Article Drivers of Plot-Scale Variability of CH Consumption 4 in a Well-Aerated Pine Forest Soil MartinMaier1,*,SinikkaPaulus1,ClaraNicolai1,KentonP.Stutz1andPhilippA.Nauer2 1 ChairofSoilEcology,InstituteofForestScience,UniversityofFreiburg,Freiburg79098,Germany; [email protected](S.P.);[email protected](C.N.); [email protected](K.P.S.) 2 SchoolofEcosystemandForestScience,FacultyofScience,BurnleyCampus,TheUniversityofMelbourne, Melbourne,VIC3121,Australia;[email protected] * Correspondence:[email protected] AcademicEditor:AlessandraLagomarsino Received:7April2017;Accepted:31May2017;Published:3June2017 Abstract: Whiledifferencesingreenhousegas(GHG)fluxesbetweenecosystemscanbeexplainedto acertaindegree,variabilityofthesameattheplotscaleisstillchallenging.Weinvestigatedthespatial variabilityinsoil-atmospherefluxesofcarbondioxide(CO ),methane(CH )andnitrousoxide(N O) 2 4 2 to find out what drives spatial variability on the plot scale. Measurements were carried out in a Scotspine(PinussylvestrisL.)forestinaformerfloodplainona250m2plot,dividedinhomogenous strataofvegetationandsoiltexture. Soilgasfluxesweremeasuredconsecutivelyat60pointsalong transects to cover the spatial variability. One permanent chamber was measured repeatedly to monitortemporalchangestosoilgasfluxes. Theobservedpatternsatthiscontrolchamberwere usedtostandardizethegasfluxestodisentangletemporalvariabilityfromthespatialvariabilityof measuredGHGfluxes. Concurrentmeasurementsofsoilgasdiffusivityallowedderivinginsitu methanotrophicactivityfromtheCH fluxmeasurements. ThesoilemittedCO andconsumedCH 4 2 4 andN O.SignificantlydifferentfluxesofCH andCO werefoundforthedifferentsoil-vegetation 2 4 2 strata,butnotforN O.SoilCH consumptionincreasedwithsoilgasdiffusivitywithinsimilarstrata 2 4 supportingthehypothesisthatCH consumptionbysoilsislimitedbythesupplywithatmospheric 4 CH . Methane consumption in the vegetation strata with dominant silty texture was higher at a 4 givensoilgasdiffusivitythaninthestratawithsandytexture. Thesamepatternwasobservedfor methanotrophicactivity,indicatingbetterhabitatsformethantrophsinsilt. Methaneconsumption increasedwithsoilrespirationinallstrata. Similarly,methanotrophicactivityincreasedwithsoil respirationwhentheindividualmeasurementlocationswerecategorizedintosiltandsandbasedon thedominantsoiltexture,irrespectiveofthevegetationstratum. Thus,wesuggesttherhizosphere anddecomposingorganiclittermightrepresentorfacilitateapreferredhabitatformethanotrophic microbes,sincerhizosphereanddecomposingorganicarethesourceofmostofthesoilrespiration. Keywords: methane;carbondioxide;nitrousoxide;soilgases;methanotrophy;soiltexture 1. Introduction Carbon dioxide (CO ), methane (CH ) and nitrous oxide (N O) are the most important 2 4 2 anthropogenicgreenhousegases(GHG)andco-responsibleforglobalclimatechange[1]. SoilCO 2 emissionsresultfromheterotrophicandautotrophicrespirationbymicrobes,faunaandrootsinsoil, andamountsupto80%ofthecarbon(C)assimilatedbyplantphotosynthesis[2]. Soil-atmosphere fluxesandatmosphericconcentrationsofN OandCH aremuchsmallerthanthoseofCO .Yet,dueto 2 4 2 thehigherradiativeforcingofN OandCH moleculesintheatmospherecomparedtoCO ,their 2 4 2 contributiontotheglobalwarmingissubstantial[3]. Soil-atmosphereGHGfluxesvarytemporally Forests2017,8,193;doi:10.3390/f8060193 www.mdpi.com/journal/forests Forests2017,8,193 2of16 onthedailyandseasonalscale,andtheyvaryspatially,betweenecosystemsandsites. Anaccurate assessmentofsoil-atmospherefluxesisconsequentlychallenging. WhilesoilgenerallyactsassourceofCO ,itcanbebothsourceandsinkforCH andN O[4,5]. 2 4 2 Methanogenesisisstrictlyananaerobicprocess,butitcanoccurinaeratedsoilsifoxygen-depleted zones exist such as within aggregates [6]. Oxidation of CH by methanotrophic bacteria in soils 4 canbedividedintotwoformsbasedonapparentenzymekinetics[7,8]. Thelow-affinityoxidation occurswhenCH concentrationsareabove40ppm,specificallyinenvironmentswhereCH ishighly 4 4 enriched compared to the atmosphere (e.g., in landfills, peat soils, paddy soils). The high-affinity oxidation occurs at and even below atmospheric CH concentrations and is ubiquitous in upland 4 soils [9]. Upland soils in forests are generally well-aerated and thus considered to be strong CH 4 sinksduetoadominanceofmethanotrophyovermethanogenesis. SimilartoCH ,N Ocanbeboth 4 2 producedandconsumedinsoildependingonoxygenavailability. ProductionofN Omainlyoccurs 2 insub-oranoxicmicrositeswithinsoilaggregates[6]asitisaby-productofaerobicnitrificationunder oxygen-limitedconditionsandanaerobicdenitrification[5,10]. SoilscanalsoactasasinkforN O, 2 wherepresumablyN OisreducedtoN duringdenitrification[11],thoughnetsoiluptakeratesof 2 2 N Oareusuallylowcomparedtopotentialemissions. ConsumptionandproductionofCH andN O 2 4 2 oftenoccursimultaneouslyindifferentsoilcompartmentsduetoheterogeneousphysico-chemical soilconditionsandmicrobialcompositionandactivity. Yet,commonchambertechniquesonlyallow measuringthenetsoil-atmosphereexchange. Soil-atmosphereGHGfluxeschangeovertimeandundergodiurnalandseasonalcycles[12,13]. ThemostimportantabioticfactorsinfluencingthefluxesofthementionedGHGaresoiltemperature andsoilmoisture[5].Yet,theresponsetothesefactorsisdifferentforeachgasspecies.Thetemperature responseisoftenexpressedasQ value,thefactorbywhichthefluxincreasesifthetemperatureincreases 10 by10◦C.Carbondioxidefluxesstronglyincreasewithsoiltemperature(Q 1.4–4.2)[5,14]whileCH 10 4 oxidationismuchlessdependentontemperature(Q around1.4)[5]. Incontrast,temperatureaffects 10 the production of CH and N O the strongest (Q > 10) [5,15]. Soil moisture can be limiting soil 4 2 10 respirationwhenitistoodryortoowet[5,13,16]. Methaneconsumptioncanalsobelimitedwhena soilistoodry[17],butgenerallyCH consumptionincreasesinadryingsoil[16,18,19]. Lowersoil 4 moisture results in higher air-filled pore-space, and thus increasing soil gas diffusivity and better supply of atmospheric CH . Fluxes of methane consumption are thus limited by the transport of 4 atmosphericCH intosoil(diffusion)andbythemethanotrophicactivity(acombinationofpopulation 4 densityandmethanotrophicactivitypercell)[20,21]. Nitrousoxidefluxesareoftendominatedby peakemissionevents,whichfollowtemporaryanoxiainducedbysubstantialchangesinsoil-moisture conditionssuchasfreeze-thaweventsorrewettingofdrysoil[22,23]. Soil-atmosphereGHGfluxesvaryspatiallybetweenecosystemsandsites,butalsoontheplot scalethroughtemporal-dependentfactorssuchassoilmoistureandtemperature[12]. Forinstance, methaneconsumptionatasiteisaffectedbysoilphysicalproperties[24,25],butalsobylitterquality and the vegetation [25,26], and bedrock categories [27]. To study the effects of spatially variable parameters such as soil properties or vegetation patterns at a plot scale, it is therefore necessary to measure greenhouse gas fluxes at different locations at the same time. Since manual chamber measurementsarelaboriousandtimeconsuming,thisisnotpossible,andmeasurementsareusually performed consecutively. The measured fluxes include, thus, also a temporal component in their variabilitythathastobeconsidered,e.g.,bymeasuringrepeatedlyacontrolchamber[14]. InvestigatingthespatialvariabilityofCO ,CH andN Ofluxesallowsforstudyingpossible 2 4 2 effects of vegetation and soil properties and finding links between the fluxes of the different gas species[25,28]canpointtohowunderlyingmicrobialprocessesmightbeinterrelated. Understanding patternsinthespatialvariabilityofsoilgasfluxes,e.g.,identifyingvegetationstrataorkeyspecies ontheplotscalewouldalsoallowchoosingmeasurementlocationsformonitoringpurposesmore efficiently. This would result in a better estimation of a representative flux of the area, and help optimizingthepositionandnumberofsamplinglocations[14]. Forests2017,8,193 3of16 Theobjectiveofourstudywastoidentifydriversofspatialvariabilityofmethaneconsumption ontheplotscaleinawell-aerateduplandforest. Westratifiedtheplotaccordingtovegetationandsoil texture,andhypothesizedthatsoil-gasfluxesofthesestrataweresignificantlydifferent. Toanalysethe Forests 2017, 8, 193 3 of 16 spatialvariabilityofGHGfluxesingeneral,andespeciallythelinksbetweenmethaneconsumption and the fluxesThoef oCbjOec2tivaen odf oNu2r Ostuodny wthaes tpol iodtensctiafyle d,rwiveersd oefv seplaotipale vdaraiasbtialintyd oaf rmdeizthaatnioe ncopnsruomcepdtiuonre that allowsforodn itsheen ptalont gslcianleg itne am wpeolrl‐aaleraantedd suppalatinadl fvoarerisat.b Wiliet ystroaftiGfieHd Gthefl pulxoet sa.ccording to vegetation and soil texture, and hypothesized that soil‐gas fluxes of these strata were significantly different. To 2. Materiaalnaalnydse Mthee tshpoatdiasl variability of GHG fluxes in general, and especially the links between methane consumption and the fluxes of CO2 and N2O on the plot scale, we developed a standardization 2.1. ExperipmroecnetdaulrSei ttheaatn adlloSwoisl fCorh adrisaecntetarnisgtliicnsg temporal and spatial variability of GHG fluxes. Meas2u. rMemateerniatsl awnder Mecetahrordiesd outinaplanted50yearoldScotspinestand(PinussylvestrisL.)next totheHartheimforestmeteorologicalexperimentalsite. ThesiteislocatedintheUpperRhineValley (South-We2s.1t. GExepremrimaennyta)l aSbiteo auntdo Snoiel Ckhilaoramcteertiestrices astoftheRhineRiver(47◦56(cid:48) N,7◦36(cid:48) E,201mabove sea level). ThMeemaseuarnemaennntsu walertee mcarpreierda touurte inis a 1p0l.a3nt◦eCd 5a0n ydeatrh eoldm Secaonts apninneu satalnpdr e(Pciinpuist astyilovenstriiss 6L4.)2 mm (Holstetanle.,xt2 t0o0 t8h)e. HTahrethseiitme wforaesstr megeuteloarrollyogflicoaol dexepderuimnetinltathl seitme. iTdheo sfitteh ies 1lo9ctahtecde innt tuhrey Uwppheer nRhthinee River Valley (South‐West Germany) about one kilometer east of the Rhine River (47°56′ N, 7°36′ E, 201 m Rhinewascorrected. Thetopographyofthesiteisflatwithminorlineardepressions(lessthan1m above sea level). The mean annual temperature is 10.3 °C and the mean annual precipitation is 642 deep)resultingfromformercoursesofcreeksinthefloodplain. ThesoilisaHaplicRegosol(calcaric, mm (Holst et al., 2008). The site was regularly flooded until the mid of the 19th century when the humic)[29R]i.veDr uRehitnoe twhaes hcoisrrteocrtyedo. fThaell tuovpioaglradpehpyo osfi ttihoen siotef iss uflbats twriatthe ms,inthoer lsinoeialrt edxepturersesicohnas n(lgesess thaabnr uptly vertically1w mith dienepth) eressouilltipngro ffirolmea fnordmheor rciozuornsetsa lolyf cwreietkhsi nins thhoer ftlodoidstpalanicne. sT.hTeh seorile iiss aa HAahplhico Rriezgoonsool ffine sand-silt-o(crallcoaarmic, yhusmiltico) f[259–].5 D0ucem to dtheep htihstoorny toof palloufvdiailf dfeerpeonsittiforna cotfi sounbsstoraftessa, nthde asonidl tegxrtauvree lchaatntghees most abruptly vertically within the soil profile and horizontally within short distances. There is a Ah locations. Whilethepinestandwasplantedinregularrows,thegroundcoverandunderstoryallows horizon of fine sand‐silt‐or loamy silt of 5–50 cm depth on top of different fractions of sand and separatingtheplotinseveralhomogenousvegetationstrata,furthercalledUnitsI–VI. gravel at the most locations. While the pine stand was planted in regular rows, the groundcover and understory allows separating the plot in several homogenous vegetation strata, further called Units 2.2. ExperimentalDesign I–VI. Themeasurementplotwaspositionedacrossahistoricalcreekbedthatformedaminordepression 2.2. Experimental Design (depth < 1 m) in the former floodplain (Figure 1a,b). The plot was homogenously covered by the The measurement plot was positioned across a historical creek bed that formed a minor plantedpinetreesandcovereddifferenttypesofsoiltexture,groundcoverandunderstoryvegetation depression (depth < 1 m) in the former floodplain (Figure 1a,b). The plot was homogenously covered (Figure1d–f). Measurementswereconductedalongthree32mlongparalleltransects8mapartthat by the planted pine trees and covered different types of soil texture, ground cover and understory crossedthedepression. Measurementpointswereregularlydistributedontransectsaspairs0.5m vegetation (Figure 1d–f). Measurements were conducted along three 32 m long parallel transects 8 m apartanda3pamrt btheatwt cereonssetdh ethpea diresp;reesascihont.r Manesaesuctreimncelnut dpeodint2s0 wmereea rseugruelmarleyn dtipstoriibnuttsedin otno ttaral.nsects as Measpuariresm 0.e5n mts apaanrdt asnadm 3 pml ibnegtwweeenr ethcea prariiresd; eaocuht trfarnosmect8 intcolu1d4edD 2e0c memeasbuerrem20en1t5 pioninstst ainb lteotawl.e ather conditions. AtMaelalspuoreinmtesnwts eancdo nsadmupctliendg mweeraes cuarrerimede noutto ffrosomi l8g taos 1fl4 uDxeecsemanbedr t2o0o1k5 isno isltacboler ewseaamthperl esfor conditions. At all points we conducted measurement of soil gas fluxes and took soil core samples for soil-physicalanalysis. Wesampledthesoilprofiledownto1mdepthatallpointsusingasoilprobe soil‐physical analysis. We sampled the soil profile down to 1 m depth at all points using a soil probe andassessedthesoiltextureinthefieldwiththefingertest[30]. Atallsamplingpointstherewasa and assessed the soil texture in the field with the finger test [30]. At all sampling points there was a subsurfacegravellayerthatatsomepointsreachedthesurface. Thetypicalsoundofthesoilprobe subsurface gravel layer that at some points reached the surface. The typical sound of the soil probe goingthroguoginhg gthrraovueglha glrloavwele adlltohweedla tyheer latyoebr etoi bdee indteinfiteifdie,dy, eytets saammpplleess ooff ththisi slalyaeyr ewrewree mreosmtlyo lsotslyt. lost. Figure1.Cont. Forests2017,8,193 4of16 Forests 2017, 8, 193 4 of 16 Figure 1F.igu(rae )1.T (oap) oTgopraogprhaipchailcaml maapp ooff tthhee HHartahretihme iemxpeerximpeenrtiaml esintet ablasseidte onb alasset‐dpuolsne llaassetr- pscualns e laser data; (b) Position of the sampling transects on the topographical map; (c) Sampling plot divided into scan data; (b) Position of the sampling transects on the topographical map; (c) Sampling plot understory vegetation strata; (d–f) Catenae along Transect A–C including the respective vegetation strata. dividedintounderstoryvegetationstrata;(d–f)CatenaealongTransectA–Cincludingtherespective vegetatioTnhes tdroamtai.nating vegetation was used to stratify the plot into six sub‐units (Table 1) that showed mostly similar texture in their soil profiles (Table 1, Figure 1c–f). Thedominatingvegetationwasusedtostratifytheplotintosixsub-units(Table1)thatshowed Table 1. Vegetation units used to stratify the sampling plot. mostlysimilartextureintheirsoilprofiles(Table1,Figure1c–f). Unit Topography Understory & Ground Vegetation Soil Texture Unit I Southern shoulder & plain Solidago gigantea (L.) and moss species Sand & gravel to loamy sand Table1.Vegetationunitsusedtostratifythesamplingplot. Bushes, Ligustrum vulgare (L.); Crataegus Unit II Southern slope Sandy gravel to sandy loam monogyna (Jacq.) Unit Unit III TopoBgortatpomhy‐slope MUonsdseesr (set.og.r, ySc&lerGoprodoiuumnd puVruemge, Lta.)t ion Silt and siltSy oloialmTe. xture 10–20 year old broadleaves Juglans regia UnitI Southernshoulder&plain Solidagogigantea(L.)andmossspecies Sand&graveltoloamysand Unit IV Bottom (L.), Tilia platyphyllos (L.), Carpinus betulus Silt and silty loam. Bushes,L(Lig.)u, lsetsrsu gmrovuunldgcaorvee(rL .);Crataegus UnitII Southernslope Sandygraveltosandyloam Unit V Norther slope & shoulder Bushes, Ligusmtruonmo vguylngaare( J(aLc.)q; .C)rataegus Sandy gravel to sandy loam monogyna (Jacq.) UnitIII Bottom-slope Mosses(e.g.,Scleropodiumpurum,L.) Siltandsiltyloam. Unit VI Northern plain (few) Solidago gigantea (L.), grass species Sand and gravel 10–20yearoldbroadleavesJuglansregia UnitIV2.3. MeasuremenBtso ottfo Smoil Gas Fluxes (L.),Tiliaplatyphyllos(L.),Carpinusbetulus Siltandsiltyloam. (L.),lessgroundcover Soil‐atmosphere gas fluxes were measured using non‐steady‐state flow‐through chambers. The Bushes,Ligustrumvulgare(L.);Crataegus UnitVchambeNrso rctohnersissltoepde o&f sah PouVlCde crollar and a mobile lid with a vent [31]. The collSaarnsd (ydigarmaveetletro 0s.a1n7d my,l oam monogyna(Jacq.) height 0.25 m) were installed the day before the measurement and inserted approximately 3 cm into UnitVI Northernplain (few)Solidagogigantea(L.),grassspecies Sandandgravel the soil. The air in the chamber was circulated via tubes to a Greenhouse Gas Analyzer (GGA; version Ultraportable, Los Gatos Research, CA, USA) for CH4 and CO2 measurements and to a Gas 2.3. MeaMsuorneimtoern t1s41o6f S(oLiulmGaasseFnslue,x eBsallerup, Denmark) for N2O and CF4 (see Section 2.4) analysis. Measurement frequency was 0.5 Hz for the GGA, and every 60 s for the Gas Monitor. Water vapour Soil-atmosphere gas fluxes were measured using non-steady-state flow-through chambers. was measured by both devices and stabilized using a dew point controller set to 4 °C. This greatly The chaimmbpreorvsedco anccsuisratecyd aonfd aprPecVisCionc oofl ltahre aNn2Od maemasuorbeimleenlitds, aws citohnfairmveedn tby[ 3te1s]t.s wTihthe ac loalbloarrasto(rdyi ameter 0.17m,GheCi.g ht0.25m)wereinstalledthedaybeforethemeasurementandinsertedapproximately 3 cm into thCehsaomilb.erTs hweeraei rclionsetdh eforc h15a–m20b emrinw faors tchier cfululxa tmedeasvuiraemtuebnet.s Ftluoxaes Gofr eCeHn4h aonuds CeOG2 awseAren alyzer calculated linearly based on the concentration changes over time of the first five and three minutes, (GGA;versionUltraportable,LosGatosResearch,CA,USA)forCH andCO measurementsand 4 2 respectively (R2 > 0.95). For N2O flux estimation a linear approach over the whole time span of 15–20 toaGasMonitor1416(Lumasense,Ballerup,Denmark)forN OandCF (seeSection2.4)analysis. 2 4 Measurementfrequencywas0.5HzfortheGGA,andevery60sfortheGasMonitor.Watervapourwas measuredbybothdevicesandstabilizedusingadewpointcontrollersetto4◦C.Thisgreatlyimproved accuracyandprecisionoftheN Omeasurements,asconfirmedbytestswithalaboratoryGC. 2 Chamberswereclosedfor15–20minforthefluxmeasurement. FluxesofCH andCO were 4 2 calculatedlinearlybasedontheconcentrationchangesovertimeofthefirstfiveandthreeminutes, respectively (R2 > 0.95). For N O flux estimation a linear approach over the whole time span of 2 Forests2017,8,193 5of16 15–20minwasusedsincesoil-atmospherefluxesofN Owerenegativeandlow. Whennolineartrend 2 wasobserved(p>0.05)N Ofluxesweresettozero[32]. FluxmeasurementsofN Owithvariable 2 2 watervapour(coefficientofvariation>0.01)wereexcluded. Linearregressionswerecalculatedwith PROCREGinSAS(SAS9.2,SASInstituteInc.,Cary,NC,USA) 2.4. MeasurementsofSoil-GasDiffusionCoefficients InadditiontoourmeasurementsofCO ,CH andN Ofluxes,weusedCF asatracergasto 2 4 2 4 measuresoilgasdiffusivityinsituusingamodifiedMcIntyreandPhilipapproach[31]. Atotalof 1mLofdilutedCF wasinjectedintothechamberafterclosuresothattheinitialCF concentration 4 4 reached15–20µmolmol−1. ThedecreasingCF concentrationwasmeasuredovertimebytheGas 4 Monitor. Thefunctionalrelationshipbetweensoilgasdiffusivityandair-filledpore-spaceallowed thesoilgasdiffusivityofthetopsoiltobederived. WeusedatransferfunctionfromMaieretal.[33] thatwasbasedontopsoilsamplesfromthesamesite. Anerrorfunctionwasfittothedecreasing CF concentrationstocalculatethesoilgasdiffusioncoefficientforCF (D CF4)(PROCNLIN,SAS9.4, 4 4 S SASInstituteInc.,Cary,NC,USA)[31]. D CF4 wasdividedbythediffusioncoefficientofCF inair S 4 (D CF4)atthegiventemperature[34]toobtaintherelativesoilgasdiffusioncoefficientD D −1 , 0 S 0 insitu whichisindependentofthegasspeciesandausefulparametertoassesssoilaeration. Gastransport insoilisdominatedbymoleculardiffusion. Yet,windandwind-inducedpressurefluctuationscan affectsoilgastransportaswell[33,35,36]. Toavoidwind-inducedartefactsitisthereforeimportantto measuresoilgasdiffusivityinsituundercalmconditions. Itisalsoimportanttoensurepropermixing ofairinmeasurementchambersforbothinsituandlabmeasurements,andtorestrictthemovement ofairinthechamberstotaminimum. Aftercompletingchambermeasurements,two200cm3 coresamples(5cmheight)weretaken at each measurement point that was covered by the chamber; and the cores included the humus layer and topsoil. In the lab, the field-fresh soil cores were analysed for soil-physical parameters. Air-filledpore-spacewasdeterminedbyvacuumpycnometry. Soilgasdiffusivity(D D −1 )was S 0 lab measured using a nonstationary one-chamber method [37] with neon as a tracer gas at starting concentrationsof100–800µmolmol−1,andweremeasuredusingamicro-gaschromatograph(CP2002P, Chrompack,Middelburg,TheNetherlands,withaCP-Molsieve-5AcolumnandHeascarriergas). Thesoilcoreswereplacedontopofachamberwithgasexchangerestrictedtodiffusionthroughthe sample. Afterinjectingneonintothechamber,thedecreasingneonconcentrationovertimeallowedto determinethesoilgasdiffusivity. Airpermeabilitywasmeasuredwithanapparatusasdescribedby Iversenetal.[38]byrelatingairflowthroughthesampletothepressuregradientacrossthesample. Thevolumetricsoilmoisturecontentwasdeterminedbythermogravimetry. 2.5. MethanotrophicActivity AssumingnegligiblesoilCH production,fluxesofatmosphericCH intothesoilarelimited 4 4 by physical transport and methanotrophic activity. Historically, methanotrophic activity has been measuredinthelabthroughincubationexperimentwithsievedsoil[20,39],i.e.,indisturbedsystems. Methanotrophicactivityundernaturalconditionscanbeestimatedusinggaspush-pulltests[40]ora combinationofchambermeasurementsofCH consumptionanddiffusivityinthefield[21]. Weused 4 theapproachofvonFischeretal.[21]tocalculatemethanotrophicactivityµ(s−1). µ= (cid:18)FCH4(cid:19)2 1 µ (1) C0 DCH4·ε S whereF isthesoil-atmospheremethaneflux(molm−2s−1),C theCH concentrationatthestart CH4 0 4 of the measurement (mol m−3), DCH4 the soil gas diffusion coefficient of CH (m2 s−1), and ε the S 4 air filled porosity (m3 m−3). Methanotrophic activity was calculated twice: (1) Using the soil gas diffusivitymeasuredinsitutocalculatethediffusioncoefficientofCH inthesoilbymultiplying 4 Forests2017,8,193 6of16 D D −1 by D of CH in free air (0.21 cm2 s−1), and (2) using the mean D D −1 of the two S 0 insitu 0 4 S 0 lab soilcores. Thesetwoapproacheswereusedsincelaboratoryandinsitudeterminationofsoilgas diffusivitycanyielddifferentvaluesanditisunclearwhichresultsaremorerealistic. D ofCH in 0 4 freeairforbothapproacheswascorrectedforbarometricpressureandairtemperature[41]. 2.6. StandardizationofGHGFluxes Sincesoilgasfluxescanshowcleardiurnalpatternatthissite[13]weincludedacontrolchamber thatwasmeasuredatthebeginning,middayandlateafternooneachdaythroughoutthecampaign. The observed diurnal flux pattern of the control chamber was used to calculate correction factors andstandardizethemeasuredfluxestothetimeofthestartofthecampaign. Standardizedfluxes (CO : Fstand.)werecalculatedbydividingtheobservedflux(Fmeas)bytherespectivecorrectionfactor 2 CO2 CO2 (CF ): CO2 Fmeas. Fstand. = CO2 (2) CO2 CF CO2 TheCO fluxofthecontrolchambershowedastrongerdependencyonairtemperaturethan 2 onsoiltemperature. WethususedairtemperaturetocalculateCF forallCO fluxmeasurement CO2 2 similartotheroutinedescribedbyDarenovaetal.[14]: CF = T × a+b (3) CO2 air whereT istheairtemperature(◦C),aistheslope,andbtheinterceptofthelinearregressionbetween air CO fluxandairtemperatureatthecontrolchamber. 2 ThecorrelationbetweentheCH fluxesofthecontrolchamberandsoiltemperaturewasweak, 4 butacleardiurnalpatternwasstillobserved. CorrectionfactorsforCH fluxeswerethuscalculated 4 based on the observed diurnal cycle and correction factors were interpolated. For N O some flux 2 measurementsofthecontrolchambershowednolineartrendandhadtobesettozeroordiscarded due to measurement quality issues. Since no clear pattern was observed for the control N O flux, 2 standardizationwasomitted. 2.7. StatisticalAnalysis Forthestatisticalanalysiswefollowedthreeapproaches. (1)Totestwhetherstratificationofthe plotbasedonvegetationpatternscouldbeusedtooptimizethesamplingdesign,wefocusedonflux differencesbetweenUnitI–VI.(2)Tofocusonthesoil-vegetationeffect,wemergedUnitI–VIintothe categoryShoulder(UnitI+VI),Bottom(UnitIII+IV),andTransition(UnitII+V)accordingtotheir similaritiesinsoiltexture,vegetationandtopography. (3)Tofocusonthetextureeffectseparately, alllocationswereclassifiedindividuallyaccordingtothedominanttextureintoSandorSilt. Locations withhighgravelcontentorcoarsewoodydebriswereseparatelyclassifiedasDisturbed. TotestdifferencesinmeanGHGfluxesbetweenthevegetationstrata(UnitI–VI)weusedat-test fornormallydistributeddataandaMann-Whitney-Utestfornon-normallydistributeddata. Weused thecoefficientofvariation(CV)asameasureofvariabilityanduncertaintyofthemeanestimated soil-atmospheregasfluxes. Toevaluatetheun-stratifiedandthestratifiedapproachesinasimpleway wecalculatedtheCVforbothapproaches[14]. Forthestratifiedapproachtheweightedmeanofthe CVofthestratawastakenintoaccountaccordingtothesamplesizeofeachstratum. Correlations betweenvariableswasevaluatedusingPearson’scorrelationcoefficientrfornormallydistributed dataandSpearman’srankcorrelationcoefficientr fornon-normallydistributedvariablesusingPROC s CORR(SAS9.2,SASInstituteInc.,Cary,NC,USA).Significancewassettop<0.05forallprocedures. To identify the effect of both continuous (e.g., D D −1 ) and categorical variables (texture S 0 lab categories,vegetationunits)onresponsevariables(Fstand.,Fstand.F. )weusedRandomForest[42]. CO2 CH4 N2O RandomForestisatreebasedensemblelearningmethodthatisnowwidelyusedinecologyandalso insoilsciencestoanalysecomplexdatasetandtoderivepedo-transferfunctions[43,44]. Weusedthe Forests2017,8,193 7of16 RpackagerandomForesttobuildthemodel[45]. Priortomodelbuilding,allcontinuousvariableswere standardisedandthestrengthofcollinearitybetweenthepredictorswasassessed. Frompredictor pairswithaPearson’scorrelationcoefficient>0.5,thepredictorvariablecontributinglesstothefinal modelwasexcluded[46]. Toavoidoversaturationofthemodel,thenumberoftreestogrowinthe forestwassetto2000,thenumberofrandomlyselectedpredictorvariablesateachnodewassetto 3, andtheminimalnumberofobservationsattheterminalnodesofthetreesweresetto5[43,44]. Five-foldcross-validationwasperformedtoassessthepredictionqualityofthemodel. Thecoefficient ofdetermination(R2)andtherootmeansquarederror(RMSE)werecalculatedaccordingly. BasedontheRandomForestwebuiltGeneralizedMixedModels,withvegetationcategoryor textureclassasnominalcategories(PROCGLM,SAS9.2,SASInstituteInc.,Cary,NC,USA).Vegetation unitandtextureclasswerepositivelycorrelatedandconsequentlyoneortheotherwasusedtobuilda model. ThefinalmodelwasbuiltupbystepwisereducingAIC(Akaikeinformationcriterion)that waschosentoaccountforsmallsamplingsize. 3. ResultsandDiscussion 3.1. StandardizationofTemporalVariabilityofGreenhouse-GasFluxes ThesoilattheHartheimsitewasasourceofCO andsinkforCH andN Oatallmeasurement 2 4 2 timesandpointsdespitetopsoilmoistureconditionsbeingnearsaturationduetoseveralrainevents beforethecampaign. Duringthecampaigntherewasfoganddew,meaningsoilmoisturewasstable at12%vol. at0.3mdepth(permanentlyinstalledmonitoringprobe)and25%inthetopsoil(mean of120soilcoresamples). Meansoiltemperatureat1cmdepthwas6.0◦Cduringthecampaignand rangedfrom5.3to7.1◦C.Meanairtemperaturewas5.0◦C,andrangedfrom1.0◦Cto10.3◦C.Wind conditionswerecalm. Repeated measurements of the CO flux at the control chamber showed a strong correlation 2 (R2=0.83)withairtemperature(Figure2a)thatwasreflectedinthemeasurementthroughoutthe spatialreplicates(Figure2a,greyx-symbols). Theestimatedslope(Equation(3),a=0.68µmolm−2 s−1 ◦C−1)andintercept(b=0.15µmolm−2 s−1)ofthislinearregressionwereusedtostandardize measured CO fluxes to temperature at the starting time of the campaign. Measured CO fluxes 2 2 were0.52–2.51µmolm−2s−1andtemperature-derivedcorrectionfactorsforCO fluxeswere0.8–2.1 2 (Figure2b,solidline). StandardizingofCO fluxes(Equation(2))resultedinaslightlysmallerrange 2 offluxvalues(Fstand.0.52–2.42µmolm−2s−1). CO2 RepeatedmeasurementsoftheCH fluxatthecontrolchamberwerenotsignificantlycorrelated 4 withairtemperature,butslowchangesovertimewereobserved(Figure2b). Wecalculatedcorrection factors by dividing observed fluxes at the control chamber by the CH flux at the starting time of 4 thecampaign. TheCH fluxcorrectionfactorwastheninterpolatedbetweenmeasurementsofthe 4 controlchamber. ThecorrectionfactorforCH fluxeswere0.7–1.1(Figure2e,solidline),meaningthe 4 standardizationeffectforCH fluxeswasmuchweakercomparedtoCO fluxes. 4 2 Outofthetotal62N Ofluxmeasurements, 6measurementsfailedduetoproblemswiththe 2 watervapourconditioningand18measurementsweresettozeroflux. Nitrousoxidefluxwasalways negative, i.e., N O was consumed by the soil, and N O fluxes were much lower than CH fluxes 2 2 4 (Figure 2c,f). Consequently, N O flux measurements were not standardized due to an insufficient 2 numberofhigh-quality,non-zerofluxmeasurementsatthecontrolchamber(Figure2c). TheobservedCO fluxesagreewellwiththefluxesknownfrommonitoringcampaignsatthis 2 site [13,37]. The observed mean CH flux of −2.39 nmol s−1 m−2 is at the higher end of uptake 4 measurementsaccordingtoSmithetal.[18],whichwouldbeexpectedforthewellaeratedforestsoil atHartheim. TheobservedmeanN Ofluxof−0.05nmols−1m−2iswithintherangeofvalueslisted 2 byChapuis-Lardyetal.[11],whereN Ofluxesasnegativeas−3.1nmolm−2swerereported. Since 2 soiltemperatureabove5◦CareconsideredtofavourN Oconsumptionbysoils,evenhigherN O 2 2 uptakecanbeexpectedatoursiteinwarmerperiodsoftheyear[47,48]. Forests2017,8,193 8of16 Forests 2017, 8, 193 8 of 16 Figure2.GreFiegnuhreo 2u. sGeregeanshofluusex egass mfluexaessu mreeadsuirnedt hine tchoe nctornotrlocl hchaammbbeerrss (b(blalcakc) ka)nda nspdatsiapl arteipalilcarteeps licates(grey) (grey) for (a) CO2, (b) CH4, and (c) N2O, and in the spatial replicates for (d) CO2, (e) CH4, and (f) N2O. for(a)CO , (b)CH , and(c)N O,andinthespatialreplicatesfor(d)CO , (e)CH , and(f)N O. 2 For CO2, th4e correlation be2tween air temperature and CO2 fluxes in the control chamb2er (dashed l4ine 2 ForCO2, thein c(oa)r) rwelaas tuiosend btoe tcwalceuelante aciorrrteecmtiopn efarcatotursr e(soalindd linCesO i2n fl(bu))x aensd isntanthdaerdciozendt rCoOl2 cfhluaxmes ber(dashed linein(a))w(cairscluess) efrdomto mceaaslucruedla CtOe2c folurxrees c(ttriioannglfeas)c. tFoorrs C(Hs4o, cliodrrelliantieons winith( bai)r) teamnpdersattuarne dwaars dwiezaekd; CO fluxes 2 interpolated CH4 fluxes in the control chamber (dashed lines in (c)) were used directly to calculate (circles)frommeasuredCO fluxes(triangles).ForCH ,correlationwithairtemperaturewasweak; correction factors (so2lid lines in (d)) and standardized CH44 fluxes (circles) from measured CH4 fluxes interpolated(tCriaHng4lefls)u foxre tshei nrestpheectcivoen dtartoe lancdh atimmeb. Setran(ddaardsihzaetdionl ionf eNs2Oin fl(ucx)e)s wwaesr neout psoesdsibdlei rdeucet tloy tocalculate correctionfaicntsourffsic(iesnot lindumlibneer sofi nqu(adli)t)y amnedassutraemndenatsr diniz tehde cConHtr4olfl cuhaxmebse(rc (ier)c. lHese)ncfer,o mmeamsuereads uNr2eOd CH4fluxes fluxes were used for downstream analysis. (triangles)fortherespectivedateandtime. StandardizationofN Ofluxeswasnotpossibledueto 2 insufficie3n.2t. Snpuamtiabl Veraroiafbiqliutya olfi tSyoiml Geaass Fulurxeems entsinthecontrolchamber(e).Hence,measuredN2Ofluxes wereusedfordownstreamanalysis. CH4 fluxes between Unit I–VI differed substantially (Table 2, Figure 3b). Lower but significant differences were observed in CO2 fluxes (Figure 3a). N2O fluxes of the different strata were not 3.2. SpatialVsaigrniaifbicialinttylyo dfiSffeorielnGt, awshFiclhu ixse psrobably due to the high number of zero‐flux measurements in all strata (Figure 3c). The highest CH4 consumption was observed in the two silt strata (Unit III & IV) CH fluaxneds thbee stowutheeernn sUhonuiltdeI–r oVf Ithde idfefperreesdsiosnu (Ubnsitta In, stainadl/lgyra(vTeal;b Fligeu2re, 3Fbi)g. ure3b). Lowerbutsignificant 4 differences were observed in CO fluxes (Figure 3a). N O fluxes of the different strata were not Table 2. Mean flux and coe2fficient of variation (CV) of GHG fo2r all measurement or as weighted sum significantlydifoffe arlel sntrta,taw. hichisprobablyduetothehighnumberofzero-fluxmeasurementsinall strata(Figure3c). ThehighesFtluCx H4consumApllt MioenasuwreamsenotsbserveWdeiinghttehde Stuwm oof sSitlrtatsa trata(UnitIII&IV)and thesouthernshoulderofthedepression(UMenaint I,sandC/V gravel;MFeiagn ure3b).CV CO2 (μmol s−1 m−2) 1.13 36% 1.13 33% CH4 (nmol s−1 m−2) −2.39 38% −2.39 24% Table2.MeanfluxaNnd2O c(nomefofil sc−i1 emn−t2) ofvari−a0t.0io5 n(CV)8o8f%G HGfo−r0a.0l5l measure8m7%e ntorasweightedsum ofallstrata. AllMeasurements WeightedSumofStrata Flux Mean CV Mean CV CO (µmols−1m−2) 1.13 36% 1.13 33% 2 CH (nmols−1m−2) −2.39 38% −2.39 24% 4 N O(nmols−1m−2) −0.05 88% −0.05 87% 2 Consideringtheentireun-stratifiedplot,spatialvariability(evaluatedascoefficientofvariation CV)ofthestandardizedCO andCH fluxesandnon-standardizedN OfluxwashighestforN Oand 2 4 2 2 similarforCO andCH (Table2)andagreeswellwithdatafromliterature[14,49].Sincethevegetation 2 4 stratacouldexplainsomeofthespatialvariabilityofthesoilgasfluxesatoursite,ourstratification Forests 2017, 8, 193 9 of 16 Considering the entire un‐stratified plot, spatial variability (evaluated as coefficient of variation Forests2017,8,193 9of16 CV) of the standardized CO2 and CH4 fluxes and non‐standardized N2O flux was highest for N2O and similar for CO2 and CH4 (Tab. 1) and agrees well with data from literature [14,49]. Since the vegetation strata could explain some of the spatial variability of the soil gas fluxes at our site, our approach reduced the CV for CH substantially, from 38% to 24% (Table 2); however, it was less 4 stratification approach reduced the CV for CH4 substantially, from 38% to 24% (Tab. 1); however, it effectiveforCO andhadalmostnoeffectforN O. was less ef2fective for CO2 and had almost no effe2ct for N2O Figure 3. Boxplots of standardized soil-atmosphere gas fluxes of (a) CO and (b) CH , 2 4 Figure 3. Boxplots of standardized soil‐atmosphere gas fluxes of (a) CO2 and (b) CH4, (c) (c) non-standardized N O fluxes, (d) soil water content, (e) soil gas diffusivity measured in situ (D D −n1on‐stan)d,aardnidze(df N)s22Oo ifllugxaess, d(di)f fsuosili wviattyerm coenatesnutr, e(ed) sionilt ghaes dlaifbfuosriavtitoyr mye(aDsurDed −in1 situ) (oDfSDth0−e1 ind ifferent S 0 situ)i,n asnitdu (f) soil gas diffusivity measured in the laboratory (DSD0−1lab) of the diffSere0nt sulabbplot units. subplotTuhne imtse.aTnh vealmuee aisn invdailcuaetedis biny dthicea rtheodmbby atnhde trhhe ohmorbizaonntdalt lhineehs oinrdizicoanteta tlhlei n2e5tshi n50dtihc aatned t7h5eth2 5th50th and75tpherpceenrctielen.t Siligen.fSiciganntfi dciaffnertedncifefse irne tnhcee mseinant hvaelume eaaren invdailcuaeteadr beyi an ddiifcfaerteendt bleyttear dabifofveer.e ntletterabove. The RandomForest model showed that the vegetation units contributed substantially to the The RandomForest model showed that the vegetation units contributed substantially to the explanation of the spatial variability of the CO2 flux and especially of the CH4 flux. Total porosity, air explanafitliloedn poofret‐hsepascpe,a rteialaltivvae rsioaibl iglaitsy doifffutshiveitCy Oan2dfl auirx paernmdeaebsiplietyc iwalelrye ohifgthhlye cCorHre4laflteudx w. iTtho toanlep orosity, airfilledanpotohreer-. sTphaecreef,orreel, aotnivlye resloaitlivgea ssoidl igfafus dsiivffiutsyivaitnyd waaisr upseedrm ine tahbei fliintyal wmeordeelh. Vigehgelytatcioonrr uenlaitt ewdasw ithone anothera.lsToh heirgehfloy rceo,rroenlaltyedre wlaitthiv seoisl oteixltguares cdlaisffsu, ssoi vthitayt twhea lsatutesre wdaisn etxhcleufidenda flrmomo dtheel .fiVnaelg metoadteilo. nunitwas alsohig hlycorrelatedwithsoiltextureclass,sothatthelatterwasexcludedfromthefinalmodel. FortheCH flux,therankingofVariableImportanceintheRFmodelrevealedvegetationunit, 4 CO Flux and soil water content to be the most relevant explanatory variables. Mean decrease of 2 accuracyinpredictionontheOutofbagsamples(%IncMSE)whenexcludedfromthemodelwere 75%,32%,and13%. ThedecreaseinNodeimpuritywas25,11,and5. Thecoefficientofdetermination wasfoundtobe0.95ontheoriginaldataset. R2wasfoundtobe0.57–0.81with5-foldcross-validation. RMSEvariedbetween19%to34%ofthemeanflux. Thus,theselectedvariablesgenerallyareusefulto explaintheCH flux,butpredictiveaccuracyislimited. 4 Forests2017,8,193 10of16 TheRandomForestmodelshowedthatCO fluxcouldbebestexplainedbyCH flux,relativesoil 2 4 gasdiffusivityandvegetationunit. Relativeimportancewasmuchlowerandindependentvariables withintherankingwerelessunequivocalfortheCO fluxwith%IncMSEvaluesof26%,20%and19%. 2 DecreaseinNodeimpuritywas14,13,and10. Althoughthecoefficientofdeterminationoftheoriginal datawas0.91,cross-validationresultsshowedmuchlesspredictiveaccuracywith0.06–0.66R2. RMSE wasalsopoorwith53%to95%ofmeanflux. Stratificationapproacheshavebeensuccessfullyappliedusingtopographicalelementslikeditches andfields[50],hill-slopeposition[51],andplantcommunities[52]. Fewstudiesthoughcouldstratify orexplainspatialvariabilityofGHGfluxesontheplotscale. Shvalevaetal.[49]showedthattree coverhadaneffectonnetN OfluxesandthatCH fluxeswereaffectedbysoilorganiccarboncontent. 2 4 Darenovaetal.[14]identifiedlitterthicknessandlocalsoilmoistureasimportantfactorsaffecting CO fluxesontheplotsscalewithinaforestandgrassland. Wedidnotobservesucheffects,yetwe 2 identifiedthevegetationstrataasimportantfactoraffectingCO andCH fluxes. Sincesoiltexture 2 4 andvegetationwerestronglycorrelatedatoursite,itisnotpossibledisentanglingthetwofactors. Nevertheless,stratifyingtheplotbydominantunderstoryvegetationhelpedtoreducetheuncertainty intheestimatedmeanCO andCH fluxstemmingfromspatialvariability. Thus,samplingdesigns 2 4 formonitoringGHGatthissitecouldbeoptimizedbystratifyingthesiteintodifferentvegetation units,anddistributingequallysamplinglocationswithineachunit. Studies comparing plots of different vegetation could show that tree species can affect CH 4 consumptionsbysoils[25,26,49,53,54]. Menyailoetal.[26]observedthattreespecieshadaneffecton methanotrophicactivityinanafforestation,butthatthecompositionofhighaffinitymethantrophs was not altered. Borken & Beese [25] attributed the observed differences in CH uptake between 4 forestsitestothedifferentlitterqualityandsoilmoisture. Similarastooursite,Borken&Beese[25] observednoeffectofvegetationonN Ofluxes. Niklausetal.[55]observedthatCH uptakeandsoil 2 4 N Oemissionsdecreasedwithplantspeciesrichnessinagrasslandexperiment. Theyattributedthe 2 decreaseinCH uptaketoanincreaseinsoilwatercontent. Incontrast,UnitIwithmosscoverhad 4 significantlyhigherCH uptakethanUnitVIwithgrasscover,whilebothhavesimilarwatercontent, 4 soiltextureanddiffusivity(Figure3d–f). ThiscouldindicateadirecteffectofthevegetationonCH 4 uptake,witheitherspeciesofhighersuccession(grasses)inhibitingCH uptake,orspeciesoflower 4 succession(mosses)enhancingCH uptake,asknownfrompeatlands[56,57]. Understandingwhich 4 dynamicisoccurringmeritsfurtherinvestigation. 3.3. InteractionofSoilPhysicalParameters,SoilGasFluxes,andSoil-VegetationUnits Air-filledpores-space,soilgasdiffusivityandairpermeabilityofthesoilcoresamplescorrelated wellwitheachother(Pearson’sr>0.7).Labmeasurementsofsoilgasdiffusivity(D D −1 )correlated S 0 lab well with in situ measurements (D D −1 ) (r: 0.59), while D D −1 yielded larger values S 0 insitu S 0 insitu (0.12–0.74)thanD D −1 (0.11–0.49)(Figure3e,f). Thiswasalsoobservedinpreviousstudies[21,31] S 0 lab and can be attributed to uncertainties in the methods and different reference volumes between laboratory and field chambers. Soil gas diffusivity in Unit I was significantly higher than in the otherunitsaccordingtobothmethods,andbothvegetationunitswithsilt(UnitsIII&IV)hadlow diffusivityvaluesandlessvariability. ForfurtheranalysisweusedmergedtopographicalcategoriesShoulder(UnitI+VI),Bottom(Unit III+IV),andTransition(UnitII+V).Soiltextureandaggregationwassubstantiallydifferentbetween the topographical categories. We observed similar relationships between fluxes and soil-physical parameters(Figure4),albeitshiftedbetweencategories. Correlationsweregenerallylesspronounced fortheTransitioncategory,sincedifferenttexturesandconditionsweremerged. AsN Ofluxescould 2 notbestandardized,nofurtheranalysisofthedatawasperformed.
Description: