BulletinofMathematicalBiology(2010) DOI10.1007/s11538-010-9537-0 ORIGINAL ARTICLE Maximal Sensitive Dependence and the Optimal Path to Epidemic Extinction EricForgostona,∗,SimoneBiancob,LeahB.Shawb,IraB.Schwartza a NonlinearSystemsDynamicsSection,PlasmaPhysicsDivision,Code6792,USNaval ResearchLaboratory,Washington,DC20375,USA b DepartmentofAppliedScience,TheCollegeofWilliam&Mary,P.O.Box8795, Williamsburg,VA23187-8795,USA Received:13January2010/Accepted:11March2010 ©SocietyforMathematicalBiology2010 Abstract Extinctionofanepidemicoraspeciesisarareeventthatoccursduetoalarge, rarestochasticfluctuation.Althoughtheextinctionprocessisdynamicallyunstable,itfol- lowsanoptimalpaththatmaximizestheprobabilityofextinction.Weshowthattheopti- malpathisalsodirectlyrelatedtothefinite-timeLyapunovexponentsoftheunderlying dynamicalsysteminthattheoptimalpathdisplaysmaximumsensitivitytoinitialcondi- tions.Weconsiderseveralstochasticepidemicmodels,andexaminetheextinctionprocess inadynamicalsystemsframework.Usingthedynamicsofthefinite-timeLyapunovex- ponentsasaconstructivetool,wedemonstratethatthedynamicalsystemsviewpointof extinctionevolvesnaturallytowardtheoptimalpath. Keywords StochasticdynamicalsystemsandLyapunovexponents·Optimalpathto extinction 1. Introduction Control and eradication of infectious diseases are among the most important goals for improvingpublichealth.Althoughtheglobaleradicationofadisease(e.g.,smallpox)has beenachieved(BremanandArita,1980),itisdifficulttoaccomplishandremainsapublic health target for polio, malaria, and many other diseases, including childhood diseases (Aylwardetal.,2000).Theglobaleradicationofadiseaseisnottheonlytypeofdisease extinctionprocess.Forexample,adiseasemay“fadeout”orbecomelocallyextinctina region.Sincetheextinctionislocal,thediseasemaybereintroducedfromotherregions (Grassly et al., 2005). Additionally, extinction may also occur to individual strains of a multistraindisease(MinayevandFerguson,2009),suchasinfluenzaordenguefever.It isworthnotingthattheextinctionprocessisalsoofinterestinthefieldsofevolutionand ∗ Correspondingauthor. E-mailaddresses:[email protected](EricForgoston),[email protected](SimoneBianco), [email protected](LeahB.Shaw),[email protected](IraB.Schwartz). Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2010 2. REPORT TYPE 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Maximal Sensitive Dependence and the Optimal Path to Epidemic 5b. GRANT NUMBER Extinction 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Nonlinear Systems Dynamics Section,Plasma Physics Division,Code 6792, REPORT NUMBER US Naval Research Lab,Washington,DC,20375 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 20 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Forgostonetal. ecology.Asanexample,bio-diversityarisesfromtheinterplaybetweentheintroduction andextinctionofspecies(Azaeleetal.,2006;BanavarandMaritan,2009). In order to predict the dynamics of disease outbreak and spread as well as to im- plement control strategies which promote disease extinction, one must investigate how modelparametersaffecttheprobabilityofextinction.Forexample,Dykmanetal.(2008) showedthatdiseasecontrolandextinctiondependonbothepidemiologicalandsociolog- icalparametersdeterminingepidemicgrowthrate.Additionally,sinceextinctionoccurs in finite populations, another factor in determining extinction risk is the local commu- nitysize(Bartlett,1957,1960;KeelingandGrenfell,1997;ConlanandGrenfell,2007). Furthercomplicationsarisefromthefactthatingeneral,stochasticeffectscauserandom transitionswithinthediscrete,finitepopulations.Thesestochasticeffectsmaybeintrin- sictothesystemormayarisefromtheexternalenvironment.Smallpopulationsize,low contactfrequencyforfrequency-dependenttransmission,competitionforresources,and evolutionarypressure(deCastroandBolker,2005),aswellasheterogeneityinpopula- tionsandtransmission(Lloydetal.,2007)mayallbedeterminingfactorsforextinctionto occur.Otherfactorswhichcanaffecttheriskofextinctionincludethenatureandstrength ofthenoise(MelbourneandHastings,2008),diseaseoutbreakamplitude(Alonsoetal., 2006),andseasonalphaseoccurrence(Stoneetal.,2007). Inlargepopulations,theintensityoftheintrinsicnoiseisoftenquitesmall.However, itispossiblethatarare,largefluctuationwhichoccurswithfiniteprobabilitycancause thesystemtoreachtheextinctstate.Sincetheextinctstateisabsorbingduetoeffective stochastic forces, eventual extinction is guaranteed when there is no source of reintro- duction(Bartlett,1949;AllenandBurgin,2000;Gardiner,2004).However,becausefade outsareusuallyrareeventsinlargepopulations,typicaltimescalesforextinctionmaybe extremelylong. Birth-death systems (Gardiner, 2004; van Kampen, 2007), which possess intrinsic noise, form an important class of stochastic processes. These systems have been used inthefieldofmathematicalepidemiology(Bartlett,1961;AnderssonandBritton,2000; Choisyetal.,2007).Inthesesystems,theintrinsicnoisearisesfromthediscretenessof theindividuals(orspecies)andtherandomnessoftheirinteractions.Topredictprobabili- tiesofeventsoccurringatcertaintimes,adescriptionofthestochasticsystemisprovided usingthemasterequationformalism.Stochasticmasterequationsarecommonlyusedin statisticalphysicswhendealingwithchemicalreactionprocesses(Kubo,1963). Forsystemswithalargenumberofindividuals,avanKampensystem-sizeexpansion maybeusedtoapproximatethemasterequationbyaFokker–Planckequation(Gardiner, 2004;vanKampen,2007).However,thetechniquefailsindeterminingtheprobabilityof largefluctuations(Gaveauetal.,1996;ElgartandKamenev,2004).Instead,inthisarticle, wewillemployaneikonalapproximationtorecasttheproblemintermsofaneffective classicalHamiltoniansystem(KamenevandMeerson,2008).Withhighprobability,the intrinsicnoisewillinduceextinctionofthediseaseorspeciesalongaheteroclinictrajec- toryinthephasespaceoftheclassicalHamiltonianflow.Thistrajectoryisknownasthe optimalpath(toextinction). It is highly desirable to locate the optimal path since the extinction rate depends on theprobability to traverse thispath. Additionally,the effect of a controlstrategy on the extinctionratecanbedeterminedbyitseffectontheoptimalpath(Dykmanetal.,2008). Throughtheuseoftheeikonalapproximation,weconsideramechanisticdynamicalsys- temsproblemratherthantheoriginalstochasticproblem.Unlikeothermethods,thisap- proach enables one both to estimate extinction lifetimes and to draw conclusions about MaximalSensitiveDependenceandtheOptimalPathtoEpidemic thepathtakentoextinction.Thismoredetailedunderstandingofhowextinctionoccurs mayleadtonewstochasticcontrolstrategies(Dykmanetal.,2008). Ingeneral,theoptimalpathtoextinctionisanunstabledynamicalobject.Therefore, many researchers have investigated the scaling of extinction rates with respect to a pa- rameter near a bifurcation point, where the dynamics are slow (Doering et al., 2005; KamenevandMeerson,2008;Kamenevetal.,2008;Dykmanetal.,2008).Theanalytical calculationofextinctionratesfarfromabifurcationpointismuchmoredifficult,andthus researchersoftenresorttoaveragingovermanystochasticruns(e.g.,ShawandSchwartz, 2010).Thenumericalcomputationoftheoptimalpathtrajectoryhasbeenachievedinthe pastusingashootingmethod(KamenevandMeerson,2008).However,sincetheproce- dureisverysensitivetoboundaryconditions,itisdifficulttoimplementwhenanalyzing pathsfarawayfrombifurcationpointsorwhenanalyzinghigh-dimensionalmodels. In this article, we develop a novel method for computing the optimal extinction tra- jectorythatreliesonthecalculationofthedynamicalsystem’sfinite-timeLyapunovex- ponents (FTLE). The classical Lyapunov exponent provides a quantitative measure of howinfinitesimallycloseparticlesinadynamicalsystembehaveasymptoticallyastime t →±∞ (Guckenheimer and Holmes, 1986). Similarly, the FTLE provides a quantita- tivemeasureofhowmuchnearbyparticlesseparateafteraspecificamountoftimehas elapsed. The FTLE fields were used by Pierrehumbert (1991) and Pierrehumbert and Yang (1993)tocharacterizestructures,includingmixingregionsandtransportbarriers,inthe atmosphere. Later, these structures were quantified more rigorously by introducing the ideaofLagrangianCoherentStructures(LCS)(Haller,2000,2001,2002;Shaddenetal., 2005; Lekien et al., 2007; Branicki and Wiggins, 2010). The definition of a LCS as a ridgeoftheFTLEfieldwasintroducedbyHaller(2002)andformalizedbyShaddenetal. (2005).TheFTLEmethodprovidesameasureofhowsensitivelythesystem’sfuturebe- haviordependsonitscurrentstate,andtheLCS,orridge,isastructurewhichhaslocally maximal FTLE value. In this article, we will show that the system displays maximum sensitivityneartheoptimalextinctiontrajectory,whichenablesustodynamicallyevolve towardtheoptimalescapetrajectoryusingFTLEcalculations. In this article, we consider three standard epidemic models that contain intrinsic or externalnoisesourcesandillustratethepowerofourmethodtolocatetheoptimalpath to extinction. Even though our examples are taken from infectious disease models, the approach is applicable to any extinction process or escape process. Section 2 discusses stochastic modeling in the limit of large population size, while Section 3 describes the theorythatunderliestheLyapunovexponentcomputations.InSection 4,ourmethodis usedtofindtheoptimalpathtoextinctionforthreeexamples.InSection5,wedemon- strate that the optimal path to extinction also possesses a local maximum of the FTLE field,andconclusionsarecontainedinSection6. 2. Stochasticmodelinginthelargepopulationlimit Tointroducetheideaofconstructinganoptimalpathinstochasticdynamicalsystems,we considertheproblemofextinctiontakenfrommathematicalepidemiology.Thestochastic formulation of the problem accounts for the random state transitions which govern the dynamicsofthesystem.Toquantitativelyaccountfortherandomnessinthesystem,we Forgostonetal. willformulateamasterequationwhichdescribesthetimeevolutionoftheprobabilityof finding the system in a particular state at a certain time (Gardiner, 2004; van Kampen, 2007). The state variables X∈Rn of the system describe the components of a population, whiletherandomstatetransitionswhichgovernthedynamicsaredescribedbythetran- sition rates W(X,r), where r ∈Rn is an increment in the change of X. Consideration ofthenetchangeinincrementsofthestateofthesystemresultsinthefollowingmaster equationfortheprobabilitydensityρ(X,t)offindingthesysteminstateXattimet: ∂ρ(X,t) (cid:2)(cid:3) (cid:4) = W(X−r;r)ρ(X−r,t)−W(X;r)ρ(X,t) . (1) ∂t r If the total population size of the system is N, the components of the state variable canberescaledtobefractionsofthepopulationbyletting x=X/N.Thenthegeneral solution(Kuboetal.,1973)forthetransitionprobabilityfromx toxinthetimeinterval 0 fromt tot canbewrittenasthefollowingpathintegral: 0 (cid:5) (cid:6) (cid:5) (cid:9) t (cid:3) (cid:7) (cid:8) (cid:4) P(x,t|x ,t )= dD(x,p)exp −N ds H x(s),p(s),s −p(s)x˙(s) , (2) 0 0 t0 wheredD(x,p)denotesintegrationoverallpaths. TheintegralintheexponentofEq.(2)istheaction,andtheHamiltonianH(x,p;t)is giveningeneralas (cid:2) (cid:7) (cid:8) H(x,p;t)= w(x;r) exp(p·r)−1 , (3) r where w(x;r) is defined as the transition rate W per individual. The Hamiltonian H dependsbothonthestateofthesystemxaswellasthemomentump,whichprovidesan effectiveforceduetostochasticfluctuationsonthesystem.Itshouldbenotedthatinstead of using the Hamiltonian representation, one could use the Lagrangian representation, whichresultsinthefollowingalternativesolution: (cid:5) (cid:6) (cid:5) (cid:9) t (cid:7) (cid:8) P(x,t|x ,t )= dD(x)exp N dsL x(s),x˙(s),s , (4) 0 0 t0 withL(x,x˙;t)=−H(x,p;t)+x˙ ·p. The action reveals much information about the probability evolution of the system, fromscalingnearbifurcationpointsinnon-Gaussianprocessestoratesofextinctionasa functionofepidemiologicalparameters(Dykman,1990;Dykmanetal.,2008).Inorder tomaximizetheprobabilityofextinction,onemustminimizetheaction.Theminimizing formulation entails finding the solution to the Hamilton–Jacobi equation, which means that one must solve the 2n-dimensional system of Hamilton’s equations for x and p. The appropriate boundary conditions of the system are such that a solution starts at a nonzerostate,suchasanendemicstate,andasymptoticallyapproachesoneormorezero componentsofthestatevector.Therefore,atrajectorythatisasolutiontothetwo-point boundaryvalueproblemdeterminesapath,whichinturnyieldstheprobabilityofgoing MaximalSensitiveDependenceandtheOptimalPathtoEpidemic from the initial state to the final state. The optimal path to extinction is the path that minimizestheactionineithertheHamiltonianorLagrangianrepresentation. To illustrate an application of the theory for a finite population, we consider in de- tailanexplicitexample,namelythewell-knownproblemofextinctioninaSusceptible- Infectious-Susceptible(SIS)epidemicmodel.Inthisexample,thepopulationconsistsof S susceptible individuals and I infectious individuals. The population is driven via the birthrateμ,whichisalsoequaltothedeathrate.ThetransitionratesforX=(S,I)T are givenasfollows: (cid:7) (cid:8) (cid:7) (cid:8) W X;(1,0) =Nμ, W X;(−1,0) =μX , 1 (cid:7) (cid:8) (cid:7) (cid:8) W X;(0,−1) =μX , W X;(1,−1) =γX , (5) 2 2 (cid:7) (cid:8) W X;(−1,1) =βX X /N, 1 2 whereβ isthemassactioncontactrate,γ istherecoveryrate,andN isnowaparameter fortheaveragesizeofthepopulation.ForlargeS,I ∝N,fluctuationsofSandI aresmall onaverage.Ifthesefluctuationsaredisregarded,onearrivesatthefollowingdeterministic mean-fieldequationsforS andI: X˙ =Nμ−μX +γX −βX X /N, (6a) 1 1 2 1 2 X˙ =−(μ+γ)X +βX X /N. (6b) 2 2 1 2 Equations(6a)–(6b)arethestandardequationsoftheSISmodelintheabsenceoffluc- tuations.Fortheparameter R =β/(μ+γ)>1,theyhaveastable,attracting solution 0 X =Nx with x =R−1, and x =1−R−1, which corresponds to endemic dis- A A 1A 0 2A 0 ease.Inaddition,Eqs.(6a)–(6b)haveanunstablestationarystate(saddlepoint)givenby X =Nx with x =1 andx =0,whichcorrespondstotheextinct,ordisease-free, S S 1S 2S state. ForN (cid:7)1,thesteadystatedistributionρ(X)hasapeakatthestablestateX with A width∝N1/2.ThispeakisformedoveratypicalrelaxationtimegiveninDykmanetal. (2008)andSchwartzetal.(2009).However,intheprocessofextinction,weareinterested intheprobabilityofhavingasmallnumberofinfectiousindividuals,whichisdetermined bythetailofthedistribution.Thedistributiontailcanbeobtainedbyseekingthesolution ofEqs.(6a)–(6b)intheeikonalform(ElgartandKamenev,2004;Doeringetal.,2005; Kubo et al., 1973; Wentzell, 1976; Gang, 1987; Dykman et al., 1994; Tretiakov et al., 2003)givenby (cid:3) (cid:4) ρ(X)=exp −NS(x) , x=X/N, (7) ρ(X+r)≈ρ(X)exp(−p·r), p=∂S(x)/∂x, whereS(x)istheaction. To leading order in N−1, the equation for S(x) has a form of the Hamilton–Jacobi equation S˙=−H(x,∂ S;t), where S is the effective action, and the effective Hamil- x tonian is given by Eq. (3), with w(x;r)=N−1W(X;r) being the transition rates per individual.TheactionS(x)canbefoundfromclassicaltrajectoriesoftheauxiliarysys- temwithHamiltonianH thatsatisfythefollowingequations: x˙ =∂ H(x,p), p˙ =−∂ H(x,p). (8) p x Forgostonetal. Sincethemaximumoftheprobabilityofextinctionisfoundbyminimizingtheaction, we compute the trajectory satisfying the Hamiltonian system that has as its asymptotic limits in time the endemic state as t →−∞ and the extinct state as t →+∞. The ac- tionthenhastheformfromEq.(2)(Wentzell,1976;Gang,1987;Dykmanetal.,1994; Tretiakovetal.,2003): (cid:5) ∞ S(x )= p·x˙dt, H(x,p)=0. (9) S −∞ InEq.(9),theintegraliscalculatedforaHamiltoniantrajectory(x(t),p(t))T thatstarts as t →−∞ at x →x ,p→0, and arrives as t →∞ at the state x . This trajectory A S describes the most probable sequence of elementary events x →x+r that brings the systemtox . S Several authors have considered how extinction rates scale with respect to a pa- rameter near bifurcation points (Doering et al., 2005; Kamenev and Meerson, 2008; Kamenev et al., 2008; Dykman et al., 2008) when the distance to the bifurcation point issmallandthedynamicsisveryslow.Foranepidemicmodel,thismeansthattherepro- ductiverateofinfectionisgreaterthanbutveryclosetoone.However,mostrealdiseases have reproductive rates of infection greater than 1.5 (Anderson and May, 1991), which translates into faster growthrates fromtheextinct state. Ingeneral, inorder to getana- lyticscalingresults,onemustcomputetheoptimalpathusingeithertheHamiltonianor Lagrangianequationsofmotion.However,farfrombifurcationpoints,oneisseldomable toperformtherequiredanalysisorcomputation. Additionally, the computation of the optimal path involves the use of a numerical shootingmethod(KamenevandMeerson,2008).TheHamiltonianorLagrangianrepre- sentationofann-dimensionaldynamicalsystemliesin2n-dimensionalspace.Therefore, for even relatively low-dimensional dynamical systems, the use of a shooting method to find the optimal path to extinction can be quite problematic. In the next section, we demonstratehowtoevolvenaturallytotheoptimalpathusingadynamicalsystemsap- proach. 3. Finite-timeLyapunovexponents Weconsideravelocityfieldv:R2n×I →R2n givenbytheHamiltonianfieldinEq.(8) whichisdefinedoverthetimeintervalI =[t,t ]⊂Randthefollowingsystemofequa- i f tions: (cid:7) (cid:8) y˙(t;t,y )=v y(t;t,y ),t , (10a) i 0 i 0 y(t;t,y )=y , (10b) i i 0 0 wherey=(x,p)T ∈R2n,y ∈R2n,andt∈I. 0 Such a continuous time dynamical system has quantities, known as Lyapunov expo- nents,whichareassociatedwiththetrajectoryofthesysteminaninfinitetimelimit.The Lyapunovexponentsmeasurethegrowthratesofthelinearizeddynamicsaboutthetra- jectory.Tofindthefinite-timeLyapunovexponents(FTLE),onecomputestheLyapunov MaximalSensitiveDependenceandtheOptimalPathtoEpidemic exponents on a restricted finite time interval. For each initial condition, the exponents provideameasureofitssensitivitytosmallperturbations.Therefore,theFTLEisamea- sure of the local sensitivity to initial data. For the purpose of completeness, we briefly recapitulate the derivation of the FTLE. Details regarding the derivation along with the appropriatesmoothnessassumptionscanbefoundinHaller(2000,2001,2002),Shadden etal.(2005),Lekienetal.(2007),andBranickiandWiggins(2010). The integration of Eqs. (10a)–(10b) from the initial time t to the final time t +T i i yieldstheflowmapφti+T whichisdefinedasfollows: ti φti+T :y (cid:10)→φti+T(y )=y(t +T;t,y ). (11) ti 0 ti 0 i i 0 ThentheFTLEcanbedefinedas (cid:10) 1 σ(y,t,T)= ln λ (Δ), (12) i |T| max whereλ (Δ)isthemaximumeigenvalueoftherightCauchy–Greendeformationtensor max Δ,whichisgivenasfollows: (cid:11) (cid:12) (cid:11) (cid:12) dφti+T(y(t)) ∗ dφti+T(y(t)) Δ(y,t,T)= ti ti , (13) i dy(t) dy(t) with*denotingtheadjoint. Foragiveny∈R2n ataninitialtimet,Eq.(12)givesthemaximumfinite-timeLya- i punovexponentforsomefiniteintegrationtimeT (forwardorbackward),andprovidesa measureofthesensitivityofatrajectorytosmallperturbations. The FTLE field given by σ(y,t,T) can be shown to exhibit “ridges” of local max- i imainphasespace.Theridgesofthefieldindicatethelocationofattracting(backward timeFTLEfield)andrepelling(forwardtimeFTLEfield)structures.Intwo-dimensional (2D) space, the ridge is a curve which locally maximizes the FTLE field so that trans- verse to the ridge one finds the FTLE to be a local maximum. What is remarkable is thattheFTLEridgescorrespondtotheoptimalpathtrajectories,whichisshownheuris- tically in Section 5. The basic idea is that since the optimal path is inherently unsta- ble and observed only through many realizations of stochastic experiments, the FTLE shows that locally, the path is also the most sensitive to initial data. Figure 1 shows a schematic that demonstrates why the optimal path has a local maximum to sensitivity. Ifonechoosesaninitialpointoneithersideofthepathneartheendemicstate,thetwo trajectorieswillseparateexponentiallyintime.Thisisduetothefactthatbothextinctand endemicstatesareunstable,andtheconnectingtrajectorydefiningthepathisunstableas well.Anyinitialpointsstartingneartheoptimalpathwillleavetheneighborhoodinshort time. 4. FindingtheoptimalpathtoextinctionusingFTLE We now apply our theory of dynamical sensitivity to the problem of locating optimal paths to extinction for several examples. We consider the case of internal fluctuations, Forgostonetal. Fig.1 Schematicshowingthepathfromtheendemicstate(blue)totheextinctstate(red).Theoptimal pathleavestheendemicpointalonganunstablemanifoldandconnectstotheextinctstatealongastable manifold.Themagentaandgreendashedlinesrepresenttrajectoriesoneithersideoftheoptimalpath.The initialstartingdistancebetweentrajectoriesneartheendemicstateexpandsexponentiallyinforwardtime (shownbythecyanlines).Locally,thisdemonstratesthatthefinite-timeLyapunovmeasureofsensitivity withrespecttoinitialdataismaximalalongtheoptimalpath.Thisisevidentintheridgesobservedinthe evolutionoftheexponents.(Colorfigureonline.) where the noise is not known a priori, as well as the case of external noise, where the noiseisspecified.Ineachcase,theinteractionofthenoiseandstateofthesystemsbegin withadescriptionoftheHamiltonian(orLagrangian)todescribetheunstableflow.Then thecorrespondingequationsofmotionareusedtocomputetheridgescorrespondingto maximumFTLE,whichinturncorrespondtotheoptimalextinctionpaths(Schwartzet al.,2010). 4.1. Example1—Extinctioninabranching-annihilationprocess Foranexampleofasystemwithintrinsicnoisefluctuationswhichhasananalyticalsolu- tion,weconsiderextinctioninthestochasticbranching-annihilationprocess A−→λ 2A and 2A−→μ ∅, (14) whereλandμ>0areconstantreactionrates(ElgartandKamenev,2004;Assafetal., 2008). Equation (14) is a single species birth-death process and can be thought of as a simplifiedformoftheVerhulstlogisticmodelforpopulationgrowth(Nåsell,2001). The stochastic process given by Eq. (14) contains intrinsic noise which arises from the randomness of the reactions and the fact that the population consists of discrete in- dividuals. This intrinsic noise, which can generate a rare sequence of events that cause the system to evolve to the empty state, can be accounted for using a master equation approach. The probability P (t) to observe, at time t, n individuals is governed by the n followingmasterequation: P˙n= μ2(cid:3)(n+2)(n+1)Pn+2−n(n−1)Pn(cid:4)+λ(cid:3)(n−1)Pn−1−nPn(cid:4). (15) MaximalSensitiveDependenceandtheOptimalPathtoEpidemic Using the formalism of Assaf et al. (2008), Eq. (15) is recast as the following exact evolutionequationforG(ρ,t): ∂G μ(cid:7) (cid:8)∂2G ∂G = 1−ρ2 +λρ(ρ−1) , (16) ∂t 2 ∂ρ2 ∂ρ whereGisaprobabilitygeneratingfunctiongivenby (cid:2)∞ G(ρ,t)= ρnP (t), (17) n n=0 andwhereρ isanauxiliaryvariable. WesubstitutetheeikonalansatzG(ρ,t)=exp[−S(ρ,t)],whereS istheaction,into Eq. (16) and neglect the higher-order ∂2S/∂ρ2 term. This results in a Hamilton–Jacobi equationforS(ρ,t).Byintroducingaconjugatecoordinateq=−∂S/∂ρandbyshifting themomentump=ρ−1,thenonearrivesatthefollowingHamiltonian: (cid:11) (cid:12) μ H(q,p)= λ(1+p)− (2+p)q qp. (18) 2 Hamilton’sequationsarethereforegivenas ∂H (cid:3) (cid:4) q˙= =q λ(1+2p)−μ(1+p)q , (19a) ∂p ∂H (cid:3) (cid:4) p˙=− =p μ(2+p)q−λ(1+p) . (19b) ∂q TheHamiltoniangivenbyEq.(18)hasthreezero-energycurves.Thefirstisthemean- fieldzero-energylinep=0,whichcontainstwohyperbolicpointsgivenash =(q,p)= 1 (λ/μ,0)andh =(q,p)=(0,0).Thesecondistheextinctionlineq=0,whichcontains 0 anotherhyperbolicpointgivenash =(q,p)=(0,−1).Thethirdzero-energycurveis 2 non-trivialandisgivenasfollows: 2λ(1+p) q= . (20) μ(2+p) ThesegmentofthecurvegivenbyEq.(20)whichliesbetween−1≤p≤0corresponds toaheteroclinictrajectory.Ast approaches−∞,thetrajectoryexitsthehyperbolicpoint h alongitsunstablemanifoldandentersthehyperbolicpoint h alongitsstablemani- 1 2 foldast approaches∞.Thisheteroclinictrajectoryistheoptimalpathtoextinctionand describes the mostprobable (rare) sequence of events which evolves the system from a quasi-stationarystatetoextinction(Assafetal.,2008). ToshowthattheFTLEevolvestotheoptimalpath,wecalculatetheFTLEfieldusing Eqs.(19a)–(19b).Figure2(a)showstheforwardFTLEplotcomputedusingEqs.(19a)– (19b)forT =6,withλ=2.0andμ=0.5.InFig.2(a),onecanseethattheoptimalpath toextinctionisgivenbytheridgeassociatedwiththemaximumFTLE.