ebook img

DTIC ADA464621: The ISO Long-Wavelength Spectrometer PDF

6 Pages·0.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA464621: The ISO Long-Wavelength Spectrometer

Astron.Astrophys.315,L38–L42(1996) ASTRONOMY AND ASTROPHYSICS The ISO Long-Wavelength Spectrometer ? P.E. Clegg1, P.A.R. Ade1, C. Armand2, J.-P.Baluteau34, M.J. Barlow5, M.A. Buckley6, J.-C.Berges3, M. Burgdorf2, E. ; Caux7,C.Ceccarelli8,R.Cerulli8,S.E.Church9,F.Cotin7,P.Cox1019,P.Cruvellier3,J.L.Culhane11,G.R.Davis12,A.Di ; Giorgio2, B.R. Diplock6, D.L. Drummond6, R.J. Emery6, J.D. Ewart2, J. Fischer13, I. Furniss5, W.M. Glencross5, M.A. Greenhouse14, M.J. Griffin1,C. Gry23, A.S. Harwood6, A.S. Hazell1, M. Joubert315, K.J.King6, T.Lim2, R. Liseau816, ; ; ; J.A.Long6,D.Lorenzetti17,S.Molinari2,A.G.Murray1,D.A.Naylor18,B.Nisini8,K.Norman11,A.Omont19,R.Orfei8, T.J.Patrick11,D.Pe´quignot20,D.Pouliquen3,M.C.Price2,Nguyen-Q-Rieu21,A.J.Rogers6,F.D.Robinson22,M.Saisse3,P. Saraceno8,G.Serra7,S.D.Sidher2,A.F.Smith6,H.A.Smith14,L.Spinoglio8,B.M.Swinyard6,D.Texier2,W.A.Towlson5, N.R.Trams2,S.J.Unger6,andG.J.White1 1 QueenMaryandWestfieldCollege,UniversityofLondon,MileEndRoad,LondonE14NS,UK 2 TheLWSInstrument-DedicatedTeam,ISOScienceOperationsCentre,POBox50727,E-28080Madrid,Spain 3 Laboratoired’AstronomieSpatiale,CNRS,BP8,F-13376MarseilleCedex12,France 4 ObservatoiredeMarseille,2placedeVerrier,F-13248Marseille,France 5 DepartmentofPhysicsandAstronomy,UniversityCollegeLondon,GowerStreet,LondonWC1E6BT,UK 6 RutherfordAppletonLaboratory,Chilton,Didcot,OxonOX110QX,UK 7 Centred’EtudeSpatialedesRayonnements,CNRS,9avenuedeColonelRoche,F-31029Toulouse,France 8 CNR-IstitutodeFisicadelloSpazioInterplanetario,CP27,I-00044Frascati,Italy 9 ObservationalCosmology,MC59-33,CaliforniaInstituteofTechnology,Pasadena,CA91125,USA 10 Institutd’AstrophysiqueSpatiale,Ba^timent120,Universite´deParisXI,F-91405Orsay,France 11 MullardSpaceScienceLaboratory,UniversityCollegeLondon,HolmburyStMary,Dorking,SurreyRH56NT,UK 12 InstituteofSpaceandAtmosphericStudies,UniversityofSaskatchewan,Saskatoon,Saskatchewan,S7N5E2,Canada 13 NavalResearchLaboratory,RemoteSensingDivision,4555OverlookAvenueSW,Washington,DC20375,USA 14 NationalAirandSpaceMuseum,SmithsonianInstitution,LaboratoryforAstrophysics,Washington,DC20560,USA 15 CNES,2PlaceMauriceQuentin,F-75001Paris,France 16 StockholmObservatory,S-13336Saltsjo¨baden,Sweden 17 OsservatorioAstronomicodiRoma,I-00040MontePorzio,Italy 18 DepartmentofPhysics,UniversityofLethbridge,4401UniversityDrive,Lethbridge,Alberta,T1K3M4,Canada 19 Institutd’AstrophysiquedeParis,CNRS,98bisboulevardArago,F-75014Paris,France 20 ObservatoiredeParisMeudon,PlaceJanssen,F-92190Meudon,France 21 ObservatoiredeParis,61avenuedel’Observatoire,F-75014Paris,France 22 Code717.3,NASAGoddardSFC,Greenbelt,MD20771,USA Received5August1996/Accepted22August1996 Abstract. TheLong-WavelengthSpectrometer(LWS)isoneof Keywords:artificialsatellites,spaceprobes–instrumentation: twocomplementaryspectrometersaboardtheEuropeanSpace spectrographs–infrared:general Agency’s Infrared Space Observatory1 (ISO) (Kessler et al., 1996). It operates over the wavelength range 43 1969 m at either medium (about 150 to 200) or high (68(cid:0)00 to:97(cid:22)00) spectralresolvingpower.This Letterdescribestheinstrument anditsmodesofoperation;acompanionpaper(Swinyardetal, 1.Introduction 1996)describesitsperformanceandcalibration. Astronomical observations at far-infrared wavelengths, from about20 mto300 m,arealmostimpossiblefromtheground becauseo(cid:22)fatmosphe(cid:22)ricemissionandabsorption.Evenataero- plane and balloon altitudes, spectroscopy is difficult because Sendoffprintrequeststo:P.E.Clegg([email protected]) telluric lines obscure weaker and narrower extra-terrestrial ISO is an ESA project with instruments funded by ESA Mem- ? ber States(especiallythePIcountries: FranceGermany, theNether- lines.TheLWScoversthealmostunexploredwavelengthrange landsandtheUnitedKingdom)andwiththeparticipationofISASand 43 1969 m:theshorterwavelengthend overlapswith the NASA. 25(cid:0) 45: m(cid:22)rangeoftheShort-WavelengthSpectrometer(de : (cid:0) (cid:22) Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 1996 2. REPORT TYPE 00-00-1996 to 00-00-1996 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER The ISO Long-Wavelength Spectrometer 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Research Laboratory, ,4555 Overlook Avenue, REPORT NUMBER SW,Washington,DC,20375 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES The original document contains color images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE 5 unclassified unclassified unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 P.E.Cleggetal.:TheISOLong-WavelengthSpectrometer L39 Graauwetal.,1996)whilstthe longestwavelengthiscloseto thecurrentlimitforphotoconductivedetectors. TheLWSwasdesignedtoachievethetwomainobjectives ofastronomicalspectroscopy:thedetectionandidentificationof dust(orsolidstate)featuresandlines-togetherwithadetermi- nationoftheirstrengthsandratios-forwhichmoderatespectral resolvingpoweroftensuffices;and thestudy of theshapesof linesforkinematicpurposes,forwhichhighresolvingpoweris needed.[Highresolvingpowerisalsoneededtodetectveryfaint linessittingonastrongcontinuum.]Wethereforechosetode- signtheLWStooperateintwomodes.Initsmoderate-resolution mode,itsspectralresolutionelementis029 mbetween43 m and946 mand060 mbetween946: m(cid:22)and1969 m(cid:22).In high-re:so(cid:22)lutionmo:de,i(cid:22)tsresolvingpow:er(cid:22)variesbetw:een(cid:22)8100 and8500,forthewavelengthrange47 70 m,andbetween 6800and9700forthewavelengthrange(cid:0)70 (cid:22)1966 m. (cid:0) : (cid:22) 2.DescriptionoftheInstrument Fig.1.TheopticaltrainoftheLWS 2.1.Overalldesign tionisfocusedbymirror(8)ontothecylindricalsurfaceofthe The LWS consists of three main components, the focal plane detectorblock. unit (FPU), operating at liquid-helium temperatures, and two warmunits:theanalogueprocessingunit(APU)-whichdrives Theopticalsubsystem isdesignedto satisfy theJacquinot thevariousmechanismsandpowersthe detectorsin theFPU, criterionfortheresolutionoftheinstrument,tooptimisethecol- aswellasprocessingtheresultingsignals-andthedigitalpro- limationofthebeamatthepositionoftheFabry-Perotetalons, cessing unit (DPU), which commands the LWS via the APU andtomatchthespectralresolutionachievedbytheinstrument andinterfaceswiththespacecraftdata-handlingsystem. ingratingmodetotheorder-sortingneedsoftheFPs. TheFPUitselfconsistsofthreesubsystems:theopticalsub- Thegratingisruledwith7.9linespermillimetreatablaze system,thedetectorsubsystemandtheFabry-Perotsubsystem. angleof30 onarotationally-symmetricSchmidtprofile.Itis o Theopticalsubsystemcomprisesacollimator,agrating,andre- mountedona scanningmechanismsimilar to thatused in the focusingopticswhichfeedthedetectorsubsystem.TheFabry- SWSanddescribedbydeGraauwetal.(1996).Withthegrating Perotsubsystem,whichissituatedinthecollimatedpartofthe initsrestposition,theradiationisincidentatannominalangleof beam,consistsofawheelcarryingtwoFabry-Perotinterferom- 60 .Thegratingisusedinsecondorderforthewavelengthrange o eters.Thewheelcanbesetinanyoffourpositions:inoneof 43 946 mandinfirstorderforthewavelengthrange946 these,thebeampassesstraightthroughthesubsystemwhilstin 196(cid:0)9 :m.(cid:22)It can be scanned, by means of a servo-contro:lle(cid:0)d another,thebeamiscompletelyobscured.Intheremainingtwo driv:e m(cid:22)echanism, through 70 . The grating was originally positions, one or other Fabry-Perotis placed in the beam and intended to scan through (cid:6)35: oin normal operation, a range modulatesitspectrally. chosensothatthenominal(cid:6)ran:geoofwavelengthscoveredbyone detectorchanneloverlappedthatof theadjacentdetectorbya fewmicrometers.Theextendedscanningrangeof 70 allows 2.2.OpticalDesign(SaisseandRabou,1988) -atthecostofasmallincreaseinpowerdissipate(cid:6)din:tohefocal plane-thenominalwavelengthrangeofanydetectorchannelto Figure1 showstheopticaltrainof theLWS superimposedon becoveredbyitstwoneighbours,thusprovidingredundancyin aphotographoftheinstrumenttakenbeforetheintegrationof thecaseofafaileddetector.Thisincreaseofthescanningrange theFabry-Perotsubsystem.Thef/15beamfromthetelescope also extends the long-wavelength coverage out to 1969 m. isfoldedbymirror(1)andcomestoafocusonthemirror(2), In order to maximise the sensitivity of the instrument:at(cid:22)all which was designed to restrict thefield of view on the sky to wavelengths, however, the grating is now scanned more than 1.65arcmin-thediffractionlimitofthetelescopeat118 m. Inpractice,thebeamissomewhatnarrowerthanthis(Swiny(cid:22)ard (cid:6)3:5oinnormaloperation. et al., 1996). The field mirror is surrounded by a concentric out-of-fieldrejectionmirrortoavoidproblemswithstraylight. 2.3.DetectorsandColdElectronics(Churchetal.,1993) Frommirror(2),thebeampassestothemirrors(3)and(4)be- forereachingtheFabry-Perotsubsystemviathemirror(5).The Figure 2 is a drawing of the detector block, which contains beam is then reflected by plane mirrors (6) and (7) on to the ten detectors: five of these cover the short-wavelength range grating,whichhasanoff-centreSchmidtprofiletocorrectfor 43 90 m in nominally 10 m-wide channels while the sphericalaberration.Finally,onleavingthegrating,theradia- (cid:24)others(cid:0)cover(cid:22)the long-wavelength(cid:22)90 197 m in nominally (cid:0) (cid:22) L40 P.E.Cleggetal.:TheISOLong-WavelengthSpectrometer ror(8)infigure1.Thestressonthelong-wavelengthdetectors, whichisappliedwithamechanicalscrew,reducesthegapbe- tween the acceptors and the valence band, thus reducing the energyneededforexcitationofcarriersintotheband.Thisre- duction in energy-gap, however, also allows more carriers to bethermallyexcitedintotheband;inordertokeeptheirdark- currentstoacceptablelevels,therefore,thestresseddetectorsare operatedatthelowesttemperatureavailable,thatofthehelium tank at 1.8 K. The unstressed detectors in contrast, are found tobehavepoorlyat1.8Kandarethereforeoperatedat3.0K. Operating the two types of detector at different temperatures isachievedbymountingthemonthermally-separatebars.The unstresseddetectorsaremountedontheupperoftwobarsinthe detector block. This bar, which accommodatesa heater and a thermometeroperatinginaservoloop,hasaweakthermallink to the lower bar. The lower bar, accommodating the stressed detectors(shaded)isthermallyshortedtotheheliumtankwith ahigh-conductancecopperstrap. Thephoto-currentinadetectorelementisaccumulatedon theinputcapacitanceofanFETinaJF-4integratingamplifiers suppliedbyInfraredLaboratories,Inc.TheseFETsareoperated atabout60KwithintheirTO5cans,whicharecarefullyshielded toavoidstraythermalemission.Theamplifiersarereadoutat 88 Hz and are re-set at pre-set intervals, usually 0.25 or 0.5 seconds. Fig.2.DrawingoftheLWSdetectorblock. Fiveinfraredilluminators,alsoprovidedbyInfraredLabo- ratories,Inc.,areusedtomonitorandcalibratethestabilityof responseofthedetectors. 20 m-widechannels.Radiationinthelong-wavelengthrange - co(cid:22)ming from the grating in first order of diffraction - is, of course,focusedontothesamerangeofpositionsonthedetector 2.4.Fabry-Perots(Davisetal.,1995) blockasisradiationintheshort-wavelengthrangecomingfrom Foruseinhigh-resolutionmode,theLWScontainstwoFabry- thegratinginthesecondorderofdiffraction.Alternatedetectors Perot interferometersmounted on a wheel driven by a pinion arethereforedesignedtorespondtolongandshortwavelengths engaging gear-teeth on the rim of the wheel: a new type of respectively.Consequently,eachdetectorreceivesnotonlyits cryogenicmotorwasespeciallydeveloped(Davisetal.,1991) “own" wavelengthbutalsoothermultiplesofthiswavelength to drive the wheel. The short-wavelength Fabry-Perot covers inotherordersandmustbepreventedfromrespondingtothese thewavelengthrange47 70 mwhilstthelong-wavelength extraneousordersbybandpassfilters.Thisbecomesverycritical Fabry-Perotdealswiththe(cid:0)rema(cid:22)ining70 1966 m.Rotation at the shortest wavelengths and makes high demands on the of the wheel brings successively into th(cid:0)e para:lle(cid:22)l part of the designofthefilters. beam(betweenmirrors(5)and(6)offigure1):anopenaper- Threedifferenttypesofphotoconductivedetectorareused ture,sothattheLWScanbeusedinmoderate-resolutionmode tocovertherequiredrangeofwavelengths.Theshortestwave- asagratingspectrometer;theshort-wavelengthFabry-Perot;a lengthchannelSW1(nominally43 50 m)usesaberyllium- blankingplateformeasurementofthedetectors’dark-currents; dopedgermanium(Ge:Be)detector(cid:0).The(cid:22)nextfivechannelsin and the long-wavelength Fabry-Perot. [In practice, the dark- wavelength-space(SW2:50 60 mSW3:60 70 m,SW4: currentismeasuredwithoneoftheFPsinthebeam,itsetalon 70 80 m,SW5:80 90(cid:0)ma(cid:22)ndLW1:90(cid:0) 110(cid:22) m)use beingdeliberatelymadenon-paralleltoreflectbackallradiation gall(cid:0)ium-d(cid:22)oped germani(cid:0)um (G(cid:22)e:Ga) detectors(cid:0)whilst(cid:22)stressed arrivingviatheopticalpathoftheinstrument.] Ge:Gaisusedforthefourlongest-wavelengthchannels(LW2: TheconstructionoftheFabry-Perotetalonsisshowninfig- 110 130 m, LW3: 130 150 m, LW4: 150 170 m ure 3. The moving plate (4) is suspended on leaf-springs (8) andL(cid:0)W5:17(cid:22)0 190 m).[(cid:0)Thesea(cid:22)rethenominalw(cid:0)avelen(cid:22)gth between the back plate (1) and the fixed plate (9). Each cor- ranges;theactu(cid:0)alrang(cid:22)eofwavelengthscoveredbyeachchan- nerofthemovingplatecarriesaloudspeaker-likedrivecoil(3) nelisadjustedtooptimisethesensitivityoftheinstrumentatall whichoperatesinagapsurroundingapermanentmagnetinthe wavelengths(Swinyardetal.,1996).] backplate(2).Thepositionofeachcorner,relativetothefixed Detectors are mounted in integrating cavities to increase plate,isdeterminedbymeasuringthechargeonthecapacitance their absorption efficiency and are fed by a horn designed to micrometer(6),formedbypadsonthemovingandfixedplates. coupleefficientlywiththeradiationleavingthesphericalmir- Thesepositionsarecontrolledbyaservosystemwhichsupplies P.E.Cleggetal.:TheISOLong-WavelengthSpectrometer L41 software used to implementthe AOTs, however,make use of thismultiplexingwherepossibletominimisethelengthofscan andthereforethetimeneededtocarryoutanobservation.The spectralresolutionelementsingratingmodeare029 minthe short-wavelength channels (SW1 - SW5) and 0:60 (cid:22)m in the long-wavelengthchannels(LW1-LW5).Theser:esol(cid:22)utionele- mentscorrespondtoaresolvingpowerrangingbetweenabout 150and300. 3.2.2.Fabry-PerotMode InFabry-Perotmode,thegratingismovedsoastomaximisethe powerfallingonthedetectoratthewavelengthunderinvestiga- tionandtheappropriateFabry-Perotisusedtoscanaboutthat wavelength.Ifarangeofwavelengthsistobestudied,thegrat- ingwillbemovedperiodicallysoastokeepthegratingtrans- missionasnearmaximumaspossible.Althoughmultiplexing betweendetectorsstilloccurs-radiationindifferentordersof Fig.3.TheconstructionofaFabry-Perotetalon. theFabry-Perotwillbefallingondetectorsotherthantheone selectedforthewavelengthofinterest-itisunlikelythatanyof thesedatawillbeuseful.Therearetworeasonsforthis.First, sufficientcurrenttothedrivecoiltomakethemeasuredcharge there may not be spectral lines in the other orders. Secondly, equaltoacontrolvalue.Thetwoplatesarescannedparallelto andmoreimportantly,thegratingwillbesetsothatithaspeak eachotherbyapplyingappropriatesignalstothethreecoils. transmissionattheFabry-Perotorderofinterest.Otherorders Thefixed and movingplates carry the reflecting elements will fall on the (uncalibrated) wings of the grating’s spectral (5),madeoffree-standingnickelmeshessuppliedbyHeiden- responsefunction. hain;thesemeshesareaffixedtothemesh-mountingrings(7) whichareattachedtotheplates.Themeshesconsistofarectan- Theresolvingpowerachievedin Fabry-Perotmodevaries gulargridofrectangularsection:thethicknessofthemeshesis between 6800 and 9700. The free spectral range of a Fabry- 3 m,thewidthofthe“bars"ofwhichthemeshesarecomposed Perot is given by , where is the order of interference. is(cid:22)6 m, and the periods of the grid are 19 m for the long- Its resolvingpowe(cid:21)r,=onn theothenr hand is givenby , where wave(cid:22)lengthFabry-Perotand155 mforthe(cid:22)short-wavelength is its finesse. In order to achieve a resolving ponwFer of 104 Fabry-Perot.Thenarrowtoleran:ce(cid:22)allowedonthesedimensions Fwiththeavailablefinessesofabout100,weneedtooperatein iscriticaltotheperformanceoftheinstrument. orders of around 100; the ratio of the wavelength to the free spectralrangeisthenalsoabout100.Ifthegratingistoavoid spectralcontamination,bypreventingadjacentspectralorders 3.UsingtheLWSInstrument(Cleggetal.,1994) of the Fabry-Perots from reaching the detectors, its resolving 3.1.Summary powermustthereforealsobeabout100.Itwastheneedforthe gratingtoorder-sortfortheFabry-Perotwhichsettherequire- The LWS has two operational modes: grating (medium- mentontheresolvingpowerofthegrating.Inbothgratingand resolution) mode and Fabry-Perot (high-resolution) mode. It Fabry-Perotmodes,observationsarecarriedoutwithoneoftwo has six different observational modes which can be accessed standardlengthsofdetectorintegrationramps,0.25sand0.5s. viafour AstronomicalObservationTemplates(AOTs, cf. sec- Thetotalintegrationtimeperspectralpointisthenachievedby tion3.3). varyingthenumberoftheseramps.Itwasoriginallyintended thatspectrabeobtainedbycarryingoutanumberofintegrations 3.2.OperationalModesoftheInstrument at each setting ofthegratingor Fabry-Perotuntilthetotalre- quiredintegrationtimehadbeenbuiltup.Inordertominimise 3.2.1.GratingMode the low-frequency end of 1/f noise, however, a fast-scanning Ingratingmode,theFabry-Perotwheelisturnedtoitsopenpo- modewasalsoimplemented.Inthismode,onlyoneintegration sitionandthegratingisscannedovertherangeofangleneeded isperformedateachpositionofthegratingorFabry-Perot,the tocoverthedesiredwavelengthrange.Notethat,alldetectors totalintegrationtimebeingbuiltupbyrepeatedscanning.This arereceivingradiationallthetimeandthecorrespondingdata method is now recommended for all observations because it arebeingreadout.Whetherornotthesedataareusefultothe avoidssuccessiveintegrationrampsbeingaffectedbythesame observerdependsupontherangeofwavelengthsselected.The particlehit(cf.Swinyardetal.,1996). L42 P.E.Cleggetal.:TheISOLong-WavelengthSpectrometer 3.3.ObservationalModesoftheInstrument isnoneoftheusualmonitoringofchangesindetectorrespon- sivityordark-current(cf.Swinyardetal.,1996),theaccuracy 3.3.1.Medium-ResolutionWavelengthRangeLWS01 with which the signals are extracted is significantly reduced. This grating-modeAOT results in a medium-resolutionspec- Lastly,thedatacannotbeprocessedbystandardmethods.For trum covering a wavelength range, specified by the user, up allthesereasons,themodeisavailableonlytomembersofthe to the full range of the LWS in medium-resolution mode LWSConsortium. (430 1969 m).Thereisaminimumtotherangecovered, corr:es(cid:0)pondin:g(cid:22)to 125 m for the short-wavelength channels 4.Conclusion (SW1 - SW5) and:25(cid:22)m for the long-wavelength channels (LW1 - LW5). Data a:re(cid:22)recordedfrom all ten detectorswhile The Long-Wavelength Spectrometer was designed to provide astronomerswith a spectroscopictoolin a region of the elec- thespecifiedrangeisbeingscanned.Theobserverhasachoice tromagnetic spectrum largely inaccessible hitherto. It is fully ofsamplingthespectrumat1,1/2or1/4ofaresolutionelement. functioninginorbitandisproducingspectrafromavarietyof astronomicalobjects:otherpapersin thevolumeillustratethe 3.3.2.Medium-ResolutionLineSpectrumLWS02 resultsbeingachieved. ThisAOTproducesmedium-resolutionspectraaroundupto10 Acknowledgements. TheLWSwasdesignedandbuiltbyaconsortium wavelengths,specifiedbytheobserver.Dataarerecordedfrom of scientists and engineers from Canada, France, Italy, the UK and alltendetectorswhilethespecifiedrangesarebeingscanned. theUSA.Hardwareandsoftwarewereprovided by: Centred’Etude Theobserverhasachoice,infractionsofaresolutionelement, SpatialedesRayonnements,Toulouse,France;IstitutodeFisicadello ofthespectralsamplinginterval. Spazio Interplanetario, Frascati, Italy; Laboratoire Astronomie Spa- tiale,Marseille,France;MullardSpaceScienceLaboratory,University CollegeLondon,HolmburyStMary,UK;RutherfordAppletonLabo- 3.3.3.High-ResolutionWavelengthRangeLWS03 ratory,Chilton,UK;QueenMaryandWestfieldCollege,London,UK; ThisAOTresultsinahigh-resolutionspectrumcoveringawave- UniversityCollegeLondon, London, UK.Theauthorsgratefullyac- knowledgefundingbythefollowingnationalagencies:CNES,CNR, length range,specified by the user, up to the fullrangeof the NASA,NSERCandPPARC. LWS(470 1966 m)inhigh-resolutionmode.Usefuldata arerecord:ed(cid:0)from:on(cid:22)lyonedetectoratatime.Theobserverhas achoiceofsamplingthespectrumat1,1/2or1/4ofaresolution References element. Church,S.E.,Griffin,M.J.,Ade,P.A.R.,Price,M.C.,Emery,R.J.and Swinyard,B.M.,1996,InfraredPhysics34,389 Clegg,P.E.,Heske,A.andTrams,N.R.,1994.LWS/PEC/2039.01“Ob- 3.3.4.High-ResolutionLineSpectrumLWS04 servers’sManual",Issue1 This AOT produces high-resolution spectra around up to 10 Davis,G.R.,Furniss,I.,Towlson,W.A.,Ade,P.A.R.,Emery,R.J.,Glen- wavelengths,specifiedbytheobserver.Usefuldataarerecorded cross,W.M.,Naylor,D.A.,Patrick,T.J.,Sidey,R.CandSwinyard, fromonlyonedetectoratatime.Theobserverhasachoiceof B.M.,1995,Appl.Optics,34,92 deGraauw,Th,etal.,1996.Thisissue. samplingthespectrumat1,1/2or1/4ofaresolutionelement. Kessler,M.F.etal.,1996.Thisissue. Davis,G.R., Furniss,I., Patrick,T.J., Sidey.R.C. and Towlson,W.A. 3.3.5.Narrow-BandPhotometryLWS02 1991.In25thAerospaceMechanismsSymposium,Pasadena,May. NASAconferencepublication3113 In this mode, the grating is not scanned but kept at a fixed Saisse, M. and Rabou, P. 1998. In SPIE vol. 1013, “Opitcal Design position by a special choice of a parameter in AOT LWS02. MethodsandLargeOptics",pp66-73. The resultis narrow-bandphotometryat ten wavelengths,de- Swinyardetal.,1996.Thisissue. terminedbythechoiceofasinglewavelength,withintherange 43 1969 m.Thespectralresolutionelementis029 min the(cid:0)short-:wa(cid:22)velength channels (SW1 - SW5) and 0:60 (cid:22)m in thelong-wavelengthchannels(LW1-LW5). : (cid:22) 3.3.6.SerendipitouslyParallelMode Longafterthedesignoftheinstrumentanditsobservingmodes wascomplete,itwasrealisedthatalimitednumberofastronom- icallyusefuldatacouldbetransmittedinhousekeepingchannels whilethesatellitewasslewingorotherinstrumentswerebeing used.Inthismode,theslopeoftheintegrationrampsissimply estimatedonboardbytakingthedifferencebetweenasample atthebeginningandendoftheramp.Moreover,becausethere

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.