ebook img

DTIC ADA461856: Hop Reservation Multiple Access (HRMA) for Multichannel Packet Radio Networks PDF

9 Pages·0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA461856: Hop Reservation Multiple Access (HRMA) for Multichannel Packet Radio Networks

HopReservationMultipleAccess (HRMA)forMultichannel Packet RadioNetworks (cid:3) ZhenyuTangandJ.J.Garcia-Luna-Aceves ComputerEngineering Department SchoolofEngineering UniversityofCalifornia SantaCruz,CA95064, USA ktang, [email protected] theproblemofdesigningMACprotocolsthatuseveryslowfre- Abstract quency hopping (i.e., an entire packet is sent in the same hop) AnewmultichannelMACprotocolcalledHopReservationMul- asacombinationoftimeandfrequencydivisionmultiplexingof tiple Access (HRMA) for packet-radio networks is introduced, the radio channel is very timely. Curiously, there is littlework specifiedandanalyzed. HRMAisbasedonvery-slowfrequency- reportedonthissubject. hoppingspreadspectrum(FHSS)andtakesadvantageofthetime TherearemanypriorexamplesofMACprotocolsforfrequency- slottingnecessaryforfrequencyhopping.HRMAallowsapairof hopping radios, whicharetypicallybasedonapplyingALOHA communicating nodes to reserve a frequency hop (channel) us- orslottedALOHAusingthesamehoppingsequenceforallnodes ing a hop reservation and handshake mechanism on every hop or sender- or receiver-oriented code assignments [6, 8]. How- to guarantee collision-free data transmission inthe presence of ever,theseapproachesassumethatradioshopfrequencieswithin hiddenterminals. HRMAprovidesabaselinetoofferQoSinad- thesamepacketfrequentlytoachievecodedivisionmultipleac- hocnetworksbasedonsimplehalf-duplexslowFHSSradios.We cess(CDMA).IEEE802.11[1]incorporatesaconvergencelayer analyzethethroughputachievedinHRMAforthecaseofafully- that makes the characteristics of the physical layer transparent connected network assuming variable-length packets, and com- to the MAC protocol. A concrete example of using very-slow pareitagainstanidealmultichannelaccessprotocolandthemul- frequency-hopping radios is the MAC protocol used in Metri- tichannel slotted ALOHAprotocol. Thenumerical resultsshow com’s Ricochet wireless data network [3], which assumes that thatHRMAcanachievemuchhigherthroughputthanmultichan- eachreceiverhasitsownfrequencyhoppingsequenceandmakes nelslottedALOHAinthetraffic-loadrangesofinterest,especially thesenderlearnthehoppingsequenceofthereceiver.Thesender whentheaveragepacketlengthislargecomparedtoaslotsize, synchronizeswiththereceiver’shoppingsequenceandtransmits inwhichcasethemaximumthroughputofHRMAisclosetowhat allitsdatapacketoverthesamefrequencyhoponwhichthere- canbeobtainedwithanidealprotocol. ceiveristuned.Thedatapacketcanlastlongerthanafrequency- hop dwell time. However, neither [1] nor [3] is exempt from hidden-dterminalinterference. WeintroducetheHopReservationMultipleAccess(HRMA) 1. Introduction protocol,whichtakesadvantageofthetime-slottingpropertiesof Becauseoftherecentaffordabilityofcommercialradiosandcon- slow FHSS. Section 2 specifies HRMA in detail. HRMA uses trollers based on microprocessors, multi-hop packet radio net- acommon hopping sequence andpermitsapairof nodes tore- works(i.e.,ad-hocnetworks)arelikelytoplayanimportantrole servefrequencyhopsoverwhichtheycancommunicatewithout in computer communications. Ad-hoc networks extend packet interference. Afrequencyhopisreservedbycontentionthrough switching technology into environments with mobile users, can arequest-to-send/clear-to-sendexchangebetweensenderandre- beinstalledquicklyinemergencysituations,andareselfconfig- ceiver. A successful exchange leads to a reservation, and each urable, which makes them very attractivein many applications, reservedhopstartswithareservationpacketfromsenderandre- including theseamlessextensionof theInternettothewireless, ceiverthatpreventsothernodesfromattemptingtousethehop. mobileenvironment. Acommonfrequencyhopisusedtopermitnodestosynchronize The unlicensed natureof ISMbands makes themextremely withone another, i.e., agreeonthecurrent hop of thesequence attractiveforadhocnetworks; furthermore, thereiswidespread and the beginning time of a frequency hop. After a hop is re- availability of commercial, affordable radios for the 915MHz, served,asenderisabletotransmitdatabeyondthedwelltimeof 2.4GHz and 5.8GHz bands. Accordingly, developing medium thereservedhop.Inthissection,wealsodemonstratethatHRMA access control (MAC) protocols with which the nodes (packet- guaranteesthatnodataoracknowledgmentpacketsfromasource radios)ofad-hocnetworkscansharetheISMbandsefficientlyis andreceivercollidewithanyotherpacketsinthepresenceofhid- criticalforthefuturesuccessofsuchnetworks. InISMbands,radiosmustoperateusingdirect-sequencespread denterminals. Section3analyzesthethroughputofHRMA,anidealproto- spectrum(DSSS)orfrequency-hoppingspreadspectrum(FHSS) colinwhichitisassumedthatoneofmultiplesenderscompet- [2]. ThispaperfocusesonthedesignofanefficientMACproto- ingforareceiver isalways allowedtocapturethereceiver, and colforad-hocnetworksbasedonFHSSradiosoperatinginISM themultichannelslottedALOHAprotocolwithreceiver-oriented bands. ThemaximumdwelltimeallowedinISMbandsis400msec channel assignment (ROCA), for the case of a fully-connected [2],whichat1Mbpsallowsentirepacketstobetransmittedwithin network andvariable-length packets. Although our analysis fo- thesamefrequencyhop. Ontheotherhand, keepingthesender cuses on fully-connected networks for simplicity, it is relevant and receiver synchronized on the same frequency hops while a forcomparative purposes, because HRMAdoesnot sufferfrom packet isbeing transmittedisnot simplewhennodes moveand hidden-terminal interference, which makes the fully-connected dataratesarehigh(1Mbps). Commercially-available radiosfor networkaworst-casescenarioforHRMAfromthestandpointof ISMbandstodayareabletosynchronize onapacket bypacket channelreuse. basis, but not on bit by bit basis. Given the FCC regulations Section4presentsthenumericalresultsofouranalysiscom- for ISM bands and the characteristics of today’s COTS radios, paringthethreeprotocols;theresultsshowthatHRMAachieves veryhighthroughputfortherangeoftrafficloadwithinwhichthe (cid:3)ThisworkwassupportedbytheDefenseAdvancedResearchProjectsAgency networkisstable,whichcanbeenforcedinpracticewithsimple (DARPA)undergrantF30602-97-2-0338. backoffstrategies.Section5presentsourconclusions. Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 1998 2. REPORT TYPE 00-00-1998 to 00-00-1998 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Hop Reservation Multiple Access (HRMA) for Multichannel Packet 5b. GRANT NUMBER Radio Networks 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION University of California at Santa Cruz,Department of Computer REPORT NUMBER Engineering,Santa Cruz,CA,95064 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE 8 unclassified unclassified unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 VariableDefinitions ProcedureRECEIVE() ProcedureXMIT() =SlotLength Begin Begin SL=FrameLength ; If(datalength ) FL=PacketDetected MHRoTrimeerPacket; 1 ThenBegin >FL PD=TimerExpired While(HR TimFerLnotexpired ) Constructadatapacketoflength bytakingpartofthedata; TE=LocalData Begin ^MorePacket fieldinpackFethLeader ; LD =MaximumPropagationDelay Timer ; EndMorePacket 1 PBreogciWTTTIenfdi(mhppuirelrreerooS (PTpc)A=DR3PTr(cid:2)(^o)ceTFssELing;)lDisetleany; WITEEfhnls(hedTeinlIEBefEBles ((eLTeg)gicniDEna2ll)^P(cid:2)TAhSPeTSnIDpcVarEl)low(B)pa;AitC+;KOTFpFr()o;c IEETTfrilnmsa(dNenePMsBormue mtigotaoildnrrldaeettehdaleaaPpytdaaaact)itklTaclehittkn;heneeatehpnoafidpcekoltedoftt;ithnheepncaeocxkrrteetHshpReoanpddeerirniog da;ck0f;requency; ThPenDBegin ReceivePacket; While( )Listen; Receivepacket; DOCASEof(receivedpackettype) If( T)E^PD DOCACEof(receivedpackettype) Begin ThePnBDegin Begin DATA: Receivepacket; Synchronizingpacket: If(DestinationID=LocalID) DOCASEof(eventtype) Acceptthesynchronizingparameters; ThenBegin Begin CallPASSIVE(); Passpackettoupperlayer; Moredata HRreceivedforthislink: Default: If(lastpacket) Remov^ethedatasentfromdatabuffer; CallSTART(); ThenBegin SendRTS; End ; CallXMIT()atbeginningofnextslot; End MHopotroethePcaorcrekspeotnd inga0ckfrequency; Nomoredata Ackreceivedforthispacket: ElseBegin SendAcktosource; Removeth^edatasentfromdatabuffer; Setthesynchronizingparametersandsendsynchronizingpacket; End If( )callBACKOFF(); CallPASSIVE(); End ElsLecDallPASSIVE(); End ElseBegin Default: End If( )ThencallBACKOFF(); CallBACKOFF(); ElsLecDallPASSIVE(); End ProcedureACCESS() End End Begin Default: ElsecallBACKOFF(); SendRTStodestinationinRTSperiod; If( )ThencallBACKOFF(); End ListenduringCTSperiod; ElseLcDallPASSIVE(); If(CTSreceivedfortheRTSsent)ThencallXMIT(); End ProcedureBACKOFF() ElsecallBACKOFF(); End Begin End End Calculatemaximumnumberofbackoffslots,m, PBreogciDBendeOugriCBDEenAneuPgdArSiiCLIonEnSffgniaSs(oilHItHnlfeVRgSn(REeY;ovp(pfNe)eeinSrnrCitiyooHStnddyyc::p(nh)ec;p)heoriroHd:Rperiod inHRperiod) EndTIEEEfhnlns(eddMenIESLCBfBeliaesso(nleLegtldergiRcnniDHenaEdlRlCuP)PrEpTiAanaIhVcSgeckSnERekItcTV(ea)iSEnltalatt)(Bhn)t;hedAenCCeeKTxnSOtdHFpoRFefrC(ipo)Te;drS;iopde;riod; WBaTciecmhgoiielDBrnerdeOi (gnTigCBDERnAnteUuRogdrSEiisCLonEnA)ofgniamDsoilHNtHnlfeeoRgSn(RbeDY;oavppfcNeeeOknSrrCiotiyooMHftndfydc(:pa:)hl(;egp)0oe;rriitmohdm:;(cid:2)SL); TheLnDcallACCESS(); ^PD If( inHRperiod)ThencallACCESS(); DuringRTSperiod: ProcedureSYNCH() DuringTRTESp^erioPd:D Listen; Begin Listen; BeginningofCTSperiod: Hopto ; BeginningofCTSperiod: TIfh(eRnTBSergeicneived^DestinationID=LocalID) WHohpilteo(tfihn0eSnyenxcthfrpeeqruioedn)cydoacscyonrcdhiningftohremhaotipopninegxcphaatntegren;; TIfh(eRnTBSergeicneived^DestinationID=LocalID) sendCTStosource; Returntocallingprocedure; SendCTStosource; CallRECEIVE(); End CallRECEIVE(); End End EndofCTSperiod: ElselistenduringCTSperiod; If(( inRTSorCTSperiod) ( inHRperiod)) EndofCTSperiod: ThenLcDallBACKOFF(); _LD^PD If( inHRperiod)ThencallBACKOFF(); ElsecallPASSIVE(); End TE^PD End End End End Figure1:HRMASpecification slot. Thefrequency on which nodes may tunetheir radios dur- 2. HRMA Protocol ingtheHR,RTSandCTSperiodsremainsthesameineachslot HRMA is based on a common hopping sequence for the entire andvariesamong slotbyslotaccordingtothe networkandrequireshalf-duplexslowfrequency-hoppingradios commonfrequencfyih;oip=pin1g;2s;e:q::u;eMnc;e. with no carrier sensing to operate. HRMA can be viewed as a Aspecialslotisdefinedthatisofthesamesizeasanormal time-slotreservationprotocolinwhichatimeslotisalsoassigned slot,butconsistsofonlyonesynchronizationperiodfixedon aseparatefrequencychannel. for synchronization purpose. This special synchronization slfo0t The pseudo code in Figure 1 presents the specification of followedby consecutivenormalslots,whichpassthroughall HRMA.Wenotethatthemechanismusedtocontendforandre- the frequeMnciesinthehoppingsequence,makesupaHRMA servefrequencyhopsinHRMAissimilarincomplexitytosuch framMe,asshowninFigure2. simple MAC protocols as FAMA [4][7] and MACAW [5]. To simplifyouranalysis,anon-persistentpolicyisusedforhopreser- vations;persistentversionsofHRMAarealsopossible. CS BSHSNother Beacons Frame (M+1 Slots) 2.1.SynchronizingNodestoaCommonHoppingSequence S. Slot Slot As in any MAC protocol operating with FHSS radios, time in HRMAisslotted. HRMAuses one of the availablefrequen- f0 f0 fp3 f0 fp5 f0 fp4 f0 fp2 f0 fp1 f0 f0 fp3 f0 fp5 (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) cies,whichwedenoteby ,asadedicatedsyLnchronizationchan- RTS Collision (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) nelonwhichallnodesexfc0hangesynchronizationinformationto agree onthebeginning of afrequency hop andthecurrent hop. (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) Therestofthefrequenciesareorganizedinto RTS CTS DATA ACK frequency pairs . FMor a=nyb(nLod(cid:0)e1),=t2hce frequencyhop (ifsiu;fsei(cid:3)d);foir=sen1d;in2g;:o::r;Mreceivinghop-reserviation RTS CTS DATA fp3 DATA ACK (HR)packets,rfeiquest-to-send(RTS)packets,clear-to-send(CTS) CS: Clock Synch Data packets, and data packets, while frequency hop is used for BS: Beacon Synch Data (cid:3) HSN: Hop Sequence Number HR RTS sending or receiving acknowledgments to data pfacikets sent on fpi: Frequency Pair #i frequencyhop . Figure2:StructureofHRMAslotandframe EachHRMfAislotconsistsofonesynchronizationperiod,one HRperiod, oneRTSperiodandoneCTSperiod, eachofwhich Whenanewnodebecomesoperational, itmustlistentothe isused exclusively tosend or receive a synchronization packet, synchronizationchannelforatimeperiodlongenoughtogather an HR packet, an RTS packet, and a CTS packet, respectively. thesynchronization informationabout hopping patternandtim- Allthenodesthatarenottransmittingorreceivingdatapackets ingofthesystem,sothatitcangetsynchronizedwiththesystem. musthoptothesynchronizationfrequency andexchangesyn- Ifthenewnodedoesnotdetectanysynchronizationinformation chronizationmessagesduringthesynchronifz0ationperiodofeach during that time, it finds an empty system. The new node can broadcast itsownsynchronization informationandcreateanew information, and then hop to the next frequency hop of the one-nodesystem. Anewnodecaneasilyjoinorcreateasystem frequenciesinthecommonhoppingpattern. M withHRMA,becausethesynchronizationinformationisrepeated AdatapackettransmittedinHRMAcanbeofanylengthand ineveryHRMAslot. Hence,nodesinthesameconnectedcom- the node can send multiple data packets as well. However, be- ponentofanetwork,whichwecallgroup,aresynchronouswith causeHRMAoperatesintheISMband,adatapacketorpacket eachother. Incontrast, nodesfromdifferentgroupsarediscon- traincannotexceedthemaximumdwelltimeallowedbytheFCC nectedandasynchronous. [2].Thesourceanddestinationdwellonthesamefrequencyhop LetthelengthofaHRMAslotandthesynchronizationperiod duringtheentiredatapacketorpackettrain. ofanormalHRMAslotbe and ,respectively. Itcanbeseen When the data that need to be exchanged between sender fromFigure3thatthedwel(cid:17)ltime(cid:17)osf atthebeginningofeach and receiver require multiple HRMA frames for their transmis- frameis . Becausethesynchrofn0izationperiodisrepeated sion,thesendernotifiesthereceiverandthereceiversendsanHR atthebeg(cid:17)in+nin(cid:17)gsofeachHRMAslot,theremustbeatleastone packetduringtheHRperiodofthesameslotofthenextframe. synchronizationperiodoflength withinanyintervaloflengfth0 This informs the neighbors of the receiver that they cannot at- .Therefore,anytwonodes(cid:17)frsomdisconnectedgroupsmust tempt to send RTSsin the HRMA slot occupied by sender and (cid:17)al+wa(cid:17)yss have at least two overlapping time periods of length receiver. When the sender receives the HR from the receiver, on withinanytimeperiod equal tothedurationof aHRM(cid:17)As itsends an RTStojamany possibleRTSsaddressed toitsown framf0enomatterhowlargethetimingoffsetbetweenthedifferent neighbors, whichmay not hear the receiver. Thus, without fur- groups is. Figure 3 shows the worst case overlapping time be- thercontention,thefrequencyhopisreservedagainbythesender tweenasynchronoussystems.Therefore,HRMAallowsdifferent andreceiverforthefollowingHRMAframe.Bothsenderandre- groupstomerge. ceiveraresilentintheCTSperiodoftheslot,andmoredataare Asynchronizationprotocolbasedonalisten-before-transmit transmittedafterthatperiodoverthesamefrequencychannelof policyforbeaconpacketssimilartothatadvocatedinIEEE802.11 theHRMAslot.Thefrequencyhopremainsreservedinasimilar [1]canbeusedinthesynchronizationperiods.However,itwould fashion,untilthesenderrelinquishesit. bedifficultforasynchronousgroupstomergein802.11networks, Afterthesourcesendsadatapacket, ittransitionstotheac- because there is no equivalent to our proposed synchronization knowledgment frequencydefinedaccording tothefrequencyon slotandfrequencyhop. which the data packet was sent, and the receiver sends an ac- knowledgmentpacketbacktothesourceonthatacknowledgment One frame frequency. The different cases for access and reservation of hops are f0 f0 f3 f0 f5 f0 f4 f0 f2 f0 f1 f0 f0 f3 f0 f5 showninFigure2. AmoreefficientvariantofHRMAallowsthedataincluding System A piggybacked acknowledgment toflowinbothdirectionsandes- tablishsaduplexdatapipebetweenapairofnodes,withonenode transmittingon andtheother on . Withthisapproach, the (cid:3) f2 f0 f1 f0 f0 f3 f0 f5 f0 f4 f0 f2 f0 f1 f0 f0 same hop reservfaition procedure isnfeieded whenever thedatain System B eitherdirectionlastlongerthananHRMAframe. Figure 3: Worst case overlapping time on synchronization fre- quency 2.3. Correctness of HRMA The following theorem proves that HRMA eliminates hidden- terminalinterferenceproblems.Toprovethetheorem,weassume thatallnodesaresynchronized,thatthereisnocaptureeffecton 2.2. Accessingand Reserving Hops anychannel,andthatanyoverlapoftransmissionsatanyreceiver Assumingthatnodesareabletosynchronizeaccordingtoacom- on any channel causes all packets to be lost. We assume that mon hopping sequence, the rest of HRMA’s operation pertains links are bidirectional, which is a requirement that stems from tothewayinwhichnodesaccessandreservespecificfrequency theRTS/CTSexchangeusedtoreservefrequencyhops. hops. All nodes that are not communicating with other nodes Aneighborofanode isanodethathasalinkto .Allthe overreservedhopsarehoppingtogether, andweassumeanon- neighborsofnode aredAenotedbytheset . A persistentapproachtohopreservationinHRMA. Theorem: HRMAA guarantees that no dNata(Ao)r acknowledge- Whenanidlenodereceivesadatapacket totransmitbefore mentpacketcollideswithanyotherpacketinthepresenceofhid- theRTSperiodofagivenslothasstarted,thenodebacksoffifthe denterminals. HRperiodcontainsanHRpacket. Theback-offtimeisrandom Proof: If no RTS is successful, then no data packet or ac- andisamultipleoftheHRMAslottime,sothatthenodeisready knowledgmentpacketissentandthusnodataoracknowledgment toattempttransmissionatthebeginningofaslotaftertheback- packetisinvolvedinanycollision. off time elapses. Otherwise, if there is no HR packet claiming Ifadestinationnode successfullyreceivesanRTSfroma theslot,thenodesendsanRTStotheintendedreceiverandwaits sourcenode onfrequenDcyhop inslot ,itmustbetruethat fortheCTS,whichmustcomefromthereceiverduringtheCTS nonodeotheSrthan in ifsktransmitmtingon intheRTS period.WheneveranodereceivesanRTSintendedforit,itsends aCTSbacktothesourceintheCTSperiodofthesameslotand periodofslot ;othSerwisNe,(tDhe)rewillbeacollisionfokfRTSsatthe staysinthesamefrequencychannelwaitingforanydatapacket. destination m.Therefore,noothernodein canbeasource IfanodethatsentanRTSreceivesnoCTSfromthereceiverin node on Dduring thefollowingHRMAfNra(mDe.) However, note theCTSperiod,itbacksoffarandomnumberofslotsandtriesto that anyfokther node in could be or become a successful senditsRTSagaininanotherslot. Thesourcenodetransmitsa destination onhop ifNi(tDis)not in . It must alsobetrue datapacketifitreceivesaCTSfromthereceiver;thedatapacket that no node otherfthkan in Nc(aSn)receive a correct RTS istransmitted inthesame frequency channel used for the RTS- addressed to it in slot D; for oNth(eSrw)ise the RTSfrom would CTSexchange. interfere with it. Accomrdingly, no node other than iSn Whenanidlenodereceivesadatapackettotransmitafterthe canbeorbecomeasuccessfuldestinationonhop DdurinNg(tShe) RTSperiodofagivenslothasstarted,thenodesimplybacksoff. following HRMA frame, but it can be or becomefka successful Thisisdonebecausesuchanodeisunabletorequestthecurrent sourceon ifitisnotin .Asaresult,duringthefollowing slotanymore. HRMAfrafmke, istheonNly(Dso)urceon in and isthe AftertheCTSperiodofaslot,thenextslotstartsandallnodes onlysuccessfulSdestinationon in fk . NTh(eDre)fore, tDheCTS thatarenottransmittingorreceivingdatapacketshopto and from anddatapacket(s)fromfk areNco(Slli)sionfree. dwellon foraperiodoflength toexchangesynchronifz0ation D S f0 (cid:17)s If the data packet lasts longer than a frame, the destination sends an HR in the same (frequency) slot (slot ) of the next 3.2. HRMA Throughput The length of HR, RTS or CTS is the same and is denoted by frame,whichpreventsanynodein fromsmendinganRTS , andthesizeofthesynchronization periodisamultipleof , on (inslot )andbecoming asNou(rDce)node. HRiscollision (cid:13) . Thus, the slot size . For simplicit(cid:13)y, freefkat ,becamuse istheonlydestinationon in . Af- (gciv(cid:0)en1th)a(cid:13)tallprotocolsbeingcon(cid:17)sid=ere(dcr+ely2o)(cid:13)ntimeslottingand ter reSceivesanHRR,itsendsanRTSonthesafmkefreNqu(eSn)cy wouldbenefit fromthesamesynchronization solution proposed (inSslot ), and thisprevents any node in fromcorrectflky forHRMA,weignorethesynchronizationslotinourcomparative receivingmanypossibleRTSon directedNfor(Sth)atnodeandbe- analysis andassume that the synchronization period of aslot is comingadestination.Thereforef,kitistruethat istheonlysource muchlongerthanthesumofRTS,CTSandHRperiod. on in and is the only successfuSl destination on WeuseaMarkovprocesstodescribetheoperationofHRMA, in fk Ndu(rDing) anothDerHRMAframe. Alsonotethatnodesfikn whereeachstateoftheprocessrepresentsthenumberofchannels N(Sb)utnotin canbecomesuccessfulsourcesandnodes beingusedtotransmitdatainaslot.Themaximumstateisthere- iNn(S) butnotNin(D) canbecomesuccessfuldestinationson fore . ThestatetransitiondiagramfortheMarkov Ndu(rDin)gthisfollowNi(nSg)one-frame-long periodoftime. There- chainKis=shobwN=i2ncFigure 4. Any state , , of the ffokre,adatapacketfrom willbecollisionfreeinanysubsequent Markov chain can transit toany state k 0 (cid:20) k.<StaKte can HRMAframe,untiltheSendofthedata. transittoallstates. i (cid:20) k+1 K The ack packet for a data packet is sent on a different fre- quencyofthecorrespondingfrequencypair, ;therefore,anack (cid:3) packetcanonlycollidewithotherackpacketsf.kHowever,asstated 0 1 2 K-1 K above, notwosuccessful destinationsexistintheneighborhood ofanysuccessfulsourceonthesamefrequencyhop, whichim- pliesnoackpacketcancollidewithanyotherackpacket. It follows from the above that HRMA guarantees that data and ack packets are free of collision in the presence of hidden Figure4:MarkovprocessforHRMA terminals. 2 Theprobabilitythatanynodehasdatatosendintheaccess periodofaslot(i.e.,thesynchronizationorHRperiod)isgiven 3. Comparative Throughput Analysis by (1) F3.o1r.siSmypsltiecmity,MwoedaessluamnedaAfusslluym-cpontinoencstednetwork,whichcor- pa=1(cid:0)e(cid:0)c(cid:13)(cid:21) Let betheprobabilitythat nodesattempttotransmitan responds to a worst-case scenario from the standpoint of chan- (i) nelreuseinHRMA,becauseHRMAensuresthatnointerference RTSinsAtakte ,wehave i occursduetohidden terminals. Radiosarehalf-duplexandcan k onlytuneontoonefrequencyatatime.Thereare nodesinthe (2) system and datachannels (frequency hops) avNailable, where (i) N (cid:0)2k i N(cid:0)2k(cid:0)i . TMhisisthe case for a typical multi-hop packet radio Ak =(cid:18) i (cid:19)pa(1(cid:0)pa) Mnetw>orkNoperating onthe ISMbands and using FHSSradios as Let , theprobability thatonlyoneRTSarrivesduringthe described in Section 1, where the number of neighbors of each acceiss=pe1riodofaslotequals nodeisusuallysmallerthantheavailablefrequencies. Thechannelsareassumedtobeerrorfreeandhavenocapture effect, so that collision of packets is the only source of errors, arencdeimveorreletahdasntoonaecpoallciksieotnoavnedrlanpoppedacoknetsthienvsoalmveedcihnanitncealnatbea A(k1) =(N (cid:0)2k)(1(cid:0)e(cid:0)c+c2NG)(e(cid:0)c+c2NG)N(cid:0)2k(cid:0)1 (3) receivedcorrectlybythereceiver. ThesuccessprobabilityofanRTSatanygivenstate , , Itisassumedthatdatapacketsarriveateachnodeaccordingto isequaltotheprobabilitythat:(a)onlyoneRTSarrivesdukrinPgStjhke Poisonprocesswithaveragearrivalrate .Eachnodehasexactly accessperiodofaslot,(b)thecurrentchannelisnotreservedfor onebufferforadatapacket. Thedestin(cid:21)ationofanydatapacket thefutureslot(s),and(c)theintendedreceiverisnottransmitting fromeachnodeisassumedtobeuniformlydistributedamongall orreceivingadatapacket.Therefore, itsneighbors.Allthenodesaresynchronizedandallchannelsare slotted with the slot size equal to . Therefore, the total traffic (4) (1) loadnormalizedtoslotsizeisdeno(cid:17)tedby PSjk =Ak (1(cid:0)PRjk)(N(cid:0)2k(cid:0)1)=(N (cid:0)1) where istheprobabilitythatthecurrentchannelisreserved for thePfRutjukre slot(s) given that the system is in state . It can G=N(cid:21)(cid:17) Tosimplifyourcomparativeanalysis,weignoreanypropaga- beseenthatthisprobabilityislessthantheprobabilitykthatany tiondelay,guardtimeoranyprocessingtime. Theseparameters otherchannelisreservedforthefuture,giventhatthesystemisin can be easily taken into account if necessary, and their values state ,becausethedatapacketneedstolastlongeronthecurrent arefarsmallerthanpacketlengthsinnetworksoperatinginISM channkel thanonanyotherchannel toreservethechannel. Thus bands. BecauseIPpacketshavevariablesizes,weareonlyinter- wecanhaveanupperboundof byletting estedinvariable-lengthdatapackets. Fortractability,weassume PRjk thatanydatapacketistransmittedatthebeginningofaHRMA slot andcanonly endattheend ofaslot; therefore, thesizeof k PRjk = p thedatapacket isamultipleoftheslotsize.Wefurtherassume M that followsa(cid:14)geometricdistributionwithanaveragesizeof whichleadstoalowerboundofthethroughputofHRMA.This slots(cid:14),whichimpliesthattheprobabilitythatadatapacketendsadt lower bound is very close to the actual value of the throughput theendofaslotis .Wealsodenotetheprobabilitythata whenthenumberoftheavailablechannelsarelargecomparedto datapacketdoesnoqt=end1=adtaslotby . the total number of nodes, which can be seen in the numerical resultspresentedinSection4. Throughput is defined as the thpe=ave1ra(cid:0)gequtilization of the HRMAguaranteesthatanysuccessfulRTSleadstoasuccess- receiver (or transmitter) per node, i.e., the average percentage ful data transmission and the probability of a data packet com- of timethat each node receives (or transmits) data packets suc- pleting during a slot isq. At any given state , the cessfully. Becauseweassumehalf-duplexradios,themaximum throughputpernodeofanyMACprotocolis0.5. 1 (cid:20) i (cid:20) K probabilitythatthenextstateissmallerthan isgivenby i i i i j i(cid:0)j i j i(cid:0)j (cid:11)i = PSji q p +(1(cid:0)PSji) q p 0 1 2 K-1 K (cid:18)j(cid:19) (cid:18)j(cid:19) Xj=2 Xj=1 (5) i i(cid:0)1 = 1(cid:0)p (cid:0)iPSjiqp BecausetheMarkovprocessisbalancedacrossacutbetweenany state and ,weobtain Figure5:MarkovprocessforidealprotocolandALOHA k k+1 K (6) k (cid:25)kPSjkp = (cid:25)i(cid:11)i probabilitythat nodes finishtransmittingatthe i=Xk+1 endofslot isdnenotedb(y0 (cid:20)(nn).(cid:20)Thke)probabilitythat nodes where istheprobabilityofstate and .Ifwe t haveDpakcket arrivalsandattemptmtotrans- let (cid:25)k k 0(cid:20)k(cid:20)K(cid:0)1 m(0it(cid:20)inmthe(cid:20)neNxts(cid:0)lot2k) isdenotedby . Accordingtothis (m) (cid:25)i notation,wehave t+1 Ak Qi= (cid:25)K (thus )afterarrangementEquation(6)becomes QK =1 (11) (n) k n k(cid:0)n Ki=k+1Qi(cid:11)i (7) Dk =(cid:18)n(cid:19)q (1(cid:0)q) 0(cid:20)n(cid:20)k Qk = k 0(cid:20)k(cid:20)K(cid:0)1 and canbeexpressedbyEquation(2)exceptthat isgiven PPSjkp (m) Because by Ak pa (12) K pa=1(cid:0)e(cid:0)G=N instead of Equation (1). In slot , all the nodes in the system (cid:25)i =1 canbepartitionedintofoursets: t ,whichconsistsofthenodes ityields Xi=0 thataretransmittingorreceivingSdbataandwillnot finishinslot ,andhas members; ,whichcontainsthenodesthat 1 (8) taretransmi2ttkin(cid:0)go2rnreceivingdaStadbutwillfinishinslot ,andhas (cid:25)K = K(cid:0)1 members; , which consists of the nodes that aretidle and 1+ i=0 Qi h2anvepacketarrSivaalsinslot ,andhas members;and ,which andwecangetthestateprobabilitiesby containsthenodesthatareitdleandhamvenopacketarrivSalisinslot P ,andhas members.Whencalculatingthetransition (9) tprobabilitiNes,(cid:0)w2ekw(cid:0)illmconditiononthenumberofmembersin . (cid:25)k =(cid:25)KQk For the transition from state in slot to state in slot Sd, Finally,thethroughputofHRMAis atleast nkodesmusttfinishselndingintsl+ot1; thereforen^,= max,(a0n;dk(cid:0)l) nodesshouldbecomte S = Kk=1(cid:25)kk (10) isnucscloetssfulns,ena(cid:21)ldlent^rhseimneslmom^tbet=r+sil1n(cid:0)an(dkomr(cid:0)(cid:21)n)wm^ill.nItotcabnebaveasielaebnlethfaotr, P N receivintg+n1ewpacketswhileallSthbemSemabersin or willbe availableforreceivingnewpackets. Therefore,tShietotSaldnumber of nodes that will not be availablefor receiving new packets in 3.3. Throughput of Ideal Multichannel Slotted Access Protocol slot is andthetotalnumber For comparison purposes, weconsider thefollowing ideal mul- ofnotd+es1thaNtwnail(lkb;ena;vmai)la=ble2kfo(cid:0)rr2ence+ivimngnewpacketsinslot tichannelslottedchannelaccessprotocol. Eachnodeisassigned is . auniquechannel(frequencyhop)towhichitistunedwhenitis t+D1enoNteavb(yk;n;m)=Nth(cid:0)ep2rkob+ab2inlit(cid:0)ytmhat newarrivalsin not transmitting, and the node tunes its radio to the channel of slot willbesuSckc;ens;smfu(lm^in)slot giventhat,m^inslot , nodes theintendedreceivertotransmitapacket,whichisusuallycalled arestendingdataand ofthemtw+ill1finishand idlentodkeshave receiver-orientedchannelassignment(ROCA).Whenanodehas arrivals. Wecalculaten usingamapmpingconcept. To apackettosend,itattemptstotransmitinthenextslot.Thereex- have newsuccessfulSske;nnd;mer(sm^in)slot ,itshouldholdtrue isttwopossibletypesofconflict. Oneisthattwoormorenodes that m^ , and any nodte+in1 must be mapped trytostartsendingpacketstothesamereceiveratthesameslot. Theotheroneisthatthedestinationistransmittingorreceiving. (addrNesasve(dk);tno;omth)er(cid:21)nodm^esinsuchawaythatSeaxactly members Weassumethatwhenthefirstconflicthappens,theidealprotocol in aremapped. Denoteby thetom^talnumber canrandomlypickonecompetingsendertooccupythedestina- ofSsuic[hdSedsiredmappings. Ck;n;m(m^) tion’schannelandtransmitifthedestinationisnotamongthese For , . Therefore, we attemptingsendersandisreadytoreceiveinthenextslot;andit only neeNdatvo(kc;onns;imde)r t<hemc^aseSskw;nh;mer(em^) = 0 . If willblockalltheattemptingsenderswhenthesecondcasehap- equals0, and mustNboatvh(kbe;n0;,mw)hic(cid:21)hmm^eans pens. Therefore, thereisnocollisioninthechannels. Theonly tNhanta(k;n;m) . Ifm m^ equals 1, must be1; issuethataffectsthethroughputisthepair-upofnodes. thereSfokr;en,;mal(lm^ne)ig=hbo1rsareNanvaa(ikla;bnle;man)dthus m if WecanusetheMarkovchainshowninFigure5todescribe and if . InthefSokll;onw;min(gm^,)w=ec0on- theoperationoftheidealprotocol,whereeachstateofthechain ms^ide=rt0hecasSeskw;nh;mer(em^)=1 m^ =1 and . represents the number of channels being used to transmit data ItisalsoimmediatethNatav(k;n;m)(cid:21)m^ Nna(k;n;m)>1 packetsduringaslot.Let denotetheprobabilityofstate . Ac(cid:25)ckordingtoourassumptions,eachk;s0ta(cid:20)te (13) okf(cid:20)theKM;Kark=ovbcNh=ai2nccan transit to any state. A transition may Ck;n;m(0)=[Nna(k;n;m)(cid:0)1]m =(cid:2)k;n;m(0) occurinthenextslotwhennodesfinishtransmittingoridlenodes In general, for any , we can obtain , the havearrivals. total number of map0pi(cid:20)ngsiw(cid:20)hemr^eexactly given(cid:2)mke;mn;bmer(si)from Before proceeding further we introduce the following nota- i tions. Assumethatinagivenslot thesystemisinstate . The t k aremapped,is Thesuccessfulreceivingprobabilityforanynode isequal Si[Sd to the probability that: (a) only one packet is directeRd to node fromitsneighborsinaslot,(b)allthecurrentpacket(s)being i(cid:0)1 Rtransmittedtoorfromnode ifanyendduringthisslot,and(c) m i (cid:2)k;n;m(i)=[Nna(k;n;m)+i(cid:0)1] (cid:0) (cid:2)k;n;m(j) nootherpacket(s)willbetrRansmittedtoorfromnode during Xj=0(cid:18)j(cid:19) (14) itsreceivingtime. Tokeeptheanalysistractable,weassRumethat Itfollowsthat duringthereceivingtimeofanypacketat ,anynodecansendat mostonepacket,whichleadstoanupperbRoundofthethroughput ofALOHAwithROCA,becauseweunderestimatethecollision (15) probability. Theprobabilitythatanidleneighborofnode has Nav(k;n;m) Ck;n;m(i)= (cid:2)k;n;m(i) nopacketarrivalfor in consecutiveslots,denotedby R,is (cid:18) i (cid:19) R i Ei Thereareatotalof possiblemappingsifthereare m arrivals.Therefore, (N (cid:0)1) m (cid:0)iG=N (20) 1(cid:0)e Ei =1(cid:0) N (cid:0)1 (16) Itfollowsthattheprobabilityof(c),when has idleneighbors, Ck;n;m(m^) Sk;n;m(m^)= m is R r (N (cid:0)1) Thetransitionprobabilityfromstate to isthengivenby 1 (21) s(cid:0)1 s(cid:0)1 r k l Cr = p q(1(cid:0)pa) Es(cid:0)1 k N(cid:0)2k (17) The throughput for aXsn=y1node that is not transmitting when the (n) (m) Plk = Dk Ak Sk;n;m(m^) packetarrivesis nX=n^ mX=m^ Wecansolvetheglobalbalanceequationswith N(cid:0)2 N(cid:0)k(cid:0)1 k k(cid:0)j (22) (m) (1) (j) j (n) S1 = (cid:25)k Ak Bm Bk q Dk(cid:0)jCx K Xk=0 mX=1 Xj=0 Xn=0 (cid:25)l = (cid:25)kPlk where . Xk=0 Anxy n=odNe(cid:0)inka(cid:0)slomt m+ujst+bene(cid:0)ith1er transmitting or not trans- andthecondition mitting, and we can use a simple two-state Markov chain with asthetransitionprobabilityfromthenon-transmittingstateto K tphae transmitting state and as the transition probability for the (cid:25)l=1 reverse direction to describqe its behavior. Solving this Markov Xl=0 chain,wegetthetransmittingprobabilityforanynodeinaslotto whichyieldsthethroughputofthesystemusingEquation(10). be pa Pt= pa+q 3.4. Throughput of Multichannel Slotted ALOHA Therefore,thethroughputis Prior MAC protocols based on slow FHSS assume ALOHA or slottedALOHAaccesstothechannelandtypicallyassumeROCA (23) (e.g.,Metricom’ssystem[3]).WeconsiderhereaslottedALOHA S =(1(cid:0)Pt)S1+PtqS1 withROCA.Tokeeptractable,wefurtherassumethattransmit- tinghasthehighestpriorityandpreemptsanyreceiving. Whena packetarrivesatanodenottransmitting,itwillbetransmittedat 4. Numerical Results thebeginningofthenextslot. The numerical results are given in Figure 6 through Figure 11, Foranygivennode(onaspecificfrequency)wecanconstruct whichdepictthethroughputpernode( )asafunctionofoffered aqueuesystemwith customersand servers. The load( )withdifferentnumbersofnodSes( ),differentvaluesof arrivalprobabilityateNach(cid:0)no1deinanyslotistNhe(cid:0)sam1easEquation averagGepacket length(APL)anddifferentNnumbers of channels (12). Theservicetimeforeacharrivalisthepacket length. We available(forthecaseofHRMA)toreflecttheeffectofdifferent canusethesameMarkovmodel(seeFigure5)asthatusedinthe choicesofthenetworkparametersontheperformance. idealprotocoltoobtainthestateprobabilities , wherethestateisthenumberofbusyservers(cid:25)ikn;a0s(cid:20)lotk. H(cid:20)owNe(cid:0)ve1r, HRMA (M=20, N=10, APL in slots) here we have states and the state transition probability from 0.5 APL=1000 state tostateNisgivenby: 0.45 APL=1000 k l APL=400 0.4 APL=400 k APL=100 (n+l(cid:0)k) (n) (18) 0.35 APL=100 Plk = Ak Dk APL=40 where nX=n^ put S 0.3 APL=40 gh 0.25 u o hr 0.2 (m) N (cid:0)k(cid:0)1 m N(cid:0)k(cid:0)m(cid:0)1 T Ak =(cid:18) m (cid:19)pa(1(cid:0)pa) 0.15 isgivenbyEquation(11)and isgivenbyEquation(12). 0.1 (n) DkDenoteby theprobabilitythpaat nodesaresendingpack- 0.05 (j) etstonode gBivienthat nodesaretranjsmitting,whichcanbeen 0 expressedbRy i 0 2 4 6 8 10 12 Offered Load G Figure6:ThroughputofHRMAwithdifferentvaluesofAPL j i(cid:0)j (19) (j) i 1 N (cid:0)2 Bi = (cid:18)j(cid:19)(cid:16)N (cid:0)1(cid:17) (cid:16)N (cid:0)1(cid:17) HRMA (M=40, APL=400 slots) Ideal protocol with ROCA (APL in slots) 0.45 0.5 0.4 20 nodes 0.45 16 nodes 10 nodes 0.4 0.35 0.35 0.3 put S 0.25 put S 0.3 gh gh 0.25 ou 0.2 ou hr hr 0.2 T T 0.15 0.15 N=10 APL=40 N=16 APL=40 0.1 0.1 N=10 APL=400 N=16 APL=400 0.05 0.05 N=10 APL=1000 N=16 APL=1000 0 0 0 2 4 6 8 10 12 0 10 20 30 40 50 60 70 80 90 100 Offered Load G Offered Load G Figure7:ThroughputofHRMAwithdifferentnumbersofnodes Figure9: ThroughputofIdealprotocolwithdifferentpopulation andAPL’s HRMA (N=10, APL=400 slots) 0.45 ALOHA with ROCA (APL in slots) 0.08 40 channels 0.4 20 channels 10 channels 0.07 0.35 0.06 0.3 S hput 0.25 ut S 0.05 NN==1200 AAPPLL==22 oug 0.2 ghp 0.04 NN==1200 AAPPLL==44 Thr 0.15 Throu 0.03 NN==1200 AAPPLL==1100 0.1 0.02 0.05 0.01 0 0 2 4 6 8 10 12 0 Offered Load G 0 5 10 15 20 25 30 35 40 45 50 Figure8: ThroughputofHRMAwithdifferentnumbersofchan- Offered Load G nels Figure10: ThroughputofALOHAwithdifferentpopulationand APL’s Figure6plotsthethroughputofHRMAwithdifferentvalues ofaveragepacketlengthinslots,wherethesystemhas10nodes withthesameAPLalmostshowthesamethroughput,evenwith and20availablechannels. Throughputgrowssignificantlywhen thedifferentnumberofchannelsavailable. theAPLincreases,withthemaximumthroughputbeingcloseto Figure9andFigure10showthethroughputfortheidealpro- the theoretical maximum value. This is because HRMA elim- tocol and ALOHA, respectively, each with different values of inates data collisions; once successful, a large data packet can APLanddifferentnumbersofnodes.Inthispaperweassumethat reserve the channel for a long time, which greatly reduces the thesystemshavefinitepopulationandmultiplechannels, where overheadandimprovestheutilizationofthechannel. HRMAis pair-upisalsoanimportantissuethatcanaffectthethroughput. more attractive with large packets or packet trains. The curves When the offered load is high, few nodes are available for re- plottedwithdashedlinesshowtheupperboundsofthethrough- ceiving; therefore, the throughput decreases as the traffic load put withtheassumptionthatthechannel isalwaysavailablefor increases, even for the ideal protocol. Due to the same reason, theRTS-CTShandshake. Itcanbeseenthattheupperboundsare theperformanceoftheidealprotocolisbetterwithalargerAPL. veryclosetoourapproximation. Incontrast,alargerAPLleadstomorecollisionsandthuslower ThethroughputofHRMAwithaveragepacketlengthof400 throughputforthecaseofALOHA.ThethroughputforALOHA slots and 40 available channels is displayed in Figure 7 for the isveryloweveniftheAPLissmall. caseofsystemswith10, 16, and20nodes. Thecurvesindicate Figure11comparesthethroughputperformanceofthreepro- thatthethroughput increasesasthenumber ofnodesdecreases, tocolsforthesystemswith10nodesand20channels.Thegraphs which is expected. Because HRMA uses a common signaling showthatinthetraffic-loadrangeofinterestandwithlargeav- channel,havingmorenodesinthesystemsleadstomorecollision eragepacket lengthcompared totheslotsize, HRMAperforms onthesignalingchannel,whichreducesthethroughput. muchbetterthanALOHA.Moreover,HRMAhasthepotentialto In Figure 8, we show the effect of changing the number of getclosetotheperformanceoftheidealprotocolwithverylarge availablechannelsonthethroughput. Thesystemhas10nodes packetsizesorpackettrains. and theAPLequals 400 slots. Adding channels addslittleper- formanceimprovement. HRMAallowsidlenodestocontendfor every unreserved hop by sending RTS’son theunreserved hop. 5. Conclusions As long as the number of available channels exceeds the num- We have described a new multichannel MAC protocol for ad- ber of nodes, the success probability for RTS’swill not change hocnetworks(multihoppacket-radionetworks)andanalyzedits muchwithadditionalchannels.Again,weseethattheAPLplays performance. HRMAdynamicallyallocatesfrequency bandsto averyimportantroleonperformance. Systemsinourexamples nodesusingacommonfrequency-hoppingpattern,suchthatdata HRMA(M=20), Ideal and ALOHA. 10 nodes 0.5 0.45 0.4 0.35 ut S 0.3 p gh 0.25 Ideal, APL=400 ou Ideal, APL=40 hr 0.2 HRMA, APL=400 T HRMA, APL=40 0.15 ALOHA, APL=2 ALOHA, APL=4 0.1 0.05 0 0 5 10 15 20 25 30 Offered Load G Figure11:Throughputcomparison:HRMA,IdealandALOHA and acknowledgements are transmitted without hidden-terminal interference. HRMAallowssystemstomergeandnodestojoin existing systems. HRMA’s features are achieved using simple half-duplexFHSSradioscommerciallyavailabletoday.Ouranal- ysisshowsthatHRMA’sthroughputperformanceissignificantly betterthanslottedALOHAwithROCA,whichisrepresentative ofthecurrentpracticeusingcommercialradios.HRMAcanachieve amaximumthroughputthatiscomparabletothatoftheidealpro- tocolinwhichareceiverisalwaysabletoreceiveonetransmis- sionfrommultiplesenders,especiallywhendatapacketsarelarge comparedtotheslotsizeusedforfrequencyhopping. Thishigh throughputisobtainedwithouttheneedforcomplexcodeassign- mentthroughaverysimplereservationmechanism. Our work continues to analyze the performance of HRMA in multi-hop packet-radio networks and to develop and analyze variantsofHRMAwithimprovedperformance. 6. References [1] P802.11–Unapproved Draft: Wireless LANMedium Access Control (MAC)andPhysicalSpecifications.IEEE,January1996. [2] FCCRulesandRegulations,Part15.247and15.249.October1997. [3] Metricom.http://www.metricom.com,LosGatos,CA,1998. [4] WINGS for the Internet Project and SPARROW Project. http://www.cse.ucsc.edu/research/ccrg/,SantaCruz,CA,1998. [5] V. Bharghavan, A. Demers, S. Shenker, and L.Zhang. Macaw: A mediaaccessprotocolforwirelesslan’s. InProceedingsACMSIG- COMM,pages212–25,London,UK,August1994. [6] A.Ephremides,J.E.Wieselthier, andD.J.Baker. Adesignconcept forreliablemobileradionetworkswithfrequencyhoppingsignaling. ProceedingsoftheIEEE,75(1):56–73,January1987. [7] C.L.FullmerandJ.J.Garcia-Luna-Aceves.Solutionstohiddentermi- nalproblemsinwirelessnetworks. InProceedingsACMSIGCOMM, Cannes,France,September1997. [8] M.B.Pursley. Theroleofspreadspectruminpacketradionetworks. ProceedingsoftheIEEE,75(1):116–34,January1987.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.