrosiontime(1– 37days) under specified cyclic stress (0–310MPa), the samples wereexaminedunderSEMtocharacterizethesurfacemorphology. TheexperimentswereconductedbytheresearchersattheDepart- ment of Alloy Development and Mechanics, Carderock Division, NavalSurfaceWarfareCenter,Bethesda,Maryland.Theyprovided the SEMimage data to VCU for further analysis. An investigation Fig.1. SurfacemorphologyofcorrodedNABspecimens. of the SEM data for defects classification was carried out in this study. The corrosion morphology of typical NAB specimens with defects,pits,andcracksisshowninFig.1.TheseSEMimageswere werethencalculatedateachsub-band.Fractaldimensionsofthe usedintheimageanalysistodevelopfeaturestocharacterizethe imagesaswellastheShannonentropiesofwaveletpacketdecom- pits/cracksinNABmetal. positionsof imageswere usedas potentialfeatures. Fig. 2 shows the Shannon entropies of four sub-images of wavelet packet 4.Resultsanddiscussion decomposition plotted against cyclic stress for samples after one timestep.ItcanbeseenfromFig.2thatthemetalsamplesunder 4.1.Defectdetection the stresses of 170, 240, and 310MPa have higher entropies in comparisonwithothersamplesandaremostlikelycandidatesto Inordertostudytheeffectofcyclicstressonthecorrosionrate havedefects.Therefore,byobservingtheSEMimagescorrespond- of samples, the images of samples were decomposed using 2D ingtothesestresses,defects,pits,andcrackscanberecognizedas wavelet packet decomposition. Shannon entropies of sub-images shown in Fig. 1. Interestingly, these findings of no cracks, and Please cite thisarticle inpress as: R.M.Pidaparti et al.,Classification of corrosion defects inNiAl bronze through image analysis,Corros.Sci. (2010), doi:10.1016/j.corsci.2010.07.017 4 R.M.Pidapartietal./CorrosionSciencexxx(2010)xxx–xxx Fig.2. Shannonentropiesoffoursub-imagescalculatedfromwaveletimageanalysiswithvaryingappliedcyclicstressesofNABspecimens. Cyclicstresslevelsof50,and240MPawerechosentoshowthe effectofcorrosiontime onsurfacemorphologyofthe NABmetal samples. Fractal Dimensions of images were calculated using Eq. (5)andplottedagainstcorrosiontimeinFig.3.Itcanbeseenfrom Fig.3thatthefractaldimensionsofcorrodedimagesofNABmetal specimenshavearoughlyincreasingtrendwithtime.Also,when SEM images with high fractal dimensions were observed, defects in the samples were clearly visible, whereas SEM images with low fractal dimensions did not show any visible damage on the surfacesofmetalsamples. 4.2.Crack/pitclassification Theclassificationofcracks/pitswasinvestigatedthroughimage analysisofcorrodedspecimenSEMimages.Theprocedureusedto establishthedefectclassification(pitsversuscracks)isshownin Fig.4.Twelvesub-images,sixcontainingcracks,andsixcontaining pits,wereanalyzed.Eachimage’ssizewas256(cid:2)256pixels.Fig.5 Fig.3. Fractaldimensioncalculatedfromfractalanalysiswithvaryingcorrosion shows the typical images containing normal, pits, crack-pit, and time(timestep–numberofcorrosiondays)underappliedcyclicstresses. cracksextractedfromtheentirecorrodedspecimenundervarying timeandcyclicstresses.Fractaldimensionsontheseimageswere crackshasbeenobservedbyVasanthandHays[1]intheirstudies calculatedandpresentedinFig.6.ItcanbeseenfromFig.6(a)that onNABmetalundervaryingenvironmentalconditions. fractal dimension increases for cracks and pits in comparison to Fig.4. OverviewofthedefectclassificationprocedureforNABspecimens. Please cite this article inpress as: R.M.Pidaparti et al.,Classification of corrosion defects inNiAl bronze through image analysis, Corros.Sci. (2010), doi:10.1016/j.corsci.2010.07.017 R.M.Pidapartietal./CorrosionSciencexxx(2010)xxx–xxx 5 Fig.6. (a)Fractaldimensionand(b)Shannonentropycalculatedfromtheimagesof Fig.5classifyingvariousdefects. Fig.5. Typicaldefects(normal(nodefect),pits,cracks-pits,andcracks)observedin Fig. 7. Two-dimensional projection of image features (fractal dimension and NABmetalspecimensundercombinedcorrosionandcyclicstresses. Shannonentropy)forclassifyingpits/cracksinNABmetalsamples. Please cite thisarticle inpress as: R.M.Pidaparti et al.,Classification of corrosion defects inNiAl bronze through image analysis,Corros.Sci. (2010), doi:10.1016/j.corsci.2010.07.017 6 R.M.Pidapartietal./CorrosionSciencexxx(2010)xxx–xxx normal(nodefect)images.Also,theimageswithpitshavehigher References fractaldimensionsincomparisontoimageswithcracks.Thesam- plesarelinearlyseparableinthisfeaturespaceandathresholdcan [1] K.L. Vasanth, R.A. Hays, Corrosion assessment of nickel–aluminum bronze (NAB)inSeawater,Corrosion2004,PaperNo.04294. be chosen to distinguish cracks from pits and its transition. This [2] F.M.Dersch,A.Cohn,UltrasonicInspectionofNickelAluminumBronzefor showstheeffectivenessofthefractaldimensionfeatureintheclas- StressCorrosionCracking,NSWCCD-61-TR-2001-21,2001. sificationofcorrosioncracksfrompitsandtheirtransition. [3] M.D. Fuller, S. Swaminathan, A.P. Zhilyaev, T.R. McNelley, Microstructural Inaddition tofractaldimension,the Shannonentropies ofthe transformations and mechanical properties of cast nial bronze: effects of fusionweldingandfrictionstirprocessing,Mater.Sci.Eng.463(1-2)(2007) wavelet packet decompositions of images containing normal (no 128–137. defects), pits, cracks, and combination of pit-crack cases (Fig. 5) [4] J.A. Wharton, R.C. Barik, G. Kear, R.J.K. Wood, K.R. Stokes, F.C. Walsh, The werealsocalculated.ItcanbeseenfromFig.6(b)thatthecracks corrosionofnickel–aluminumbronzeinseawater,Corros.Sci.47(2005)3336– 3367. havehigherentropiesincomparisontopitsincomparisontonor- [5] K. Oh-Ishi, T.R.T.R. McNelley, Microstructural modification of as-cast NiAl mal(nodefect)intheirimages.Ithasbeenobservedthatwithonly bronzebyfrictionstirprocessing,Metall.Mater.Trans.35(2004)2951–2961. increasingcorrosion,therearevisiblepitsinSEMimages.Incon- [6] G.T.Burstein,C.Liu,R.M.Souto,S.P.Vines,Originsofpittingcorrosion,Corros. Eng.Sci.Technol.39(2004)25. trast, when the cyclic stress is increased, there are visible cracks [7] S.I.Rokhlin,J.Y.Kim,H.Nagy,B.Zoofan,Effectofpittingcorrosiononfatigue and pits in SEM images. To provide a better illustration, a two crackinitiationandfatiguelife,Eng.Fract.Mech.2(1999)425–444. dimensionalprojectionofimages(normal(nodefects),pits,cracks, [8] S.Ishihara,S.Saka,Z.Y.Nan,T.Goshima,S.Sunada,Predictionofcorrosion fatigue lives of aluminum alloy on the basis of corrosion pit growth law, andcombinationofpit-crackcases)intothefeaturespaceispre- FatigueFract.Eng.MaterStruct.29(2006)472–480. sentedinFig.7fortheimagesconsideredinthisstudy.Itcanbe [9] M.R. Sriraman and R.M. Pidaparti, Life prediction of aircraft aluminum seen from Fig. 7 that using the features of fractal dimension and subjected to pitting corrosion under fatigue conditions, J. Aircraft (7–8) (2009)1253–1259. Shannon entropy of the wavelet packet decomposition, cracks [10] H.S. Isaacs, Initiation of stress corrosion cracking of sensitized type 304 andpitsarelinearlyseparableand,thus,easilyclassifiable. stainlesssteelinductilethiosulfatesolution,J.Electrochem.Soc.135(1988) 2180–2183. [11] T.Suter,H.Bohni,Anewmicroelectrochemicalmethodtostudypitinitiation 5.Conclusions onstainlesssteels,Electrochim.Acta42(1997)3275–3280. [12] R. Oltra, V. Vignal, Recent advances in local probe techniques in corrosion Animageanalysisbasedonwavelettransformsandfractalswas research–analysisoftheroleofstressonpittingsensitivity,Corros.Sci.49 (2007)158–165. used to study the corrosion morphology of nickel aluminum [13] C.H.Paik,R.C.Alkire,RoleofsulfideinclusionsonlocalizedcorrosionofNi200 bronzemetalundervaryingcorrosionconditionsandappliedcyc- inNaClsolutions,J.Electrochem.Soc.148(2001)276–281. lic stresses. Image feature parameters were extracted from the [14] R.M.Pidaparti,R.R.Patel,CorrelationbetweencorrosionpitsandstressesinAl alloys,J.Mater.Lett.62(2008)4497–4499. experimental data obtained from SEM, and analyzed to classify [15] R.M.Pidaparti,K.Koombua,A.S.Rao,Corrosionpitinducedstressesprediction thepits/cracksinthemetalsamples.Theresultsobtainedfromim- fromSEMandfiniteelementanalysis,Int.J.Comput.MethodsEng.Sci.Mech. ageanalysisindicatethatclassificationofpits/cracksispossibleas 10(2009)117–123. [16] K.Y.Choi,S.S.Kim,Morphologicalanalysisandclassificationoftypesofsurface theyarelinearlyseparablebasedonthefractaldimensionanden- corrosiondamagebydigitalimageprocessing,Corros.Sci.47(2005)1–15. tropyfeatures.Theapproachpresentedinthispapermaybeused [17] P. Kapsalas, M. Zervakis, P. Maravelaki-Kalaitzaki, Evaluation of image forcorrelatingservice/failure conditionsbasedoncorrosionmor- segmentationapproachesfornon-destructivedetectionandquantificationof phologyinmetals.However,moreresearchisneededtostudyfur- corrosiondamageonstonework,Corros.Sci.49(2007)4415–4442. [18] S.Wang,S.Song,Imageanalysisofatmosphericcorrosionexposureofzinc, ther the proposed methods/analysis based on images obtained Mater.Sci.Eng.A385(2004)377–381. fromnon-destructiveinspectiondevicesaspartofroutineinspec- [19] L. Tao, S. Song, X. Zhang, Z. Zhang, F. Lu, Image analysis of atmospheric tion and correlating the fractal dimension to service/failure corrosionoffieldexposurehighstrengthaluminumalloys,Appl.Surf.Sci.254 (2008)6870–6874. conditions. [20] S.Mallat,AWaveletTourofSignalProcessing,Academic,NewYork,1999. [21] J.Zhang,P.Regtian,M.Korsten,Monitoringofdryslidingwearusingfractal Acknowledgements analysis, in: 10th TC-10 IMEKO Conference on Technical Diagnostics, 9–10 June2005,Budapest,Hungary. [22] J.Rawers,J.Tylczak,Fractalcharacterizationofwear-erosionsurfaces,Mater. ThefirsttwoauthorsthankUSNationalScienceFoundationfor EngPerformance8(6)(1999)669–676. supportingthisworkthroughaGrantDMR-0505496.Theauthors [23] J.C.Russ.FractalSurfaces.PlenumPress,NewYork,1994. [24] H.Peitgen,D.Saupe,M.F.Barnsley,TheScienceofFractalImages,Springer- alsoacknowledgethefinancialsupportfromDr.AiranPerez,Pro- Verlag,NewYork,1988. gramOfficer,OfficeofNavalResearch,Virginia. Please cite this article inpress as: R.M.Pidaparti et al.,Classification of corrosion defects inNiAl bronze through image analysis, Corros.Sci. (2010), doi:10.1016/j.corsci.2010.07.017