ebook img

DTIC ADA433903: Navigating Scaling: Modelling and Analysing PDF

1.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA433903: Navigating Scaling: Modelling and Analysing

N S : M A AVIGATING CALING ODELLING AND NALYSING P. Abry(1), P. Gonc¸alve`s(2) (1) SISYPH, CNRS, (2) INRIA Rhoˆne-Alpes, Ecole Normale Supe´rieure On Leave at IST-ISR, Lisbon Lyon, France I C : N OLLABORATIONS WITH P. Flandrin, D. Veitch, P. Chainais, B. Lashermes, N. Hohn, S. Roux, P. Borgnat, M.Taqqu, V. Pipiras, R. Riedi, S. Jaffard Wavelet And Multifractal Analysis, Carge`se, France, July 2004. Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED 07 JAN 2005 N/A - 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Navigating Scaling: Modelling And Analysing 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION SISYPH, CNRS, Ecole Normale Sup´erieure Lyon, France REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited 13. SUPPLEMENTARY NOTES See also ADM001750, Wavelets and Multifractal Analysis (WAMA) Workshop held on 19-31 July 2004., The original document contains color images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE UU 64 unclassified unclassified unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 S P ? CALING HENOMENA • D : ETECTION SCALING ? WHAT DOES IT MEAN ? NON STATIONARITY ? • I : DENTIFICATION RELEVANT STOCHASTIC MODELS ? • E : STIMATION RELEVANT PARAMETER ESTIMATION ? • S I : IDE SSUES R ? C C ? R T ? O L ? OBUSTNESS OMPUTATIONAL OST EAL IME N INE [1] O UTLINE I. I , , NTUITIONS MODELS TOOLS I.1 I , D ,A NTUITIONS EFINITION PPLICATIONS I.2 S M : S -S M F TOCHASTIC ODELS ELF IMILARITY VS ULTI RACTAL I.3 M R T , A , I ULTI ESOLUTION OOLS GGREGATION NCREMENTS I.4 W , C , D AVELETS ONTINUOUS ISCRETE II. S O A , S L M ECOND RDER NALYSIS ELF SIMILARITY AND ONG EMORY II.1 R W , S S , L M , ANDOM AKS ELF IMILARITY ONG EMORY II.2 2 O W S A , ND RDER AVELET TATISTICAL NALYSIS II.3 E , E P , STIMATION STIMATION ERFORMANCE II.4 R N S , OBUSTNESS AGAINST ON TATIONARITIES III. H O A , M P IGHER RDER NALYSIS ULTIFRACTAL ROCESSES III.1 M , M , ULTIPLICATIVE CASCADES ULTIFRACTAL PROCESSES III.2 H O W S A , IGHER RDER AVELET TATISTICAL NALYSIS III.3 F M , INITENESS OF OMENTS III.4 E , E P , STIMATION STIMATION ERFORMANCE III.5 N O , EGATIVE RDERS III.6 B P L . EYOND OWER AWS [2] I , V RREGULARITIES ARIABILITIES S N S ? CALING OR ON TATIONARITIES [3] S ? CALING Trafic (WAN) Internet Trafic (WAN) Internet s s n n o o xi xi e e n n n n o o c c b b n n temps (s) temps (s) [4] S ? CALING 4000 2000 0 0 500 1000 1500 2000 2500 4000 2000 0 1000 1100 1200 1300 1400 1500 1600 4000 2000 0 1240 1260 1280 1300 1320 1340 1360 1380 4000 2000 0 1285 1290 1295 1300 1305 1310 1315 1320 Temps (s) [5] S ? CALING Trafic (LAN) Ethernet −−− Densite Spectrale de Puissance 8.5 s t 8 e t c O e r b m o N − 7.5 − − ) P S D ( 0 1 g o 7 L 6.5 2 2.5 3 3.5 4 4.5 5 Log (Frequence (Hz)) 10 [6] S ! CALING • D : EFINITION N P : N C S . ON ROPERTY O HARACTERISTIC CALE N G , N S , N L ON AUSSIAN ON TATIONARY ON INEAR • E : VIDENCE The whole resembles to its part, the part resembles to the whole. Trafic (WAN) Internet 4000 2000 nb connexions 2400000000 500 1000 1500 2000 2500 0 temps (s) 1000 1100 1200 1300 1400 1500 1600 4000 2000 nb connexions 240000000 1240 1260 1280 1300 1320 1340 1360 1380 0 1285 1290 1295 1300 1305 1310 1315 1320 temps (s) Temps (s) • ANALYSIS: Rather than for a characteristic scale, look for a relation, a mecanism, a cascade between scales. [7] S : O D CALING PERATIONAL EFINITIONS • M : ULTIRESOLUTION QUANTITY T (a, t) (e.g., Wavelet Coef.). X • P L : OWER AWS IE|T (a, t)|q = c |a|ζ(q), X q 1 Pn |T (a, t )|q = c |a|ζ(q), X k q n k=1 - a, FOR A RANGE OF SCALES - q FOR A RANGE OF ORDERS - S E ζ(q). CALING XPONENTS • B P L : W I . D . C EYOND OWER AWS ARPED NF IV ASCADES IE|T (a, t)|q = C |a|ζ(q) = C exp(ζ(q) ln a) X q q IE|T (a, t)|q = = C exp(ζ(q)n(a)) X q → VISIT PIERRE CHAINAIS’S POSTER [8]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.