Jung-Sup Um Drones as Cyber-Physical Systems Concepts and Applications for the Fourth Industrial Revolution Drones as Cyber-Physical Systems Jung-Sup Um Drones as Cyber-Physical Systems Concepts and Applications for the Fourth Industrial Revolution Jung-Sup Um Department of Geography Kyungpook National University Daegu, Korea (Republic of) ISBN 978-981-13-3740-6 ISBN 978-981-13-3741-3 (eBook) https://doi.org/10.1007/978-981-13-3741-3 Library of Congress Control Number: 2018967947 © Springer Nature Singapore Pte Ltd. 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface In recent years, drones are approaching us as the realistic technology utilized in the ordinary life of the general public from the level of science fiction. As a photogra- pher and remote sensing practitioner, I began to intensively occupy myself with drone by the revolutionary prospect of being able to take aerial photograph at any time or any place. Over time, a great deal of enthusiasm for this technology let me publish several technical articles about drones. I am currently working as an Editor- in- Chief of Spatial Information Research (Springer Nature) and share my interest about the drone by maintaining strong links with the international editorial boards, authors, and reviewer communities. Emergence of CPS (Cyber-Physical System) such as a self-driving car naturally raises the question for learning goals fundamentally different from the Third Industrial Revolution era. I have taught CPS, known as a core technology of the Fourth Industrial Revolution, by utilizing drones as a learning tool in the university. This course is offered as a distant and online course for undergraduate students to introduce the larger picture of the Fourth Industrial Revolution. The CPS is associ- ated with a wide range of technologies and disciplines from sensor-related disci- plines to mechanical technology that manufactures actuators. Since most of the textbooks published on CPS focused on the technical aspects, there was a limitation to use them as teaching materials for liberal arts courses. Students can be a good driver, even if they do not know the detailed structure of the vehicle hardware, such as the engine, the accelerator, and the cooling system. Students can efficiently uti- lize computers for applications such as word processing, graphics, presentation materials, and Internet search without knowing the detailed technical aspects of hardware such as CPU, memory, and graphics card. The same principle can be applied to learning the CPS. I have been liable for the fact that the core concept of the CPS cannot widely spread to the general public because there is no reference book to explain the CPS with a focus on the application side. In this sense, I would like to publish my lecture notes as a book. The book is structured in such a way that the reader can progress from simple facts to more complex concepts. The basic theory of CPS and drone in Chaps. 1 and 2 was introduced and supplemented by other important features such v vi Preface as smartphone drone. The book introduces the “cyber system” as a separate chapter to explore their technological significance as a representative product of the Third Industrial Revolution (Information Era). Chapter 3 is intended to serve as an aid in understanding the cyber system performing interconnections with the physical sys- tem that goes specifically into the ground remote controller, communication theory, receivers, battery, etc. To understand new and fascinating potentials of CPS requires an appreciation of the way how these systems function. Chapter 4 attempts to over- view the core components of physical systems in relation to spatial information science such as mapping theory, remote sensing, and location information. The future of the self-driving car depends on high-definition 3D real-time map. Spatial information is the core technology for operating CPS since all data around a self- driving car is spatial information. The physical system is equipped with location sensors and imaging sensors as two distinct attributes. If students are familiar with the fundamental technical background of the physical system, learning and using imaging and navigation capability of drone becomes possible. The artificial intelli- gence needs to be moved around in various places to replace the natural intelli- gence. Location information for various places must be provided beforehand so that destinations can be set for the movement of artificial intelligence. It is known that about 90% of the information utilized by natural intelligence is based on the loca- tion. Further, it is said that the imagery data obtained by human eye accounts for 90% of total information acquired from various human sensory organs such as ear, nose and tongue. As the animals evolve from lower level (e.g. insects) to higher grade (e.g human), the utilization of visual data becomes higher. Likewise, as the substitution of natural intelligence by artificial intelligence advances, the depen- dence on imagery data increases. As a result, location and imagery information are the most important parts of the information utilized by artificial intelli- gence. Therefore, Chaps. 5 and 6 are devoted to introducing location sensors and imaging sensors. Chapter 5 introduces location sensors to provide a background for navigation technology, progressing from manual navigation to indoor localization. Chapter 6 describes a foundation theory on imaging sensors and selection criteria of the remote sensor such as spatial resolution. This chapter emphasizes low-height drone photography (LHDP), based on lightweight and inexpensive smaller sensors. Chapter 7 introduces a practical valuation of bidirectional bridging intensity from currently available drone CPS. From the very beginning, the cyber- physical infrastructure of the current road has not been built for the self-driving car. The cyber-physical infrastructure of the road is not connected, and the cars, street signs, and traffic lights do not communicate with each other. In this regard, I emphasize that the drone taxi will be more economical than the self-driving car in the future. Finally, a future prospect of drone CPS is presented in Chap. 8. The main conclu- sion of this book is that drone is a game-changer toward anywhere CPS economy that can be called the Fourth Industrial Revolution in the sky. There are a number of products that people have consumed a lot of money based on traditional life value standards. However, there is a high possibility that these products will be underval- ued based on totally different value standards. The hierarchy of human needs defined Preface vii by Abraham Maslow will be rapidly changed from the lower needs (e.g. food, social security and working) to the higher needs (e.g. enjoying leisure). More exactly, human driving cars were deemed necessary in the non-CPS era before the fourth industrial societies. The current human driving cars can become very cheap or even disappear when unmanned flying cars are released. As the artificial intelligence (AI) society progresses, it will be evident that the drones are emerging as a necessity. Increasingly, people will prioritize the purchase of the products they need to enjoy reduced working hours and expanded leisure time as the society of the Fourth Industrial Revolution advances. There is a high probability that products that people do not consider currently as a necessity are emerging as a new necessity. Considering the primitive instincts of humans wanting to fly in the sky, drone is a representative product having these characteristics. It is very likely that the self-flying car will become a new necessity as a flying companion like the current smartphone. Furthermore, it is anticipated that recent advances in AI technology will open up a new potential for practical swarm flight as distributed/collaborative physical sys- tems beyond the current stand-alone application based on single drone. Last but not least, I wish to deliver my thanks to my family. My special note is to my wife who as the source of inspiration was always by my side during my entire life, sharing the sadness and injecting the spirit for the accomplishment of the work, and who has never stopped her prayer for the success. I must also thank my two daughters for their endurance of my negligence through many years. I particularly would like to thank my graduate students, Mr. Youngseok Hwang, Mr. Jung-Joo Lee, and Mr. Seong-Il Park, who readily offered the unreserved help and valuable suggestion during my long writing work. I consider myself fortunate to have been able to work with them in my research lab, Spatial Information Research Institute of Kyungpook National University of South Korea. Finally, I would like to appreciate my God, Jesus Christ, who made my spiritual mind fresh during the whole period of this work. Daegu, Korea (Republic of) Jung-Sup Um October 2018 Contents 1 Introduction to the Fourth Industrial Revolution . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Concepts of the Fourth Industrial Revolution . . . . . . . . . . . . . . . . . 2 1.3 CPS Based Disruptive Technology (M2M → IoT → CPS) . . . . . . . 5 1.4 Comparison among Physical vs Cyber vs CPS Space . . . . . . . . . . . 8 1.5 Digital Twin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.6 Valuing Drones in Bi-directional Bridging . . . . . . . . . . . . . . . . . . . 14 1.7 Drones as a Tool to Ignite CPS Concept Learning . . . . . . . . . . . . . 17 1.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Drone Flight Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Definition of Drone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 History of Drone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Advantages over Manned Aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 Types of Drone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5.1 Fixed Wings and Rotary Wings . . . . . . . . . . . . . . . . . . . . . 28 2.5.2 Nano Drone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.3 Military vs Civilian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5.4 Various Classification Criteria . . . . . . . . . . . . . . . . . . . . . . 32 2.6 Drone Industry Growth Background . . . . . . . . . . . . . . . . . . . . . . . . 33 2.7 Drone Abuse and Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.7.1 Drone Abuse Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.7.2 Drone Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.7.3 Unrealistic Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.8 Check Points for Drone Purchase . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.8.1 Toy Class Drone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.8.2 Drone Adequate to Intermediate Level Users . . . . . . . . . . 42 2.8.3 Racing/FPV Drone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.8.4 Professional Drones for Aerial Photography . . . . . . . . . . . 44 ix x Contents 2.9 Drone Simulator and Primary Movements of Drone . . . . . . . . . . . . 45 2.9.1 Drone Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.9.2 Three Primary Movements of Drone . . . . . . . . . . . . . . . . . 48 2.10 Real Flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.10.1 Checklist for Drone Status . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.10.2 Flight Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.10.3 Flight Weather . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.10.4 Seasonal Drone Flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.10.5 Beginner Flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3 Cyber Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2 Drone Cyber-Systems as CPS Components. . . . . . . . . . . . . . . . . . . 60 3.3 DIY Drone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4 Basic Knowledge for the Drone Assembly . . . . . . . . . . . . . . . . . . . 63 3.5 Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.6 Electronic Speed Controller and Propeller . . . . . . . . . . . . . . . . . . . 69 3.7 Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.7.1 Essential Concepts Related to Battery . . . . . . . . . . . . . . . . 70 3.7.2 Comparison of Lithium Ion Batteries and Lithium Ion Polymer Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.7.3 Common Mistakes by Many Beginners . . . . . . . . . . . . . . . 73 3.8 Flight Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.9 Radio Control Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.10 Radio Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.10.1 Basic Knowledge for Radio Communication . . . . . . . . . . 81 3.10.2 Various Network Techniques of the Wireless Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.11 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.11.1 Essential Background for Drone Software . . . . . . . . . . . . 91 3.11.2 Hierarchy of Drone Software . . . . . . . . . . . . . . . . . . . . . . . 93 3.11.3 Types of Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.11.4 Embedded System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.11.5 Updating the Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4 Physical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2 Importance of Sensors in CPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.2.1 Sensors as CPS Components . . . . . . . . . . . . . . . . . . . . . . . 102 4.2.2 Defining Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2.3 Application Examples of Sensor . . . . . . . . . . . . . . . . . . . . 104 Contents xi 4.2.4 Sensor Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.2.5 Physical Sensors in CPS . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.2.6 Imaging versus Location Sensor . . . . . . . . . . . . . . . . . . . . 107 4.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.3.1 Deep Learning versus Human Brain Sensor . . . . . . . . . . . 110 4.3.2 Deep Convolutional Neural Networks . . . . . . . . . . . . . . . . 114 4.3.3 Supervised versus Unsupervised Learning . . . . . . . . . . . . 117 4.4 Concepts of Spatial Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.4.1 Comparison of Spatial Information versus Non-spatial Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.4.2 Development History of Mapping Technology . . . . . . . . . 121 4.4.3 GIS (Geographic Information System) . . . . . . . . . . . . . . . 122 4.5 Concepts of Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.5.1 Comparison of Remote Sensing versus GIS . . . . . . . . . . . 124 4.5.2 Comparison of Remote Sensing versus Field Survey . . . . 126 4.5.3 Spatial Information and Satellites . . . . . . . . . . . . . . . . . . . 130 4.5.4 Typical Procedures of Remote Sensing . . . . . . . . . . . . . . . 133 4.6 Self-Driving Car and Spatial Information . . . . . . . . . . . . . . . . . . . . 135 4.7 Spatial Information as a Core Technology Operating CPS . . . . . . . 137 4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5 Location Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.2 From Manual Navigation to Indoor Localization . . . . . . . . . . . . . . 144 5.3 Satellite Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.3.1 History of Satellite Navigation . . . . . . . . . . . . . . . . . . . . . 146 5.3.2 Satellite Navigation Principle . . . . . . . . . . . . . . . . . . . . . . 147 5.3.3 Three Fundamental Segments of Satellite Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.3.4 Triangulating Three GNSS Satellites . . . . . . . . . . . . . . . . . 148 5.4 GNSS Errors and Biases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 5.4.1 GNSS Satellite Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 5.4.2 Selective Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 5.4.3 Natural Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.5 GNSS Signal Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.6 GNSS Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 5.6.1 DGPS (Differential GPS) . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.6.2 Kinematic Positioning and RTK . . . . . . . . . . . . . . . . . . . . 158 5.6.3 Principle of A-GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 5.6.4 Ground Based Augmentation Systems (GBAS) . . . . . . . . 162 5.6.5 Satellite Based Augmentation Systems (SBAS) . . . . . . . . 163 5.7 GNSS and INS Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 5.7.1 INS (Inertial Navigation Systems) . . . . . . . . . . . . . . . . . . . 166 5.7.2 Comparison of INS versus GNSS . . . . . . . . . . . . . . . . . . . 167
Description: