ebook img

Driving anger and its relationships with type A behavior patterns and trait anger PDF

17 Pages·2017·0.85 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Driving anger and its relationships with type A behavior patterns and trait anger

RESEARCHARTICLE Driving anger and its relationships with type A behavior patterns and trait anger: Differences between professional and non-professional drivers ZhongxiangFeng1*,MiaomiaoYang1,ChangxiMa2,KangJiang1,YeweiLei1, WenjuanHuang1,ZhipengHuang1,JingjingZhan1,MuxiongZhou3 a1111111111 1 SchoolofAutomobileandTrafficEngineering,HefeiUniversityofTechnology,Hefei,Anhui,PRChina, 2 SchoolofTrafficandTransportation,LanzhouJiaotongUniversity,Lanzhou,Gansu,PRChina,3 Traffic a1111111111 ManagementResearchInstituteoftheMinistryofPublicSecurity,Wuxi,Jiangsu,PRChina a1111111111 a1111111111 *[email protected] a1111111111 Abstract ThepresentstudyexaminedthetypesofsituationsthatcausedChineseprofessionaland OPENACCESS non-professionaldriverstobecomeangryandinvestigatedthedifferencesindriving-elicited Citation:FengZ,YangM,MaC,JiangK,LeiY, anger,consideringtheinfluencesoftypeAbehaviorpatternandtraitangerbetweenthetwo HuangW,etal.(2017)Drivingangerandits groups.The20-itemrevisedDrivingAngerScale(DAS)wasusedtoassessasampleof relationshipswithtypeAbehaviorpatternsandtrait anger:Differencesbetweenprofessionalandnon- 232drivers(57%professional,43%non-professional).Thenon-professionaldrivers professionaldrivers.PLoSONE12(12):e0189793. reportedsignificantlyhigherlevelsofangerthantheprofessionaldriversontheoverallDriv- https://doi.org/10.1371/journal.pone.0189793 ingAngerScale(DAS)andthetrafficobstructionsanddiscourtesysubscales.Inboth Editor:XiaoleiMa,BeihangUniversity,CHINA groups,thepreferreddrivingspeedswerepositivelyrelatedtodrivinganger.Furthermore, Received:July1,2017 driverswithatypeApersonalityexhibitedhigheroveralldrivingangerscoresandhigher angerscoresinresponsetotrafficobstructionsandslowdrivingthandriverswithatypeB Accepted:December2,2017 personality.Traitangerwassignificantlyrelatedtodrivingangerinbothgroups.Inthenon- Published:December18,2017 professionalgroup,typeAbehaviorpatterns(TABPs)andtimehurry(TH)werepositively Copyright:©2017Fengetal.Thisisanopen correlatedwithangerevokedbyslowdriving.Intheprofessionalgroup,TABPs,THand accessarticledistributedunderthetermsofthe competitivehostility(CH)werepositivelyrelatedtodrivinganger,andtheTABPsexertedan CreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and indirecteffectondrivingangerbymediatingtheinfluenceoftraitanger.Overall,thesefind- reproductioninanymedium,providedtheoriginal ingsprovideatheoreticalbasisforimplementingtargetedinterventionsfordrivingangerin authorandsourcearecredited. bothprofessionalandnon-professionaldrivers. DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformation files. Funding:Thispaperissupportedbythe"National Introduction NaturalScienceFoundationofChina"(NO. 51578207,51678211),the"FundamentalResearch Duetotherapiddevelopmentoftheeconomyandtheincreasingnumberofcars,travelling FundsfortheCentralUniversities"(NO. hasbecomemoreconvenient.However,therearenumeroustrafficaccidents.Humanfactors JZ2017HGTB0209)and"AnhuiScienceand playanimportantrolein92–94%ofroadtrafficaccidents[1].Somestudieshaveshownthat TechnologyProject-Sci-techPolice"(NO. thedrivers’psychologicalandphysiologicalconditionscontributetotheirdrivingbehaviors 1704d0802189).Thefundershadnoroleinstudy [2,3].Inparticular,psychologicalconditions,suchasthedrivers’characteristics,personalities, design,datacollectionandanalysis,decisionto publish,orpreparationofthemanuscript. personalhabits,andtemporaryemotions,andpressureandfatigueinducedbytheexternal PLOSONE|https://doi.org/10.1371/journal.pone.0189793 December18,2017 1/17 DrivingangeranditsrelationshipswithtypeAbehavioralpatternsandtraitanger Competinginterests:Theauthorshavedeclared environmentsignificantlyinfluencedrivingbehaviors.Duetotheincreasinglyrapidpaceof thatnocompetinginterestsexist. modernurbanlife,peopleaccumulatestressandnegativeemotionsfromtheirdailylivesor work.Roadrage,whichisanegativeemotionthatoccurswhiledriving,hasbecomeacommon occurrenceworldwide[4].Sincethemid-1990s,thisphenomenonhasbeguntodrawmedia attention.Forexample,in1994,psychologistsfromColoradoStateUniversitydefineddriving angerasthepropensitytobecomeangrywhiledriving[5].However,drivingangerislikely morecommonthancurrentlybelievedandislikelyexperiencedregularlybynormaldrivers.A previousstudyfoundthat89%of270driversadmittedtooccasionallycommittingaggressive violations,suchaschasingothercars,displayinghostilitytowardotherdriversorsoundingthe horntoindicatetheirannoyancewiththeotherdrivers[6].Similarly,astudyconductedwith adiaryapproachtorecorddrivinganger[7]indicatedthat85%of100driversexperienced angerwhiledrivingovera2-weekperiod.Furthermoreastronglinkhasbeenfoundbetween angerwhiledrivingandsubsequentnearaccidents.Additionalstudieshaveindicatedthat drivingangercouldeasilycausedriverstoengageinaggressiveandriskydrivingbehaviors, suchasspeeding,tailgating,andtheforcibleovertakingofanothervehicle[8–10].Basedon thesestudies,angerwhiledrivinglikelyinterfereswiththedrivers’attention,perception,infor- mationprocessinganddrivingperformance;drivingangeriscorrelatedwithcrash-related conditions,suchasthelossofconcentration,lossofvehicularcontrol,andnearaccidents,and directlyorindirectlyincreasesthelikelihoodofriskybehaviorsandaccidentsand,accordingly, affectsroadtrafficsafety[5,6,9]. Previously,Deffenbacheretal.establishedtraffic-relatedscenariostoinducedrivinganger anddevelopedtheDrivingAngerScale(DAS),whichisaneffectivemeasurementtoolusing clusteranalysisthathasestablishedthefoundationforsubsequentstudies[5].Sincethedevel- opmentoftheoriginalDAS,Britain,NewZealand,Spainandothercountrieshaverevisedpar- tialitemsandfactorstructuresoftheDrivingAngerScale(DAS)basedonnationaland culturaldifferencesandusedtherevisedscalestoconductsubsequentrelatedstudies[11–16]. InChina,astudyidentifieddifferencesintheperceptionofdrivingangerbetweenChinese andGermandrivers.However,theGermandriversexhibitedasimilarperceptionofdriving angertothatofWesterners[17].Theinconsistentfindingsinthesestudiesraiseddoubtsasto whetherall33oftheoriginalsituationsorfactorstructuresintheDAScouldadequatelycap- turedrivingangerinChinesedrivers.InChina,urbantrafficischaracterizedbyamixtureof motorvehicles,non-motorvehiclesandpedestriansontheroad.Thus,trafficscenariosthat areconsistentwiththeactualtrafficcharacteristicsinChinamaybemoreappropriatefor revealingdrivingangerinChinesedrivers. Drivingangerisconceptualizedasapersonalitytraitthatiscorrelatedwithtraitanger[18]. InJapan,highlevelsofworkstressarisingfromaneffort-rewardimbalanceatworkexertan indirecteffectondrivingangerbymediatingtheinfluenceoftraitanger[19].InMalaysia, totaltraitangerscoreswerepositivelycorrelatedwitheachdrivingangersubscale[20].Trait anger,whichhasstableandenduringcharacteristicsandoccasionallyplaysamediatingrole, wasdirectlycorrelatedwithdrivinganger. Researchershaveassociatedpersonalitytypeswithtrafficsafetyanddrivingbehaviors. DriverswithatypeApersonalityhavereceivedincreasingattention[21].Friedmanand Rosenman[22],whoareAmericancardiologists,werethefirsttoidentifythetypeApersonal- ityinapatientwithcoronaryarterydisease.ThetypicalbehavioralcharacteristicsofatypeA personalityincludeintenseambition,aggressiveness,acompetitivedrive,aconstantpreoccu- pationwithoccupationaldeadlines,andasenseoftimehurry(TH).Therelativeabsenceof thesecharacteristicsisdefinedasatypeBpersonalitybehavioralpattern.DriverswithatypeA personalitytendtobeimpatient,areinvolvedinmoreaccidents,andreceivemoreticket[23]. TypeAdriverswereinvolvedinmoreaccidentsandaggressivebehaviorswhiledrivingonthe PLOSONE|https://doi.org/10.1371/journal.pone.0189793 December18,2017 2/17 DrivingangeranditsrelationshipswithtypeAbehavioralpatternsandtraitanger roadthantypeBdrivers[24,25].Furthermore,busdriverswithatypeApersonalityperformed moreerrorsandviolationswhiledrivingthanthosewithatypeBpersonality[26].AtypeA personalityistypicallyanaggressivepersonalitythatisformedbytheinteractionbetweenthe personalitytraitsandtheenvironmentandhasanegativeeffectontrafficsafety.Although moststudiesexploringtypeApersonalityindrivershavefocusedonitscorrelationwithacci- dents,todate,nostudieshaveinvestigateditseffectondrivinganger.Thus,itisnecessaryto determinetheeffectsoftypeAbehaviorpatterns(TABPs)onangerbehindthewheel. Mostresearchersexploringtheinfluencesofdemographicvariablesondrivingangerhave focusedongenderoragedifferences.However,thereexistsadifferencebetweenprofessional andnon-professionaldrivers.Naturally,thisdifferencehasdrawntheattentionofotherresearch- ersexaminingnon-drivingangerandhasbeenshowntobesignificantlyimportant.Forexample, differencesinsafetyattitudes,behaviors,anxietyandperceivedcontrolwereobservedbetween professionalandnon-professionaldrivers[27].InIsrael,maletaxidriversandnon-professional maledrivershaddifferentattitudestowardstrafficviolationpenalties[28].Electroencephalogram (EEG)changesduringfatiguedifferedbetweenprofessionalandnon-professionaldrivers[29]. Professionalandnon-professionaldriversdiffersignificantlyintheirskills,training,driving experiences,etc.Comparedwithnon-professionaldrivers,professionaldrivershavehigherwork- loadsandconductmostoftheirdrivingwithintighttimeschedules[30].Furthermore,pro- fessionaldrivershavemoreexposuretohighertrafficvolumesontheroadandreceivemore frequentgrouptrainings.However,non-professionalsdriversmaybefreertochoosetheirmode ofdrivingandtheirtargetspeedwhiledriving[27].Becausedrivingangerinbothgroupshasa greateffectonroadsafety,itisreasonabletoexplorethedifferencesindrivingangerbetween professionalandnon-professionaldrivers.Inaddition,therearenodifferencesintheeducational andinterventionmethodsusedtoaddressdrivingangerbetweenthesetwogroups.Inparticular, thetrafficscenariosthatevokedrivingangerdifferentlybetweenprofessionalandnon-profes- sionaldriversinChinaareunknown.Furthermore,itisunclearwhetherthereisasignificant differenceindrivingangerbetweenthetwogroups.Anin-depthexplorationisneededtodeter- minethebestapproachtoapplypracticaldrivingsafetyeducation.Therefore,investigatingthe levelsofdrivingangerandthedifferencesbetweenthesetwogroupshasstrongsubstantial impactsondriverselectionanddrivereducation. Overall,thepresentstudywasundertakentoinvestigatethedifferenceinthelevelsofdriv- ingangerbetweenprofessionalandnon-professionaldriversinChinaandtoexaminewhether thedifferencesindrivingangerbetweenthetwogroupsareinfluencedbypersonalitytraits, namely,typeAbehaviorpatternandtraitanger.Finally,thisstudyaimedtoexaminewhether traitangerisamediatorthatinfluencestherelationshipbetweendrivingangerandtypeA behaviorpatterns.Inlightofthis,wehypothesizethat; H1.Thereisasignificantdifferenceinthedrivingangerexperiencedbyprofessionalandnon- professionaldrivers,andprofessionaldriversexperiencelessangeroverall. H2.TraitangerandtypeAbehaviorpatternsaresignificantlyrelatedtodrivingangerinboth groups. H3.TABPsexertanindirecteffectondrivingangerbymediatingtheinfluenceoftraitanger. Methods Participantsandprocedures Datafromnon-professionaldriverswerecollectedbyrandomlydistributing200question- nairesingasstations,parkinglots,largecommercialcenters,etc.inHefei,AnhuiProvince;in PLOSONE|https://doi.org/10.1371/journal.pone.0189793 December18,2017 3/17 DrivingangeranditsrelationshipswithtypeAbehavioralpatternsandtraitanger addition,150professionaldrivers(allmales)wererandomlyselectedfromtheHefeiPassenger TransportationCo.Ltd.andaskedtocompletethequestionnaires.Theprofessionaldrivers wereinter-citybusdrivers,someofwhichdrovemediumdistancesbetweencitieswithinAnhui Provinceandsomeofwhichdrovelong-distancesoninter-provinceroutes.Alldriversdroveat least150kmone-waywhileonduty.Theparticipantswerefirstcontactedbyaresearcherwho explainedthepurposeofthestudy,theparticipantrequirements,andthecompensation.With thepermissionofthedrivers,theinterviewersdistributedthequestionnairestotheparticipants. Thequestionnaireswereintheformofaself-report;thus,theparticipantswererequiredto completethequestionnairebyfollowingtheinstructions.Driverswereinvitedtoparticipatein thesurveywiththeassuranceofanonymityandconfidentiality,andthedriverswerepaid30 yuanasarewarduponcompletingthequestionnaire.Questionnaireswithincorrectresponses, lackofauthenticity,ormissingpageswereconsideredinvalid.Participantscompletedtheques- tionnairesimmediatelyuponreceipttoensuretheauthenticityoftheresponses. Intotal,approximately126(63%ofallquestionnaires)completedquestionnaireswere returnedfromthenon-professionaldrivers,and150(100%)completedquestionnaireswere returnedfromtheprofessionaldrivers.Intotal,232questionnaireswerevalid(almostallmales). Thestudyincluded132professionaldrivers(57%)and100non-professionaldrivers(43%).The participantshadanaverageageof38.72years(SD=8.37)withanagerangefrom21to57.All participantshadtheirdrivinglicensesformorethanoneyear(average=12.96±9.06yr). Materials TherevisedDrivingAngerScale:TherevisedversionoftheDAScontainedthemostrepresenta- tiveitemsfromeachsubscaleoftheoriginal33-itemDAS[5].Thetranslationoftheoriginal scalewasconductedbythreenativeChinesespeakerswhowerefromtheEnglishdepartment, andthesetranslationswerethenbacktranslatedintoEnglishbyanativeEnglishspeaker.No majorissueswereidentifiedduringthetranslationprocess.Then,severalrepresentativetraffic scenariosthatinduceddrivingangerinChinesedrivers,whichwereidentifiedbyinterviewing 20drivers,wereaddedtotherevisedDAS.Thisprocessresultedintheadditionofsixnew items,specifically,“someonechangeslaneswithoutturningonsignallights”,“someonechanges laneswhilecrossingthesolidwhitelineatanintersection”,“someoneparksparkhiscarillegally ontheroad”,“non-motorvehiclesoccupylanesdesignedformotorvehicles”,“someoneparks parkhiscarillegallyatanintersectionentranceorexit”,and“novicedriversdrivetooslowlyon theroad”.Then,apre-testwascarriedouton10experienceddriverstoidentifyambiguous questionsandquestionsthatwereirrelevanttotheChinesedrivingexperience.Therespondents wereinstructedtoimaginethedescribedtrafficsituationandassesstheirpotentialangerusing afive-pointLikertscalerangingfrom“1=notatall”to“5=verymuch”. Overall,39itemswereselectedbasedonthisrationale(e.g.,significanceandsuitabilityto thecharacteristicsofthesubscaleconcerned)andempiricalcriteria(e.g.,discriminantcoeffi- cientoritem-totalcorrelation,reliabilityandvaliditytestandexploratoryfactoranalysis).A PrincipalComponentAnalysis(PCA)wasperformedtodeterminethefactorstructure,andall itemsweresubjectedtoafactoranalysisthroughvarimaxrotation. Amongtheremainingitemswereambiguousquestionsandquestionsthatwereirrelevant totheChinesedrivingexperience,namely,“someonemakesanobscenegesturetowardsyou”, “someonebeepsatyou”and“thepolicedrivecloseby.”The“policepresence”and“hostileges- tures”factorsfromtheoriginalDASwereeliminatedbecauseangerinducedbyrelateditems waslow.Therefore,inadditiontothethoselistedabove,theitems“apoliceofficerpullsyou over”,“apolicedrivingcloseby”and“apolicecariswatchingtrafficfromahiddenposition” wereeliminated.Thus,therevisedversionoftheDASconsistedof20itemsthatweregrouped PLOSONE|https://doi.org/10.1371/journal.pone.0189793 December18,2017 4/17 DrivingangeranditsrelationshipswithtypeAbehavioralpatternsandtraitanger intothefollowingfoursubscales:trafficobstructions,discourtesy,illegaldrivingandslowdriv- ing.AfterconductingthePCA,theKaiser-Meyer-Olkin(KMO)measurementofsamplingade- quacywas0.89,andtheBartlettTestofSphericitywassignificant(p<0.01).Allfactorloadings weregreaterthan0.45.ThereliabilityanalysisgeneratedaCronbach’salphacoefficientofinter- nalconsistencyof0.90forthetotalscale,andallsubscalesexhibitedacceptableself-consistency, withCronbach’salphavaluesrangingfrom0.75to0.81.TheCronbach’alphavaluewasgreater than0.7forthetotalscaleandforeachitem,thusindicatinganacceptabledegreeofreliability [31].Thecorrelationsbetweeneachfactorandthetotalscalereachedstatisticalsignificance. Anadditionalvalidityanalysisoftherevised20-itemscalewasperformed.Thestrengthofcor- relationsbetweenthefourfactorsrangedfromlowtolow-medium(from0.31to0.58),which indicatedthatthescaleexhibitedgooddifferentialvalidity.Therewasalsoahighdegreeofcon- sistencybetweenthecontenttestedinthetotalscaleandthatforeachfactor(rangingfrom0.64 to0.84),whichindicatedthattherevisedscalehadgoodcriterion-relatedvalidity. TypeABehaviorPatternScale:TheChineseversionoftheTypeAbehaviorpatternscaleis aself-reportedscalethatwasadaptedfromtheJenkinsSecuritySurvey[32]byZhang[33]. TABPshavebeencharacterizedashard-drivingcompetitivebehaviors,hostility,timeurgency andavigorousspeechstyle.Underrepeatedtesting,thecorrelationcoefficientofthetotal scalescoreonthetwotestswasgreaterthan0.5,revealingahightest-retestreliability.The totalquestionnairecontains60itemsandthefollowingthreesubscales:timehurry(TH), whichincludes25itemsandemphasizesTH;competitionhostility(CH),whichincludes25 itemsthathighlightfeatures,suchascompetitiveness,warinessandhostility;anda10-item sectionforlie(L)detection.Therespondentswereaskedtomarkeachitemwithatickmark for“Agree”andacrossfor“disagree”todeterminewhichitemsfittheparticularindividual. First,theLscalescorewascalculated.Ifthescorewas7pointsorgreater,therespondentswere eliminatedduetothelackofauthenticity.Theevaluationcriteriaforthetypesofpersonality dependedonthetotalscoresofTHandCH[26,33].Wedefinethetypesasfollows:typeA:37 to50points;typeA-:30to36points;mid-type:27to29points;typeB-:20to26points;and typeB:1to19points. Trait AngerScale(TAS):TheTASwasselectedasameasureofgeneralandenduringfeel- ingsofanger.TheChineseversionoftheTASwastranslatedandrevisedfromtheoriginal EnglishversionoftheState-TraitAngerExpressionInventory-2[34]byTao[35].According totheCronbach’salphacoefficient,theinternalconsistencyofthetotalscalewas0.80.The TASisa10-itemscaledesignedtomeasurepeople’straitpropensitiesforangerindailylife (forexample,“Iamahot-headedperson”).Ratingsaremadeonafour-pointLikertScalerang- ingfrom“1=almostnever”to“4=almostalways”. Drivingbehavior:Thequestionnairealsocontainedasurveyregardingdrivingbehaviors. Thedriverswererequiredtoreporttheirpreferreddrivingspeedsonthreetypesofspeed- limitroads(anexpresswaywithaspeedlimitof120km/h,ahighwaywithaspeedlimitof80 km/h,andanurbanroadwithaspeedlimitof60km/h). Demographicinformation:Demographicdetails,includinggender,age,professionalor non-professionaldrivingstatusanddriverinformation,suchasdrivingexperience,mileagein thepastyear,etc.,wereobtainedfromallparticipants. Results Demographicsandpreferreddrivingspeeds Table1showsthebasicdemographicsoftheprofessionalandnon-professionaldriverswho participatedinthisstudy.Thedifferencesinthedemographiccompositionofage,driving experienceandmilesdrivenoverthepreviousyearwereinvestigatedbetweenthenon- PLOSONE|https://doi.org/10.1371/journal.pone.0189793 December18,2017 5/17 DrivingangeranditsrelationshipswithtypeAbehavioralpatternsandtraitanger Table1. Demographicsandpreferreddrivingspeedsofthetwogroups. Variable Mean(SD) t-value Professional Non-professional Age 42.94(5.04) 33.15(8.64) 10.10**** Drivingexperience 18.81(6.61) 5.23(5.26) 17.42**** Mileageinthepastyear 148681(54,500) 12962(14,916) 27.29**** Preferredspeedonexpressway(120km/h) 99.77(8.32) 108.67(11.13) -6.69**** Preferredspeedonhighway(80km/h) 69.94(8.15) 71.45(9.05) -1.33 Preferredspeedonurbanroad(60km/h) 51.92(9.77) 51.93(8.08) -0.005 *p<0.05 **p<0.01 ***p<0.005 ****p<0.001 https://doi.org/10.1371/journal.pone.0189793.t001 professionalandprofessionaldrivergroups.AsillustratedinTable1,thereweredifferencesin theagecomposition(F=33.89,p<0.001),drivingexperience(F=11.02,p<0.001),andmile- ageinthepastyear(F=75.13,p<0.001)betweenthetwodrivergroups.Professionaldrivers reportedahigheraverageage,moredrivingexperienceandmoremileagedriveninthepast yearthanthenon-professionaldrivers,indicatingthattheprofessionaldrivershadahigher exposuretoroadtrafficvehiclesthanthenon-professionaldrivers,whichisconsistentwiththe resultspresentedbyNordfjærnetal.[27]. Participantsreportedtheirpreferreddrivingspeedsonthefollowingthreedifferenttypesof roads:expressways,highwaysandurbanroads(Table1).Asexpected,theaveragespeedof expresswaydrivingwasthehighestinbothgroupswithanaverageof108.67km/hinthenon- professionaldrivergroupand99.77km/hintheprofessionaldrivergroup,whichwasconsis- tentwiththespeedlimitof120km/h.Furthermore,anindependentsamplest-test(two-tailed) indicatedthatonexpressways,thenon-professionaldriverspreferredsignificanthigherdriv- ingspeedsthantheprofessionaldrivers(F=16.15,p<0.001).Incontrast,boththenon-profes- sionalandprofessionaldriverspreferredsimilardrivingspeedsonhighwaysandurbanroads. Drivingangeranddifferencesbetweenthetwogroups Themeansandstandarddeviationsoftheprofessionaldriversandnon-professionaldrivers’ scoresontherevised20-itemDASarepresentedinTable2.Illegaldrivingwasconsidereda factorthatinducesdrivingangerandhadthehighestscoreofthefourdrivingangersubscales intheprofessionaldrivergroupwithanaveragesubscalescoreof2.74(SD=0.96).Further- more,inthissubscale,theitem“someoneparkshiscaratanintersectionentranceorexit”was rated3.23(SD=1.48),whichwasthehighestscoringitemofall20itemswithrespecttopro- vokingprofessionaldrivers’anger.Trafficobstructionswerethesecondmajorfactortoinduce professionaldrivers’anger,inwhichtheitem“theremindingflagisnotsetwhentheroadis underreconstruction”wasanotherhighanger-inducingscenariowitharatingof3.23(SD= 1.35).Theleastanger-inducingsituationfortheprofessionaldriverswasslowdriving,which hadthelowestaverageangerratings(M=1.88;SD=0.69)ofthefoursubscales.However,for thenon-professionaldrivers,trafficobstructionsweretheprimaryinducingfactorsofdriving angerandhadthehighestscoreofthefourfactorswithasubscalescoreof2.87(SD=0.92). Theitemonthetrafficobstructionsubscale“youhitanunmarkeddeeppotholewhendriving” hadascoreof3.39(SD=1.35),whichwasthehighestscoringanger-inducingitemamong non-professionaldrivers.Theslowdrivingsubscalehadthelowestaverageangerratingsinthe PLOSONE|https://doi.org/10.1371/journal.pone.0189793 December18,2017 6/17 DrivingangeranditsrelationshipswithtypeAbehavioralpatternsandtraitanger Table2. DifferencesintheDASscoresbetweentheprofessionalandnon-professionaldrivergroups. Item ProfessionalN=132,M Non-professionalN=100,M F-value (SD) (SD) Trafficobstructions(α=0.79) 2.67(0.84) 2.87(0.92) 4.47* Othercarsblocktrafficintheparkingprocess. 2.00(1.17) 2.18(1.11) Youhitanunmarkeddeeppotholewhendriving. 2.94(1.31) 3.39(1.35) Youdrivebehindabadlysmokingvehicleandthesmokeblocksyoursight. 2.48(1.27) 2.72(1.26) Youdrivebehindalargetruckwhichoccupiesthelane. 2.59(1.19) 2.83(1.30) Theremindingflagisnotsetwhentheroadisunderreconstruction. 3.23(1.35) 3.11(1.30) Atruckiskickingupgravelatyourcar. 2.77(1.33) 3.02(1.24) Discourtesy(α=0.80) 1.94(0.88) 2.34(0.85) 4.98* Someonecutsrightinfrontofyouonthefreeway. 1.79(1.17) 1.99(1.23) Someonecutsinandtakestheparkingspotyouhavebeenwaitingfor. 2.30(1.31) 2.95(1.31) Someonetriestospeeduptodriveinfrontofyou. 1.65(0.92) 1.71(0.92) Someonechangeslanesinfrontofyouwhenthere 2.08(1.09) 2.57(1.24) isnoonebehindyou. Whenyoudrivenormally,someonehonksatyou. 1.89(1.12) 2.51(1.89) Illegaldriving(α=0.81) 2.74(0.94) 2.62(0.94) 1.93 Othervehiclesrunaredlight. 3.18(1.55) 2.63(1.47) Someoneparkshiscarinanintersectionofentranceorexit. 3.23(1.48) 3.16(1.32) Someonechangeslaneswithoutturningonsignallights. 2.67(1.17) 2.97(1.25) Someoneisspeedingonaspeed-limitroad. 2.34(1.22) 2.07(1.23) Someoneparkshiscarillegallyontheroad. 2.08(1.27) 2.55(1.31) Someonechangeslaneswhilecrossingthesolidwhitelineinanintersection. 2.25(1.13) 2.36(1.36) anintersection. Slowdriving(α=0.75) 1.88(0.69) 2.23(0.91) 2.41 Someoneinfrontofyoudoesnotstartmovingwhenthelightturnsgreen. 1.74(0.68) 2.21(1.21) turnsgreen. Apedestrianwalksslowlyacrossthemiddleofthestreet,forcingyoutoslow 1.56(0.80) 1.97(0.98) down. Someoneisdrivingtooslowlyinthepassinglane. 2.34(1.06) 2.50(1.17) Totaldrivinganger(α=0.90) 2.39(0.68) 2.57(0.73) 5.26* *p<0.05 https://doi.org/10.1371/journal.pone.0189793.t002 groupofnon-professionaldrivers(M=2.23;SD=0.91),whichwassimilartotheprofessional drivers.Inbothgroups,drivingangerwashighlyprovokedbytwoitems,namely,“theremind- ingflagisnotsetwhentheroadisunderreconstruction”and“someoneparkshiscaratan intersectionentranceorexit”,andbothitemshadascoregreaterthan3. Overall,comparedwithfindingsintheUSA,TurkeyandMalaysia[5,36,37],alldriversin China,regardlessofwhethertheywereprofessionaldriversornon-professionaldrivers, reportedlowerlevelsofangerthanthedriversintheseothercountriesonsimilarsubscales. Furthermore,foreachdimension,thelevelsofdrivingangerwerelessthan3intheChinese drivers,whichwassimilartotheresultsreportedbyLi,Yao,JiangandLi[38],whofoundthat aChinesesamplereportedsignificantlylowerlevelsofangerthanthosefromcountries,such astheUSA,Turkey,etc.IntheUSAandMalaysiasamples,thediscourtesysubscaleproduced thehighestmeans.However,thesubscalewiththehighestmeanscoreinthenon-professional driversinChinawasthetrafficobstructionssubscale,whereasfortheprofessionaldrivers,the highestmeanscorewasreportedontheillegaldrivingsubscale. PLOSONE|https://doi.org/10.1371/journal.pone.0189793 December18,2017 7/17 DrivingangeranditsrelationshipswithtypeAbehavioralpatternsandtraitanger Table3. Thecorrelationcoefficientsamongdrivinganger,demographicsandpreferredspeeds. Trafficobstructions Discourtesy Illegaldriving Slowdriving Totalscore Pro Non- Pro Non- Pro Non- Pro Non- Pro Non- pro pro pro pro pro Age 0.02 -0.14 0.05 -0.08 0.09 0.01 0.03 -0.01 0.07 -0.07 Drivingexperience 0.04 0.09 0.09 0.08 0.09 0.12 -0.02 0.09 0.08 0.12 Mileageinthepastyear(km) 0.11 0.01 0.03 -0.16 0.14 -0.05 -0.01 -0.05 0.11 -0.06 Preferredspeedonexpressway 0.35** 0.21* 0.58** 0.07 0.18* -0.01 0.47** 0.11 0.46** 0.12 Preferredspeedonhighway 0.21* 0.20* 0.27** 0.23* 0.03 0.11 0.27** 0.21* 0.22* 0.22* Preferredspeedonurbanroad 0.27** 0.09 0.27** 0.09 0.09 -0.01 0.28** 0.15 0.26** 0.08 *p<0.05 **p<0.01 https://doi.org/10.1371/journal.pone.0189793.t003 Becauseage,drivingexperienceandmileageinthepastyearcouldpotentiallyaffectthedif- ferencesinthedriving-relatedvariablesbetweenthetwogroups,theinfluenceofthedemo- graphiccharacteristicswasadjustedforinthesubsequentanalyses.Amultivariateanalysisof covariance(MANCOVA)wasperformedtoinvestigatethedifferencesindrivingangerevoked bythetrafficscenariosbetweenthetwodrivergroups.TheMANCOVAwasusedtoexamine whetherthemaineffectofbeingaprofessionalornon-professionaldrivermaintainedsignifi- cancewhentheinteractionsbetweenthegroupstatusanditsdemographicsweretakeninto consideration.ABox’sMtestwasconductedtoinvestigatethehomogeneityofthevariancein thecovariancematricesandrevealedthatthevarianceswereequal(F=1.62,p>0.05).Further- more,theoutcomeoftheMANCOVAindicatedthatthecovariatesofage,drivingexperience andmileageinthepastyearwerenotsignificant. Thespecificdifferencesindrivingangerbetweentheprofessionalandnon-professional driversarereportedinTable2.Thereweresignificantdifferencesinthetrafficobstructions subscale(F=4.47,p<0.05),thediscourtesysubscale(F=4.98,p<0.05)andthetotalscale scoresbetweenthetwogroups(F=5.26,p<0.05).Furthermore,thenon-professionalgroup reportedsignificantlyhigherlevelsofdrivingangerthantheprofessionalgroup.Theseresults providesupportforthefirsthypothesis,thatthereisasignificantdifferenceinthedriving angerexperiencedbyprofessionalandnon-professionaldrivers,andprofessionaldriversexpe- riencelessangeroverall. Relationshipsamongdrivinganger,demographicsandpreferredspeed APearson’scorrelationalanalysiswasperformedtoinvestigatethecorrelationsbetweenthe foursubscalesorthetotalscaleofdrivingangerandthedemographics,suchasage,driving experienceandmileageinthepastyear.InTable3,theleftcolumnprovidesinformation regardingtheprofessionaldrivers,andtherightcolumnprovidesinformationregardingthe non-professionaldrivers.Theprofessionaldrivers’age,drivingexperienceandmileageinthe pastyearwereweaklyandpositivelycorrelatedwiththedrivingangerscores.Thenon-profes- sionaldrivers’ageandmileagewereweaklyandnegativelycorrelatedwithdrivinganger, whiledrivingexperiencewasweaklyandpositivelycorrelatedwithdrivinganger. Therelationshipsbetweendrivingangerandthedrivers’preferreddrivingspeedonthe threedifferentroadtypesarepresentedinTable3.Onexpressways,thepreferreddriving speedsofprofessionaldriversweresignificantlyandpositivelycorrelatedwithallsubscales andtheoveralldrivingangerscores.Onhighwaysandurbanroads,thepreferredspeedsofthe professionaldriversweresignificantlyandpositivelycorrelatedwithallsubscales,exceptfor PLOSONE|https://doi.org/10.1371/journal.pone.0189793 December18,2017 8/17 DrivingangeranditsrelationshipswithtypeAbehavioralpatternsandtraitanger theillegaldrivingsubscale,andpositivelycorrelatedwiththeoveralldrivingangerscores.In thenon-professionaldrivergroup,onlythepreferreddrivingspeedonhighwaysdisplayeda significantcorrelationwiththeDASscores,exceptfortheillegaldrivingsubscale,whilethe othercorrelationswerenotsignificant.Asexpected,thenon-professionalandprofessional driverswhoreportedhigherspeedpreferencesonroadsaremorelikelytoexhibithigherlevels ofangerthanthedriverswhopreferredslowerspeeds. Drivinganger,TABPandtraitanger The232participantsweredividedintothreecategories,namely,typeA,middleandtypeB, accordingtotheevaluationcriteriaoftheTABP.One-wayanalysisofvariance(ANOVA)was conductedtoinvestigatethedifferenceindrivingangeramongthethreepersonalitytypes. Thepersonalitydifferencesinoverallanger(F(2,229)=4.36,p<0.05),angerevokedbytraffic obstructions(F(2,229)=4.59,p<0.05)andangerevokedbyslowdriving(F(2,229)=7.56, p<0.005)weresignificant.Then,theLeastSignificantDifference(LSD)methodofmultiple comparisonswasperformedtoconductpair-wisecomparisons,andtheresultsareshownin Table4.AdditionalposthoctestsindicatedthatthedriverswithatypeApersonalityreported significantlyhigherlevelsofdrivingangerthanthedriverswithatypeBpersonalityonthe trafficobstructionssubscale,slowdrivingsubscaleandthetotalscale.Interestingly,drivers withatypeApersonalityreportedsignificantlyhigherlevelsofdrivingangerthanthosewitha middlepersonalityonlywhenconfrontedwithslowdriving.Overall,driverswithtypeAper- sonalitiesexperiencedthehighestlevelsofanger,followedbythosewithmiddle-typepersonal- ities.ThedriverswhoexperiencedthelowestlevelsofdrivingangerwerethosewithtypeB personalities. APearsoncorrelationanalysiswascalculatedtotestthecorrelationsamongdrivinganger, typeAbehaviorpatternandtraitanger.InTable5,theleftcolumnsprovideinformation regardingtheprofessionaldrivers,andtherightcolumnsprovideinformationforthenon- professionaldrivers.Moderaterelationshipswerefoundintheprofessionaldriversbetween theCHsubscaleandtheDAS.However,THwassignificantlyandpositivelycorrelatedwith thetotalDASandthetrafficobstructionssubscale,suggestingthatprofessionaldriverswho hadhigherlevelsofTHwerelikelytobecomeangeredovertrafficobstructionsituations.The TABPwasfoundtobesignificantlyandpositivelycorrelatedatasmalltomoderatelevelwith eachdrivingangersubscale,particularlythetotalDAS,r=0.34,p<0.01.Additionally,thecor- relationbetweentheTABPandtraitangerwassignificant,r=0.38,p<0.01.Thesecorrelations suggestthatprofessionaldriverswithhighlevelsofTABPsarenotonlymorelikelytoexperi- enceangerbutalsomorelikelytoexperienceamoreprofoundfeelingofangerbothonthe roadandineverydaylife.Asexpected,asignificantlypositivecorrelationwasobserved Table4. Theresultsofthemultiplecomparisontests. Drivinganger TypeAN=114,M Middle TypeBN=79,M F N=39,M Trafficobstructions 2.92 2.75 2.53 4.59* Discourtesy 2.21 2.14 1.96 1.84 Illegaldriving 2.75 2.81 2.56 1.32 Slowdriving 2.23 1.95 1.78 7.56*** Totalscale 2.59 2.49 2.28 4.36* *p<0.05 ***p<0.005 https://doi.org/10.1371/journal.pone.0189793.t004 PLOSONE|https://doi.org/10.1371/journal.pone.0189793 December18,2017 9/17 DrivingangeranditsrelationshipswithtypeAbehavioralpatternsandtraitanger Table5. Thecorrelationcoefficientsofdrivingangerandpersonalitytraits. Traffic Discourtesy Illegaldriving Slowdriving Totalscore obstructions Pro Non- Pro Non- Pro Non- Pro Non- Pro Non- pro pro pro pro pro TH 0.25** 0.15 0.16 0.07 0.13 0.09 0.16 0.23* 0.23** 0.15 CH 0.36** 0.04 0.19* 0.01 0.18* 0.01 0.29** 0.15 0.32** 0.05 TABP 0.37** 0.11 0.22* 0.04 0.20* 0.05 0.29** 0.21* 0.34** 0.11 TAS 0.47** 0.14 0.52** 0.21* 0.35** 0.07 0.43** 0.33** 0.55** 0.20* *p<0.05 **p<0.01 https://doi.org/10.1371/journal.pone.0189793.t005 betweentraitangeranddrivinganger,r=0.55,p<0.01,indicatingthatprofessionaldrivers whoreportedhightraitangertendedtoproduceelevatedlevelsofdrivinganger. Innon-professionaldrivers,theTABPandTHsubscaledisplayedsignificantpositivecorre- lationswithdrivingangerevokedbyslowdriving,indicatingthatnon-professionaldrivers whoscoredhighonTHwereangered,ingeneral,oversituationsthatforcedthemtodrive slowly.OnlythetotalDASandthetwosubscalesofdiscourtesyandslowdrivingweresignifi- cantlyandpositivelycorrelatedwithtraitanger.Inparticular,therewasnosignificantcorrela- tionbetweenTABPandtraitanger.Therefore,thenon-professionalgroupwasnotincluded intheregressionanalyses. Hierarchicalmultipleregressionanalyses TodeterminewhetherTABPs,asanindependentvariable,exertanindirecteffectondriving angerbymediatingtheinfluenceoftraitangerinprofessionaldrivers,BaronandKenny’s[39] fourstepswereperformed.First,drivingangerwasregressedontoTABP.Asshownin Table6,asignificantlypositiverelationshipwasobservedbetweenTABPsanddrivingangerin Model1,whichsatisfiedstep1.Next,traitangerwasregressedontoTABP,andModel2 showedthatTABPsremainedasignificantpredictor,whichsatisfiedstep2.Then,driving angerwasregressedontoTABPandtraitangerinModel3.Asignificantandpositiverelation- shipwasobservedbetweendrivingangerandtraitanger,whichsatisfiedstep3.Thisfinding supporthypothesis2,thattraitangerandtypeAbehaviorpatternaresignificantlyrelated todrivingangerinbothgroups.Inthisfinalmodel,TABPwasnolongersignificant,thus Table6. Standardizedregressioncoefficients(β)inthehierarchicalmultipleregressionmodels. Model1 Model2 Model3 Drivinganger Traitanger Drivinganger TABP 0.273**** 0.375**** 0.094 Traitanger 0.493**** R 0.273 0.375 0.535 R2 0.074 0.141 0.286 F(1,130)=10.46*** F(1,127)=20.76**** F(2,126)=25.27**** ***p<0.005 ****p<0.001 https://doi.org/10.1371/journal.pone.0189793.t006 PLOSONE|https://doi.org/10.1371/journal.pone.0189793 December18,2017 10/17

Description:
anger scores in response to traffic obstructions and slow driving than In particular, psychological conditions, such as the drivers' characteristics, work. Road rage, which is a negative emotion that occurs while driving, has STAXI-2: State-trait Anger Expression Inventory-2; professional manual
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.