ebook img

Do Voters Support Local Commitments for Climate Change Mitigation in Italy? PDF

2018·0.72 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Do Voters Support Local Commitments for Climate Change Mitigation in Italy?

EcologicalEconomics144(2017)27–35 ContentslistsavailableatScienceDirect Ecological Economics journal homepage: www.elsevier.com/locate/ecolecon Do Voters Support Local Commitments for Climate Change Mitigation in Italy? SimoneMartellia,b,*,GreetJanssens-Maenhoutb,PaoloParuolob,ThierryBrécheta,c,EricStrobld,Diego Guizzardib,AlessandroK.Ceruttib,AndreeaIancub aCORE,ChairLhoistBerghmans,UniversitéCatholiquedeLouvain,Louvain-La-Neuve,Belgium bEuropeanCommission,JointResearchCentre(JRC),Ispra,Italy cLouvainSchoolofManagement,UniversitéCatholiquedeLouvain,Louvain-La-Neuve,Belgium dDepartmentofEconomicsandOeschgerCentreforClimateChangeResearch,UniversityofBern,Bern,Switzerland A R T I C L E I N F O A B S T R A C T Articlehistory: Thereisagrowinginterestinvoluntaryprogrammesforclimatechangemitigation,includinggreenhouse Received29August2016 gas(GHG)emissionreductioncommitments.Thispapergaugesevidenceonthesupportofcitizensforcli- Receivedinrevisedform9June2017 matechangemitigationprogrammesatthelocallevel,analysingvotingbehaviour.Aquasi-experimental Accepted28June2017 set-upisofferedbytheEUCovenantofMayors(CoM)initiative,whichisthemainstreamEuropeanmove- mentforlocalauthoritiesvoluntarilycommittingtomeetandexceedtheEuropeanUnion20%GHGemission JELclassification: reductiontargetby2020.TheelectoralimpactoftheparticipationofItalianmunicipalitiestotheCoMis Q54 Q58 estimated,usinganinstrumentalvariable(IV)approach.Mayorscommittingtoreducegreenhousegasemis- D72 sionsintheirmunicipalityappearnottoloseelectoralsupportatsubsequentelections;thisiscontraryto whatwouldbeimpliedbyasimple(biased)ordinaryleastsquaresregression.Moreover,IVpointestimates Keywords: arepositive,albeitinsignificantatstandardlevels;thiscouldbeduetothepossibilityofsomesupportof Climatechangemitigation citizensforemissionreductioncommitments.Finally,strongheterogeneityinsocio-economicanddemo- Emissionreduction graphiccharacteristicsisfound,withsupportoftheCoMbeingmorepronouncedinwealthierandyounger Voting cities. CovenantofMayors ©2017ElsevierB.V.Allrightsreserved. 1. Introduction Actionforclimatechangemitigationrequiresstrongandunwa- veringpoliticalcommitment.Forthisreason,internationalinitiatives Mountingscientificevidenceonthecausesofclimatechangeand aregrowingtoovercomecoordinationfailuresandstrengthenjoint itspotentialconsequenceshasincreasedtherelevanceofenviron- efforts for emission reduction, including international coalitions, mentalpoliciesforgreenhousegas(GHG)emissionreduction(see, voluntaryagreementsandpeer-reviewprocesses. forinstance,therecent‘EnergyUnion’priorityoftheEuropeanCom- TheUNFrameworkConventionforClimateChangeisthewidest mission(EC,2015)).However,nationalandlocalactionsforclimate coalitionforemissionreduction.Itinvolvesmorethan195countries change mitigation generate mostly global and future benefits (dif- in the world, including the largest CO emitters, all with intended 2 ferentlyfromlocalpollutionattenuation),underminingthepolitical nationally determined contributions submitted to the conference incentiveforit. of Parties in Paris (December 2015). The analysis of efficiency and This paper tests one source of political incentives for climate stabilityoflargecoalitionhasbeenstudied,forexample,byBréchet changemitigation:theexistenceofanelectoraldividendformay- etal.(2011). orsthatcommittoreduceemissionsatthelocallevel.Inparticular, Local alliances supporting voluntary agreements at different it estimates whether the political commitment to reduce munici- administrative levels have also been launched to involve sub- pal emissions, undertaken within the EU Covenant of Mayors, has nationalandlocalactors,focusingonbottom-upandmultilevelgov- a positive or negative impact on electoral support at subsequent ernance approaches. They generally rely on the voluntary engage- electionsforincumbentmayorsrunningforasecondterm. mentoflocalauthoritieswithoutanylegallybindingcommitment. Internationalexamplesoflocalalliancesforemissionreduction havebeengrowingsincetheearlynineties.Thebasisofthisstudy is the EU Covenant of Mayors (CoM). It was formed in 2008 and *Correspondingauthor. E-mail address:[email protected](S.Martelli). itisnowthemainstreamEuropeanmovementforlocalauthorities http://dx.doi.org/10.1016/j.ecolecon.2017.06.035 0921-8009/©2017ElsevierB.V.Allrightsreserved. 28 S.Martellietal. /EcologicalEconomics144(2017)27–35 voluntarily committing to meet and exceed the European Union commitments. Citizens living in poorer cities seem not to support 20% GHG emission reduction target by 2020 (as laid down in the emission reduction commitments, contrary to richer cities. A sim- Europe 2020 strategy), under their mandate (Cerutti et al., 2013). plehierarchyofneedsapproachpredictsenvironmentalconcernsto OtherinternationalnetworksaretheICLEI-LocalGovernmentsfor benegativelyrelatedtoeconomicconditions,asKahnandKotchen Sustainability, established in 1990 (ICLEI, 2014); the U.S. Confer- (2011)foundlookingatthefrequencyofrelatedsearchesontheweb. enceofMayorsClimateProtectionAgreement,launchedin2005(The Therestofthepaperisorganisedasfollows.Thedetailsofthe US Conference of Mayors, 2007); and the UN Compact of Mayors, Covenant of Mayors are reported in Section 2. Section 3 describes anagreementbetweenexistingcitynetworkscreatedin2014(UN the dataset while Section 4 provides the empirical framework of Headquarter,2014).Interestforlocalclimatepoliciesisalsogrowing analysis and the identification strategy. Potential sources of endo- inChina,asanalysedbyZhengetal.(2014). geneityareassessedbasedontheliteratureonthepoliticaleconomy Awideeconomicliteratureontheattractivenessandeffective- ofenvironmentalpolicies.ResultsarereportedinSection5.Section6 nessofenvironmentalvoluntaryagreementsbetweenpublicauthor- concludes. itiesandtheprivatesectorhasbeendeveloped.CarraroandLvłque (1999), Croci (2006), OECD (2003) are notable example develop- 2. TheCovenantofMayorsInitiativeandSimilarPolicies ing an extensive assessment of the effectiveness, efficiency and adequacyofpublic-privatevoluntaryagreementscomparedtotradi- The Covenant of Mayors (CoM) is the mainstream European tional“commandandcontrol”policies.Boththepolicytoolsusedby movement involving local authorities voluntarily committing to CoMcitiestoinducechangesinprivatesectoremissionsaswellas meetandexceedtheEurope2020targetofGHGemissionreduction theireffectivenessrestbeyondthescopeofthepresentwork. (−20%by2020),undertheirmandate.2ItwaslaunchedbytheEuro- Thescopeofthecurrentworkistolookatmultilevelgovernance peanCommissionaftertheadoptionoftheEUClimateandEnergy approaches to climate change mitigation within the public sector. Package, in 2008, to encourage the implementation of sustainable Theanalysisofrelevantdriverssupportingthepoliticalengagement energy policies at the local level. Based on the subsidiarity princi- ofmayorsforclimatemitigationisofkeyimportancegiventhecon- ple, different institutional levels are invited to cooperate in order sistent contribution of cities to global emissions and the limited tolocallyaddresstheglobalchallengeofclimatechange.Inpartic- ability of national and supranational authorities to act at the local ular, mayors willing to formally commit to reduce emissions need level,inlinewiththeprincipleofsubsidiarity(Collier,1997).Inpar- to adopt and implement a Sustainable Energy Action Plan (SEAP) ticular,theelectoralsupportforlocalcommitmentstoreduceGHG withintheirmandates,whoseconsistencyisensuredbythetechni- emissionsisunderscrutiny. calassessmentoftheEuropeanCommission-JointResearchCentre Electoralincentives(inadditiontotheactivityoflobbygroups) (JRC). seemtoexplainthestringencyofenvironmentalpolicies(Fredriks- In2015thenewCovenantofMayorsforClimateandEnergywas son et al., 2005) and the level of environmental spending (Bouton announced by European Commission Directorate-General Energy. et al., 2013; List and Sturm, 2006). Environmental preferences of TheCoMmandatewasextendedtocoverbothmitigationandadap- citizenshavealsobeenempiricallyproventobeadriverofnewemis- tation,andatimehorizonto2030(inlinewiththeEU’s2030climate sionreductionpoliciesatthelocallevel(KahnandMorris,2009)and andenergypackage). cityclimateplanning(Millard-Ball,2012).Onthecontrary,theyseem InItalianmunicipalities,theCoMisthebestknownandrecog- not to be a determinant of carbon emissions for firms (Cole et al., nized action primarily targeting the reduction of GHG emissions. 2013;Matisoff,2013). ThisisevidentfromFig.1,reportingthestandardisedfrequencyof Thepoliticalcommitmenttoreduceemissionsmayhaveaposi- GooglesearchesinItaly(overallaverageandtimetrend)forthekey tiveeffectonelectoralresultsifthereisademandforenvironmental words“CovenantofMayors”(solidline);“PattodeiSindaci”,theItal- policies(andifthecommitmentiscredible).Wheninterviewed,EU iantranslationforCoM(dash-dottedline);any“Other”similarpolicy citizensaskforstrongerenvironmentalprotection(EC,2007,2011). discussedbelow(dashedline,whichisflatatzero).Stronginterest Forinstance,inthe2011SpecialEurobarometersurvey,EC(2011), intheCovenantofMayorsstartsinJanuary2010andanyalternative 63% of EU citizens stated that the European Union is not doing initiativeisnegligiblecomparedtoit. enough to use natural resources efficiently, despite the ambitious The number of mayors participating in the CoM has increased Europe2020targets.But,dostatedpreferencestranslateintovoting overtime.Therewere5049signatoriesover47participatingcoun- behaviouratthemunicipallevel?Areemissionreductioncommit- triesbyMarch2013(4916signatoriesintheEU-28),corresponding ments,undertakenwithinaglobalalliance,rewarded(orpunished) toapopulationof187million(160millionintheEU-28),seeCerutti byvotersatthelocallevel? etal.(2013).Bytheendof2013,theygrewto6186signatoriescorre- The CoM provides a unique quasi-experimental setup to assess spondingto213millioninhabitantsandtoanoverallGHGreduction the electoral impact of emission reduction commitments at the commitmentof27%(7%higherthantheminimum). local level. Self-selection of mayors into the CoM and the result- ItalyistheEuropeancountrywiththehighestparticipationrate, ingendogeneitybiasissolvedherethankstoanintention-to-treat both in terms of number of signatories and inhabitants involved, instrumental variable approach. An exogenous instrument for the makingitthemostsuitedStatetoperformacounterfactualanalysis. effort required to join the movement is available through the so- 3355ItalianmunicipalitiesjoinedtheCoMbytheendof2013,indi- called‘CovenantTerritorialCoordinators’(CTCs),asdescribedinthe viduallyorjointlywithothermunicipalities,correspondingto50% followingsections.Thisallowstoestimatetheimpactofjoiningthe of total signatories in Europe and 41% of Italian municipalities. As CoMontheelectoralresultofanincumbentmayor1,i.e.toanswer aresult,39millionItalianswerecoveredbytheCoMattheendof thequestion:“DoestheCoMincreasetheapprovalofacandidate?” 2013,correspondingto65%ofthecountrypopulation. The electoral effect of voluntary participation in the CoM, for TheadhesiontotheCoMrequiresanoteworthyadministrative theaveragecity,isfoundtobenull.However,socio-economicand and technical effort for the municipal administration. Signatories demographic heterogeneity are found to be key in explaining the needtocomputetheirBaselineEmissionInventory(BEI)andsubmit presence or absence of individual support for emission reduction aSEAP,specifyingconcreteactionstoreduceGHGemissionsby2020, 1 TheimpactoftheCoMonactualGHGemissionreductionremainsbeyondthe scopeofthepresentstudy. 2 www.covenantofmayors.eu;accessed01/09/2015. S.Martellietal. /EcologicalEconomics144(2017)27–35 29 Fig.1. FrequencyofGooglesearchesrelatedtoenvironmentalpoliciesinItaly.StandardisedfrequencyofGooglesearchesasprovidedbyGoogleTrend(www.google.com/trends) fortheperiod06/2008–12/2013.“Others”correspondstoanyofthealternativeinitiativeslistedinSection2. togetherwithanimplementationstrategy.Theeffortrequiredtojoin emissionreduction.EvenifitisasignallingtoolforGHGemis- theCoMhasbeenrapidlyconsideredtobearelevantbarriertoentry, sionreductionpolicies,itisnotwidelyknowninItaly,when asreportedtotheauthorsofthispaper,inprivatecommunications, comparedtotheCoM. byseveralmayorsaswellasexpertsworkingontheinitiative. • TheC40CitiesClimateLeadershipGroup(www.c40.org).This Thus,theECsupportedtheorganizationof‘CovenantTerritorial istheonlyinitiativewiththesameaimastheCovenantofMay- Coordinators’(CTCs)toprovidefinancial,technicalandadministra- ors.However,onlythreeItaliancitiesareparticipatinginthe tive support to decrease the costs of adhesion to the CoM and to initiative(Milan,RomeandVenice)andnoparticularcommit- furtherpromotetheinitiative.CTCsaresub-nationaldecentralised mentisrequiredforit.Moreover,C40wascreatedin2005,but bodiestargetingthemunicipalitieswithintheiradministrativebor- therelatedaward,theuniquesignallingtoolintheinitiative, ders(e.g.provinceorregion).TheyfrequentlydeveloptheBEI(witha wasestablishedin2013anditwasnotassignedtoItaliancities uniformapproach)andoffertechnicalsupporttopreparetheSEAPs, inthefirstyear.Thus,itisnotasubstitutesignallingtoolfor seeCovenantofMayorsOffice(2012b). mayorsinthepresentsample; The active involvementof provincesand regionsthrough CTCs, • TheUnder2MOU(under2mou.org).Thisisagroupofstates whichplayapivotalroleinenticinglocalauthoritiestojointheini- andregionscommittingtowardsemissionsreduction“tohelp tiative,wasconsideredtobethereasonforthesuccessoftheCoMin galvanizeactionatCOP21”.Evenifitsignalsemissionreduction Italy(CovenantofMayorsOffice,2012a).Onaverage,anItalianCTC commitments,citiescannotjoinit. coordinates26municipalities,butfiguresvarysignificantlyassome Thus,noneoftheaboveinitiativesisacompetitivepolicywith provincescoordinatemorethan100municipalities,suchastheCTC respecttotheCoM,asshowninFig.1. oftheProvinceofBergamo(186)andtheProvinceofL’Aquila(109). Moreover,citizens’awarenessofthemayor’ssigningoftheCoM ThefirstCTCswerecreatedsoonafterthelaunchoftheCoM,inmid- (andrelatedcommitments)iswitnessedbymanypaperandonline 2009.Attheendof2013,therewere99CTCsinItaly,spreadoverthe records. Indeed, mayors appear to communicate extensively their wholecountry. adhesion to the CoM and to promote their engagement. The news Alternative initiatives are available in Italy to signal the green isregularlyreportedinlocalnewspapers,localnewscastandother commitmentofmayors;however,theyarenotaspopularandthey televisionprogrammes,aswellasinstitutionalvideoson theweb, areexpectedtohaveanegligibleeffectonvotingchoices,whencom- withnogeographicalbiasinthecountry.3 paredtotheimpactoftheCovenantofMayors.Moreover,theyare eithernotspecificallytargetingGHGemissionreductionsortheydo 3. Data notrequireaformalcommitmenttoimplementenvironmentalpoli- cies.Inparticular,thefollowinginitiativesaretheclosesttotheCoM This section describes the cross-section dataset constructed for targets: the counterfactual evaluation. The unit of analysis is the Italian municipality,indicatedbytheindexi.Itisthesmallestadministra- tivedivisioninItaly,governedbyamayorwithpoliticalpoweron • European Energy Award (www.european-energy-award.org). themanagementoflocalinfrastructuresandenvironmentalissues.4 There were 8090 municipalities in Italy in December 2013 with This is a quality management system and certification pro- anaveragepopulationof7500,rangingfrom30inhabitantsto2.6 grammetosupportcommunitieswillingtocontributetosus- million.Mayorsareelectedevery5yearsandtheycanserveonlytwo tainable energy policy and urban development. Even if the termsconsecutively. certification is a signalling tool, it mainly focuses on techni- The treatment variable is the decision to participate into the calsupportanditisparticularlypopularinGermany,whileit Covenant of Mayors initiative, identified with the signing date of clearlydidnottakerootinItaly,apartfromfewcases; • Res Champions League for Europe (www.res-league.eu) and thecommitmenttoreduceGHGemissions.Thisisindicatedassigni, thecorrespondingItalian“CampionatoSolare”.Thisismainly focusedon“spreadingtheuseofsolarenergy”and“showingthe potentialofasustainableenergymodel”; 3 Thiscanbecheckedbysearchingfor“PattodeiSindaci”underthevariousonline • SustainableEnergyEuropeAward(eusew.eu).Thishighlights channels,suchasYouTube,Twitter,GoogleNews. 4 Otherresponsibilitiesdelegatedtothemunicipaladministrationincludetheman- publicandprivateinitiativesthatareactivelycontributingto agementoftraffic-relatedissues;localpolice;commercial,cultural,sport,education the EU’s 2020 energy and climate objectives, including CO2 andtrainingactivities. 30 S.Martellietal. /EcologicalEconomics144(2017)27–35 Table1 years),8 municipalities that were merged with neighbouring ones Yearoffirstelectionandyearofcommitmenttoreduceemissionsinthesampleand and municipalities where only one candidate was present on the Italy. ballot. Yearoffirstelection Totalsample TotalItaly Table2comparesmeanvaluesofrelevantvariablesinthesample Signingyear 2004 2005 2006 2007 2008 municipalitieswiththeonesofthewholeofItaly.Thesemeanvalues areverysimilar,raisingnomajorconcernsontherepresentativeness Nosign 1001 91 250 161 125 1628 3868 ofthesamplewithrespecttotheItalianpopulationofmunicipalities. 2008 5 0 1 2 2 10 20 2009 81 7 19 12 12 131 309 Theinstrumentalvariableconsideredinthispaperisadummy 2010 195 13 43 39 31 321 785 variableforthepresenceofaCovenantTerritorialCoordinator(CTC), 2011 129 40 62 51 26 308 770 asintroducedbysomeprovincesandregionstohelpallmunicipal- 2012 146 19 34 26 14 239 630 itiesintheirareatojointheCoM.Thectcdummyequals1ifaCTC 2013 169 13 46 24 24 276 678 wasavailableforamunicipalitybeforeitsmostrecentelectionand Totalsample 1726 183 455 315 234 2913 – TotalItaly 3860 595 1213 828 564 – 7060 itis0otherwise.Asaresult,bothmunicipalitiesthatjoinedtheCoM afterandbeforethecreationofaCTCwereclassifiedassupportedby Numberofcitiesinthesamplebyyearoffirstelectionandyearofadhesiontothe aCTC.Theexogeneityoftheinstrumentliesintheimpossibilityof CoM.Marginaldistributionsofelectionyearandcommitmentyearinthesampleare comparedwiththecountrydistribution. asinglemayortoinfluencethedecisiontocreateaCTCbyahigher levelofgovernment. which equals 1 for those municipalities whose mayor signed the The number of signatories in the sample (municipalities that CoMbeforethemostrecentelectionandafterthepreviousone,5 joined the CoM) and the number of municipalities covered by a yearsearlier.Itis0otherwise.Detailedadministrativedataonthe CTC are reported in Table 3, together with the totals for Italy. The CovenantofMayorsmovementandparticipatingmunicipalitiesare sample is well balanced with respect to the Italian situation for providedby theEuropean Commission - DG Joint Research Centre municipalitieshavinganelectionintheyears2009–2013. andtheyarepubliclyavailableon-lineontheCovenantofMayors Thegeographicaldistributionofsamplesignatoriesandterrito- Office’sdedicatedwebsite.5 rialcoordinatorsisreportedinFig.2,wheremunicipalitiesinwhite The number of municipalities participating in the CoM move- areoutofthesample,yellowmunicipalitiesarethoseneithercov- ment is reported in Table 1, showing the joint distribution of the eredbyaCTCnorparticipatingintheCoM;lightgreenmunicipalities year of first election and the year of commitment to reduce GHG decidedtoparticipateintheCoMwithoutanyCTC;orangemunici- emissionswithintheCoM.ThefirstmunicipalityjoinedtheCoMin palitiesdecidednottojointheCoMeveniftheyreceivedtheofferto 2008.Thenumberofnewsignatoriespeakedin2010and2011,with besupportedbyaCTC;darkgreenmunicipalitiesjoinedtheCoMin morethan300mayorsjoiningthemovement.Theoverallpatternfor areassupportedbyaCTC. Italy,includingallmunicipalitiesthatrunanelectionintheperiod Control variables aim at capturing economic conditions at the 2004–2008,parallelsthesampletrend. locallevelandelectoralcharacteristics.Averageper-capitaincome The outcome variable ofinterestis theshare of votescollected atcitylevelwasincludedinlogarithm.Thedatasetisbasedontax- bycandidatesrunningforre-electionbetween2009and2013;this ableincomeatmunicipallevel(excludingtax-deductibleexpenses variable is indicated as vote. In particular, vote equals the frac- suchasprivatepensionschemes,lifeinsurancepremium,expenses i i tionofvalidvotesobtainedbytheincumbentcandidateinthefirst relatedtojobreasons),asreportedfortheItalianannualtaxdecla- roundofre-election.6 Dataonelectoralresultswereobtainedfrom ration(IRPEF).DataispubliclyavailableonthewebsiteoftheItalian thepubliclyavailableon-linedatasetcalled“ArchivioStoricodelle MinistryofEconomyandFinance(MEF,2015-09-30). Elezioni”,whichprovidesresultsforallItalianregionsexceptValle The number of eligible voters (in logarithm) and turnout rate d’Aosta,TrentinoAltoAdige,FriuliVenezia-GiuliaandSicily7;these (in percentage points) are included as further controls computed 16 regions include 7060 municipalities with available data for the ondatafromtheItalian“ArchivioStoricodelleElezioni”(Ministero periodconsidered. dell’Interno, 2014-10-31). Moreover, dummy variables identifying Only a subset of these municipalities was considered in the municipalitieswith3candidates,4to9candidatesand10ormore analysis,duetothefollowingselectioncriteria.Outof7060munic- candidatesontheballotareincludedtocontrolfornon-lineareffects ipalitiesreportingelectoraldatatothenationaldatabase,only3195 ofthenumberofcandidates.Finally,theshareofvotescollectedby presented mayors running for a second term. The sample reduced greenpartiesatnationalelectionsof2006isincludedtocontrolfor further to 2913 municipalities due to the exclusion of cities with baselinegreenpreferences.Theshareofyoungvoters,proxiedbythe abnormal duration of the electoral mandate (i.e. different from 5 shareofinhabitantsaged18–30,isalsoincluded. 4. ModelandInstrument 5 http://www.covenantofmayors.eu. 6 InItaly,theelectoralsystemtoelectmayorsandmembersofthecitycouncil Thissectionpresentstheidentificationstrategy.Itdescribesthe dependsonthesizeofthecity.Atwo-roundelectoralsystemisusedinmunicipali- referencemodel,potentialsourcesofendogeneity,theinstrumental tieswithmorethan15,000inhabitants.Thefirstroundisusedtoselectthefirsttwo variableapproachandevidenceonthestrengthoftheinstrument. candidates,whoarethenvotedintoofficeinthesecondround(aftertwoweeks).The secondroundisnotexecutedifonecandidatewinsover50%ofthevoteinthefirst round.Onthecontrary,directelectionsareheldinsmallermunicipalities,withupto 4.1. ReferenceModel 15,000inhabitants.Here,asecondroundisorganisedonlyincaseoftie.Inbothcases, voterscanexpressadirectchoiceforthemayororanindirectchoicevotingforoneof The goal of the paper is to estimate the impact of joining the thepartiesofthecandidate’scoalition.Mayorsordinarilyserveatermsoffiveyears.If CoMontheshareofvotescollectedbyincumbentmayorsatlocal amayorresigns,diesorisoustedfromofficeaftermorethanhalfthemunicipalcoun- elections.Thereferencemodelis: cillorssteppeddown,anearlymunicipalelection(forthemayorandforallmunicipal councillors)iscalled.Finally,allmayorswereallowedtoserveforamaximumoftwo cvoenrysescmutailvlecitteiremss(winitohffi<c3e0u0n0tiiln2h0a1b3i.taAntths)irsdtacrotninsgecfurtoimvettheermmhuansicbiepeanleallelocwtioendsfoorf votei=h•signi+b(cid:2)Xi+q•vote prei+ei (1) 2014,andthusbeyondtheperiodofanalysisconsideredhere. 7 See http://elezionistorico.interno.it/. Valle d’Aosta, Trentino Alto Adige, Friuli Venezia-GiuliaandSicilyoptedforthecreationoflocalelectoralofficesandthusthey 8 Thisdiscrepancycanbetheresultofadministrativechangesorcriminal-related donotreportelectoralresultstothecentraladministration. events. S.Martellietal. /EcologicalEconomics144(2017)27–35 31 Table2 SummaryofvariablesandmeancomparisonbetweensamplemunicipalitiesandItaly. Sample Italy Description Vote(%) 54.21 – Outcome:shareofvotescollectedbycandidatesrunningforasecondterm (15.40) – Sign 0.11 0.11 Treatment:dummyequalto1formunicipalitiesthatsignedtheCoM (0.31) (0.32) ctc 0.25 0.26 Instrument:dummyequalto1formunicipalitiescoveredbyaCTC (0.43) (0.44) Controls Income(kEUR) 10.66 10.53 Averageper-capita(taxable)incomeatcitylevel (3.08) (3.09) Electorate 6.28 6.20 Number(thousand)ofeligiblevotersatsecondelection (45.45) (35.85) Turnout(%) 74.74 74.20 Turnoutrateatsecondelection (9.48) (9.60) Uniquecand 0.00 0.06 Dummyformunicipalitieswithonly1candidateontheballot(excludedfromthesample) (0.00) (0.24) 2candidates 0.51 0.44 Dummyformunicipalitieswith2candidatesontheballot(droppedintheregression) (0.50) (0.50) 3candidates 0.28 0.27 Dummyformunicipalitieswith3candidatesontheballot (0.45) (0.44) 4–9candidates 0.20 0.22 Dummyformunicipalitieswith4to9candidatesontheballot (0.40) (0.42) 10+candidates 0.0041 0.0045 Dummyformunicipalitieswith10ormorecandidatesontheballot (0.0641) (0.0672) Greenvoters(%) 1.90 1.82 Shareofvotescollectedinthemunicipalitybygreenpartiesatnationalelectionsof2006 (2.05) (1.93) Age18–30 0.14 0.14 Shareofinhabitantsaged18–30 (0.02) (0.02) Convergencearea 0.19 0.19 DummyformunicipalitiesinSouthernItaly (0.39) (0.39) Observations 2913 7060 Meanoftreatmentvariable,instrumentvariableandcontrolvariablesinthesampleandinItalyarereported,withstandarddeviationinparentheses. wherevote istheshareofvotescollectedbytheincumbentmayor AssumingthatcitizenssupportGHGemissionreductionpolicies i atelections,sign isthetreatmentdummyvariable,X isavectorof andskilledmayorsaremorelikelytojointheCoM,preferencesfor i i controlvariablesandvote_pre isthepercentageofvotescollectedby the CoM will be overestimated in a simple ordinary least squares i theincumbentmayorinthepreviouselection(seeSection3).histhe mainparameterofinterest,whichcharacterisestheimpactofsign i on the expected value of votei, the b(cid:2) vector resumes the effect of controlvariablesandeiistheregressionerror.Thereferencemodel isestimatedbothinitsstaticanddynamicspecifications,wherethe staticmodelcorrespondstoqequalto0. The identification of the causal effect of joining the CoM (sign) onvotingchoices(vote)requirestodiscussthepossibleendogeneity biasdeterminedbytheself-selectionofmayorsintotheprogramme. Individualskills,personalpreferencesorstrategicbehaviourmight be exploited in different policy areas (which cannot be controlled for)andmayleadtotheparticipationintheCoMaswellastoother outcomesappreciated(oropposed)byvoters.Thiswouldresultin apositive(ornegative)biasoftheestimatedenvironmentalprefer- ences.Forexample,askilledmayorthatdecidestojointheCoMmay alsomanageothercityprojectswell.Asaresult,thechangeinvot- ingchoicesbetweentwoelectionscapturesthecumulativeeffectof supportingtheCoMandbeingaskilledmayor. Table3 Signingmunicipalitiesandsupportfromterritorialcoordinatorsinthesampleand Italy. CTC(territorialcoordinator) Totalsample TotalItaly Sign Absent(0) Present(1) No(0) 2118 471 2589 6248 Yes(1) 77 247 324 812 Totalsample 2195 718 2913 – TotalItaly 5219 1841 – 7060 NumberofcitiesbysigningstatusandCTCstatusinthesample.Totalsforthesample Fig.2. GeographicaldistributionofcitiesinthesamplebysigningstatusandCTC andforItalyarereportedforcomparativespurposes. status. 32 S.Martellietal. /EcologicalEconomics144(2017)27–35 (OLS) regression using specification Eq.(1): mayors collect more votesinsubsequentelectionspartiallyinrecognitionoftheirgood performanceandpartiallyasaresultofthewillingnessofcitizens toreduceemissions.Sinceitisnotpossibletomeasureandcontrol fortheskillsofamayor,sign canbecorrelatedwithunobservable i characteristics collected in ei. In this case, OLS would yield biased results. Theinstrumentalvariabletechniqueallowssolvingendogeneity biasfromself-selectionofmayors(relatedtounobservablecharac- teristics, such as skills and abilities of mayors) by making use of exogenous variations in the incentives to join the CoM movement. This requires an instrument that induces mayors to join the CoM (validity of the instrument), but that is independent of any other unobservablevariablethatiscorrelatedwiththeelectoraloutcome vote (exclusionrestriction).Inshort,theinstrumentmusthavean i effectonvote onlythroughsign. i i The support for the adhesion to the CoM, offered by some provincesandregionstoallcitiesintheirarea(creatingaCovenant Territorial Coordinator, ctci), is a good instrument because it is Fig.3. DistributionofthetimingofcityadhesiontotheCoMwithrespecttothedate expectedtoverifybothconditions(seedefinitioninSection3). ofCTCcreationintheirarea. An instrumental variable (IV) estimation is performed. The IV approachisappropriateforthenon-dichotomousoutcomevariablein Noanticipatoryeffect(mayorsanticipatingtheiradhesiontothe thesecondstageandgenerallypreferredtoothertechniques,which CoM because they foresee the imminent creation of a CTC) can require stronger specification assumptions (Wooldridge, 2002). bias the results because municipalities joining the CoM before the Resultsarereportedforerrorsclusteredattheprovincelevelbutthey creationofaCTCareconsideredascoveredbyit. arerobusttoclusteringatregionallevel.Inlightofthedifferentgeo- Finally, omitted variables correlated with both the creation of graphicallevelsinvolvedintheanalysis(CTCsarecreatedbyregions a CTC and the local electoral outcome need to be ruled out. For andprovinces),bothspecificationoferrorsclusteringaretested. example, political parties may be the drivers of both environmen- tal policies and other local policies, such as land use regulation (Solé-OlléandViladecans-Marsal,2013).Ifpoliticiansinthetwolev- 4.2. IdentificationStrategy els of government belong to the same party, then the decision to ThecreationofaCTCisexpectedtoimpacttheprobabilitytosign createaCTC(atprovinceorregionallevel)mightbecorrelatedwith upfortheCoMbydecreasinginformative(CTCsactivelypromoteto other policy outcomes relevant for the electoral result (municipal mayorstheCoM),administrativeandfinancialcosts.Givenasetof level).However,mostcandidatesinthesampleareassociatedwitha incentivestojointheCoM,includingofficemotivation,policymoti- “listacivica”,alistwithnoofficialconnectionwithanationalpolit- vation and political income (Persson and Tabellini, 2002), mayors icalparty;thisrulesoutpossibleinfluencesviaassociationstothe face incomplete information and a budget constraint for available samepoliticalparty. funds,manpower,technicalcapabilities,andpersonalskills.Thecre- GeographicalcoverageofthesampleincludesItalianmunicipal- ationoftheCTCrelievesthemunicipalbudgetconstraint,allowingall ities only, assuring high homogeneity in national institutions and mayorstojointheCoMatalowercost,byexploitingtheservicesand electoralrules. fundingprovidedbytheCTC.Mayorsthathavealreadysignedthe Inconclusion,ctciisexpectedtoexogenouslyinfluencethedeci- CoMcanalsotakeadvantageofanewlycreatedCTC.Thus,thecre- sionofcitiestojointheCoMmovementandnottohaveanydirect ationofaCTCthatfollowsuponthedecisiontosignisassumedtobe impactonelectoralresults.Theinstrumentalvariable(IV)approach stillcorrelatedwiththedecisionitself,butnotwithe.Thestrength provides consistent estimates of the causal effect of the volun- i oftheinstrumentisdiscussedinsubsection5.1. tarycommitmenttoreduceemissionsonelectoralresults,without The creation of a CTC is also expected to verify the exclusion analysingthepoliticalprocessleadingmayorstojointheCoM,which restriction.Thiscannotbeexplicitlytested,butitcanonlybesup- remainsbeyondthescopeofthispaper. portedbytheoreticalargumentsandempiricalevidence.Firstly,the creationofaCTCisdecidedbyahigheradministrativelevel(province 5. Results orregion)anditinvolvestechnicalsupportdirectedtothemunicipal administrationonly.Ithasnodirectconnectionwiththepopulation Thissectionreportstheestimatedaveragetreatmenteffectand intheCTCarea(e.g.noconnectionwithlocalpoliticalcampaigns). itsheterogeneitywithrespecttoeconomicanddemographicchar- Thus,ithasnoimpactonlocalelectionsandontheshareofvotes acteristics. First stage results are reported first; the main result is personallycollectedbyincumbentmayorsatmunicipalelections. reportedinSubsection5.2;heterogeneityofpreferencesisreported Moreover,singlemayorscannotinfluencethehigherleveldeci- inSubsection5.3. siontocreateaCTC,asreportedbyCoMprojectmanagers.Indeed, Italianregions(provinces)arecomposedbyanaverageof400(70) 5.1. StrengthoftheInstrument municipalities.Moreover,mayorscannotself-selectintotheCTCby joiningtheCTCofdifferentregionsorprovinces. Inthissubsectionthestrengthofthectc instrumentismeasured. i Fig.3reportsthegraphofthenumberofmunicipalitiesjoining Table4showsthefirststageestimationresultswheretheendoge- the CoM as a function of the date from the creation of a CTC. The nousexplanatoryvariablesign ofmodelEq.(1)isregressedonthe i numberofsignatoriessignificantlyincreasesafterthecreationofa instrument (specification A). Controls X are included in specifica- it CTCandnodisplacementeffectisobserved(mayorsdonotappear tionB.BothspecificationsAandBarestatic,whilespecificationCis todelaytheiradhesiontotheCoMasaresultoftheexpectedcre- dynamic. ationofaCTC).Thisisinlinewiththeideathatsinglemayorscannot Theinstrumentappearsrelevantinallmodels.Thecreationofa influencethecreationofCTCs. CTCispositivelycorrelatedwiththedecisiontojointheCoMwith S.Martellietal. /EcologicalEconomics144(2017)27–35 33 Table4 Mayorscommittingtoreducegreenhousegasemissionsintheir SupportingauthoritiesandadhesiontotheCoM(firststage). municipalityappearnottoloseelectoralsupportatsubsequentelec- Specificationregression (A)OLS (B)OLS (C)OLS tionsintheIVestimation;thisiscontrarytowhatwouldbeimplied ctc 0.34∗∗∗ 0.33∗∗∗ 0.33∗∗∗ byasimple(biased)OLSregression.Moreover,IVpointestimatesof (0.05) (0.05) (0.05) theeffectofsigningupfortheCoMarepositive. Log-income −0.02 −0.02 Indeed, IV estimates of specifications (E) and (F) show that the (0.05) (0.05) commitmenttoreduceGHGemissionsby20%orbeyonddonothave Log-electorate 0.02∗∗∗ 0.02∗∗∗ anegativeimpactontheshareofvotescollectedatsubsequentelec- (0.01) (0.01) Turnout(%) −0.00 −0.00 tions by incumbent mayors, despite the opposite indication given (0.00) (0.00) byasimple(biased)OLSregression.Onthecontrary,IVpointesti- 3candidates −0.00 −0.00 matesarepositive,albeitinsignificant;thisiscompatiblewiththe (0.01) (0.01) possibilityofsomesupportofcitizensforemissionreductioncom- 4–9candidates 0.02 0.02 mitments, even if no statistical significance is found at standard (0.02) (0.02) 10+candidates 0.09 0.09 levels. The increase of standard errors in specifications (D) to (F) (0.11) (0.11) is a common feature of the IV approach which contributes to the Greenvoters(%) −0.00 −0.00 lowstatisticalsignificanceofpointestimates(marginallylowerthan (0.00) (0.00) standardthresholds).Finally,thedynamicspecification(F)doesnot Age18–30 0.00 0.00 differsignificantlyfromspecification(E). (0.00) (0.00) Convergencearea −0.09∗∗ −0.09∗∗ Summarizing, voters do not oppose the commitment taken by (0.04) (0.04) incumbentmayorstomeetandexceedtheEurope2020targetfor vote_pre −0.00* emissionreductionatlocallevel.Positivepointestimates,thoughnot (0.00) significantatstandardthresholds,couldbeduetosomepreference Constant 0.03∗∗∗ 0.26 0.29 formayorsjoiningtheinitiative. (0.01) (0.45) (0.44) Observations 2913 2913 2913 R2 0.215 0.237 0.238 5.3. Heterogeneity F 46.77 11.68 11.17 The IV approach yields the average causal effect of signing on FirststageOLSregressionofsignonctcforthecrosssectionofcitiesinthesample. electoralresultsforthemayorsthatreacttotheinstrument.Inorder Specification(A)isthesimpleregressionofsignonctc.Specification(B)includesall to test heterogeneity in environmental preferences for GHG emis- availablecontrolsbuttheshareofvotecollectedbytheincumbentmayoratprevious sion reduction, the same model is estimated for a partition of the electionsvote_pre.Specification(C)includesalsothelatter. Standarderrorsinparentheses.Errorsareclusteredatregionallevel. sample.Thisisbuiltaccordingtothesamplemedianofincomeper ∗ p<0.10. capita,incomegrowthandtheshareofyoungpopulation(aged18– ∗∗ p<0.05. 30)atmunicipallevel.Moreover,theunemploymentrateatthelocal ∗∗∗ p<0.01. laboursystemlevelisusedtocapturecharacteristicsrelatedtothe labourmarket.Thelocallaboursystemisthelowestavailablelevel strong statistical significance. Interpreting the relation as a linear ofdisaggregationforunemploymentinItaly.Thisisageographical probability model, as a first approximation, the creation of a CTC groupingofneighbouringmunicipalitiescomputedaccordingtothe increasestheprobabilitytojointheCoMbymorethan30points. highestfrequencyofhome-worktripsregisteredinthe2001Census Moreover,the1ststageF-statisticfortheOLSregressionisalways inItaly.9Itresultsin686locallaboursystems,groupinganaverage abovethereferencevalueof10,suggestingtheinstrumentnottobe of12municipalities(from1to124)withanaveragepopulationof weak. almost90,000(from3300to3.7millioninhabitants)andanaverage sizeof440 km2(from10to3700km2). 5.2. MainResults Table6showstheestimatedmodelinthesub-samplesforincome andincomegrowth.Table7reportsresultsfortheunemployment Table5containsasummaryoftreatmenteffectestimates.Ordi- rateandagestructuresub-samples.Totalobservations,thenumber naryleastsquares(OLS)arecomparedtoinstrumentalvariable(IV) ofsignatoriesandCTCsarereportedinthetableandtheyresultto estimates. bebalancedbetweensub-samples.Statisticalsignificanceat5%level The first model estimates a pooled OLS regression on the cross isneverdetected,butacommonpatterncanbeseen.Adverseeco- section of second elections. OLS estimates are included only for nomicconditions,suchaslowincome(sub-sampleYl),lowincome comparison purposes, giventhatOLS is possiblybiased due tothe growth(sub-sampleYl)andhighunemployment(sub-sampleUh), g endogeneityofsigni.Infact,mayorsvoluntarilychoosingtotakethe are always associated with lower point estimates for the commit- commitmenttodecreaseGHGemissionshaveunobservablecharac- menttoreduceGHGemission,withrespecttomunicipalitieswith teristics(e.g.skills)thatarelikelytobedrivingboththeirchoiceto lowerunemployment(sub-sampleUl),higherincome(sub-sample jointheCoMandsubsequentelectoralresults. Yh) and higher income growth (sub-sample Yh). Overall, economic g The second model introduces municipal controls and the third conditionsseemtoinfluencetheelectoralsupportforclimatechange further includes the share of votes collected at previous elections mitigation:thericherthecity,thehigherthesupportofcitizensfor by incumbent mayors. The OLS point estimate is always negative climatecommitments. andsignificantbutincreasingtowardszeroattheincreaseofcon- Theagestructureofthepopulation(Table7)seemstoinfluence trol variables included in the model. Indeed, the treatment may revealedenvironmentalpreferencesaswell.Ahighershareofyoung stillbeendogenousdespitecontrollingforavailablesocio-economic voters(sub-sampleYoung)isassociatedwithapositive(thoughsta- characteristicsatmunicipallevel. tistically not significant) effect of the CoM on voting. Conversely, When applying the unbiased IV approach, the estimated effect a relatively older electorate (sub-sample Old) is associated with a ofsigningontheshareofvotescollectedbyincumbentmayorsat nearlyzeroeffectoftheCoMonelectoralsupport. elections is never statistically different form zero (Table 5). Point estimatesforIVmodelsincludingcontrolvariablesarepositiveand equaltoabout3%,seecolumns(E)and(F).Thedifferencebetween OLSandIVestimatesdocumentstheendogeneitybias. 9 TheanalysisisperformedbyISTAT,theItalianInstituteofStatistics. 34 S.Martellietal. /EcologicalEconomics144(2017)27–35 Table5 Impactofsignonvoteshare. Specificationregression (A)OLS (B)OLS (C)OLS (D)IV (E)IV (F)IV Sign −4.62∗∗∗ −2.11∗∗ −1.70* −1.85 2.91 3.58 (1.19) (0.96) (0.95) (2.26) (2.37) (2.27) Log-income 2.68 1.98 2.84 2.13 (1.71) (1.67) (1.83) (1.78) Log-electorate −1.30∗∗∗ −0.63* −1.42∗∗∗ −0.74* (0.38) (0.37) (0.39) (0.38) Turnout(%) −0.21∗∗∗ −0.20∗∗∗ −0.18∗∗∗ −0.17∗∗∗ (0.04) (0.04) (0.04) (0.04) 3candidates −8.82∗∗∗ −8.59∗∗∗ −8.88∗∗∗ −8.65∗∗∗ (0.58) (0.56) (0.59) (0.56) 4–9candidates −16.17∗∗∗ −16.06∗∗∗ −16.51∗∗∗ −16.41∗∗∗ (0.93) (0.88) (0.93) (0.87) 10+candidates −18.46∗∗∗ −18.95∗∗∗ −19.39∗∗∗ −19.94∗∗∗ (4.07) (4.25) (4.32) (4.52) Greenvoters(%) 0.22∗∗ 0.23∗∗ 0.24∗∗ 0.26∗∗ (0.10) (0.10) (0.11) (0.11) Age18–30 −0.26 −0.15 −0.27 −0.16 (0.19) (0.18) (0.19) (0.19) Convergencearea −1.25 −1.92 −1.10 −1.78 (1.32) (1.29) (1.34) (1.30) vote_pre 0.20∗∗∗ 0.20∗∗∗ (0.02) (0.02) Constant 54.72∗∗∗ 55.76∗∗∗ 48.49∗∗∗ 54.42∗∗∗ 52.07∗∗∗ 44.40∗∗∗ (0.51) (15.92) (15.74) (0.56) (17.05) (16.70) Observations 2913 2913 2913 2913 2913 2913 R2 0.009 0.243 0.271 0.005 0.234 0.260 EstimationoftheimpactofsigningtheCoMontheshareofvotescollectedatsubsequentelectionsforthecrosssectionofcitiesin thesample.Specification(A)isthesimpleOLSregressionofvoteonsign.Specification(B)and(C)includeallavailablecontrolswith andwithoutthelaggedvotesharevote_pre,forthesimpleOLSregression.Specification(D)isthetwostageregressionofvoteonsign, instrumentedbyctc.Specification(E)includesadditionalcontrolsandspecification(F)includesalsovote_pre. Standarderrorsinparentheses.Errorsareclusteredatregionallevel. ∗ p<0.10. ∗∗ p<0.05. ∗∗∗ p<0.01. Table7 Table6 Heterogeneousimpactonvoteshare-unemploymentandagestructure. Heterogeneousimpactonvoteshare-income. Subsample Uh Ul Young Old Subsample Yh Yl Yh Yl g g Sign 1.78 4.86 4.36 0.19 Sign 8.58* 0.83 3.00 1.17 (2.55) (7.07) (3.02) (3.19) (4.47) (2.61) (3.04) (3.24) Log-income 5.87∗∗∗ −0.68 6.41∗∗∗ 0.08 Log-income −0.60 5.51∗∗∗ 3.99∗∗ 2.74 (1.79) (2.50) (2.10) (2.33) (4.11) (2.03) (1.92) (2.53) Log-electorate −2.06∗∗∗ −0.80 −0.82* −1.49∗∗∗ Log-electorate −1.15∗∗ −1.78∗∗∗ −0.72* −1.90∗∗∗ (0.56) (0.65) (0.49) (0.51) (0.57) (0.54) (0.42) (0.57) Turnout(%) −0.18∗∗∗ −0.21∗∗∗ −0.16∗∗∗ −0.24∗∗∗ Turnout(%) −0.06 −0.22∗∗∗ −0.19∗∗∗ −0.21∗∗∗ (0.05) (0.07) (0.05) (0.06) (0.08) (0.04) (0.04) (0.07) 3candidates −7.96∗∗∗ −9.82∗∗∗ −10.49∗∗∗ −7.31∗∗∗ 3candidates −9.11∗∗∗ −8.70∗∗∗ −8.77∗∗∗ −9.00∗∗∗ (0.92) (0.78) (0.76) (0.85) (0.81) (0.89) (0.85) (0.79) 4–9candidates −15.50∗∗∗ −17.53∗∗∗ −19.42∗∗∗ −14.33∗∗∗ 4–9candidates −17.23∗∗∗ −16.08∗∗∗ −16.45∗∗∗ −16.09∗∗∗ (1.41) (1.21) (1.26) (1.06) (1.16) (1.57) (1.40) (1.18) 10+candidates −17.88∗∗∗ −12.24∗∗∗ −10.53∗∗∗ −19.36∗∗∗ 10+candidates −21.49∗∗∗ 0.00 0.00 −17.38∗∗∗ (5.01) (2.98) (1.89) (4.70) (4.42) (.) (.) (4.41) Greenvoters(%) 0.21* 0.09 0.30 0.19 Greenvoters(%) 0.15* 0.34 0.57∗∗ 0.02 (0.12) (0.65) (0.20) (0.13) (0.08) (0.21) (0.25) (0.12) Age18–30 0.12 −0.56* 0.73∗∗ −0.71∗∗ Age18–30 −0.70∗∗ 0.02 −0.01 −0.61∗∗ (0.23) (0.29) (0.30) (0.36) (0.30) (0.19) (0.22) (0.27) Convergencearea −0.82 0.72 −0.92 −4.02* Convergencearea 12.25∗∗∗ −1.42 −3.70∗∗ 3.12* (1.48) (2.20) (1.38) (2.11) (3.87) (1.34) (1.50) (1.81) Constant 18.92 90.66∗∗∗ 1.98 86.86∗∗∗ Constant 80.25∗∗ 26.91 38.36∗∗ 60.03∗∗ (17.16) (22.67) (20.56) (21.94) (39.76) (19.01) (18.03) (25.26) Observations 1465 1448 1457 1456 Observations 1457 1456 1457 1456 NumSign 243 65 167 141 NumSign 138 170 104 204 NumCTC 567 110 373 304 NumCTC 278 399 247 430 IVestimationoftheimpactofsigningtheCoMonvoteshareforsub-samplesofcities. IVestimationoftheimpactofsigningtheCoMonvoteshareforsub-samplesofcities. Sub-samplesarecreatedaccordingtothevalueofselectedvariablesbeingabove(•h) Sub-samplesarecreatedaccordingtothevalueofselectedvariablesbeingabove(•h) orbelow(•l)thesamplemedian.Specifications(Uh)and(Ul)refertounemploy- orbelow(•l)thesamplemedian.Specifications(Yh)and(Yl)refertoincomepercapita mentrateontheyearoffirstelection.Specifications(Young)and(Old)includecities ontheyearoffirstelection.(Yh)and(Yl)refertoincomepercapitagrowthbetween wheretheshareofpeopleaged30orbelowisaboveorbelowthesamplemedian, g g firstandsecondelections. respectively(atfirstelection). Standarderrorsinparentheses.Errorsareclusteredatregionallevel. Standarderrorsinparentheses.Errorsareclusteredatregionallevel. ∗ p<0.10. ∗ p<0.10. ∗∗ p<0.05. ∗∗ p<0.05. ∗∗∗ p<0.01. ∗∗∗ p<0.01. S.Martellietal. /EcologicalEconomics144(2017)27–35 35 Summarizing, voters prove not to oppose further reduction of didnotreceiveanyspecificgrantfromfundingagenciesinthepublic, GHG emissions and their voting behaviour seems to be consistent commercial,ornot-for-profitsectors. with preferences stated in the Eurobarometer survey. The formal commitmenttoreduceGHGemissionby20%orbeyondhasacausal References averagepositiveimpactonthelikeabilityofcandidates.Thisisesti- Bouton,L.,Conconi,P.,Pino,F.,Zanardi,M.,2013.Gunsandvotes.WorkingPapers mated to be about 3 percentage points of vote share collected at ECARES2013-39,ULB-UniversitéLibredeBruxelles.Nov. electionsbyincumbentmayors.However,nostatisticalsignificance Bréchet,T.,Gerard,F.,Tulkens,H.,2011.Efficiencyvs.stabilityinclimatecoalitions:a isfoundatthe10%level.Moreover,preferencesareheterogeneous conceptualandcomputationalappraisal.TheEnergyJournal32(1),49–76. with respect to economic and demographic characteristics. Better Carraro,C.,Lvłque,F.,1999.Voluntaryapproachesinenvironmentalpolicy. 1sted., FondazioneEniEnricoMattei(FEEM)SeriesonEconomics,EnergyandEnviron- economic conditions and a high share of young individuals in the ment14,SpringerNetherlands.ISBN978-90-481-5156-1,978-94-015-9311-3. populationareassociatedwithhigherpositiveeffectsofjoiningthe Cerutti,A.K.,Iancu,A.,Janssens-Maenhout,G.,Melica,G.,Paina,F.,Bertoldi,P.,2013. CoM. TheCovenantofMayorsinfigures5-yearassessment.TechnicalReport.European Commission-JointResearchCentre. Cole,M.A.,Elliott,R.J.,Okubo,T.,Zhou,Y.,2013.Thecarbondioxideemissionsoffirms: 6. Conclusions aspatialanalysis.JournalofEnvironmentalEconomicsandManagement65(2), 290–309. Collier,U.,1997.LocalauthoritiesandclimateprotectionintheEuropeanUnion: Thisstudypresentsevidenceinlinewiththehypothesisthatthe puttingsubsidiarityintopractice?LocalEnvironment2(1),39–57.http://dx.doi. Covenant of Mayors (CoM) can be a self-sustainable approach to org/10.1080/13549839708725511. CovenantofMayorsOffice,2012a.TogetherforEnergy-efficientBuildings.LaSpezia strengthen efforts for climate change mitigation at the local level. Province,Italy.TechnicalReport,EuropeanCommission..September. The CoM is the mainstream European movement involving local CovenantofMayorsOffice,2012b.2012CovenantCoordinatorsMonitoringReport. authorities voluntarily committing to reduce emissions by 20% (or TechnicalReportCovenantofMayorsOffice. beyond) by 2020 under their mandate. The causal effect of the Croci,E.,2006.TheHandbookofEnvironmentalVoluntaryAgreements:Design,Imple- mentationandEvaluationIssues.vol.43.SpringerScience&BusinessMedia. adhesion to the CoM on electoral results of incumbent mayors is EC,2007.SpecialEurobarometer195-attitudesofEuropeancitizenstowardsthe estimatedforasampleofItalianmunicipalities,viaaninstrumental environment:EB68.2.TechnicalReport,TheEuropeanCommission-Directorate– variableapproach,usinganumberofcontrolvariables. GeneralCommunication,Brussels. EC,2011.SpecialEurobarometer365-attitudesofEuropeancitizenstowardsthe Thecentralfindingisthatcitizensdonotopposethecommitment environment:EB75.2.TechnicalReport,TheEuropeanCommission-Directorate– toreduceGHGemissionsby20%andbeyondby2020,asrequired GeneralCommunication,Brussels. toparticipateintheCoM.Indeed,takingthecommitmenttoreduce EC,2015.EnergyUnionPackage-aframeworkstrategyforaresilientEnergyUnion withaforward-lookingclimatechangepolicy.TechnicalReport,TheEuropean emissionsatthemunicipalleveldoesnotcausealossofvotesfor Commission,Brussels. mayorsatsubsequentelections.Pointestimatesofthegaininelec- Fredriksson, P.G., Neumayer, E., Damania, R., Gates, S., 2005. Environmentalism, toralvotesarepositivebutstatisticallyinsignificantatthe10%level, democracy,andpollutioncontrol.JournalofEnvironmentalEconomicsandMan- agement49(2),343–365. possibly because of the higher standard errors, typical of the IV ICLEI,2014.Icleicorporatereport2014.TechnicalReport,ICLEILocalGovernmentsfor approach. Sustainability. Heterogeneityisfoundacrosseconomicanddemographicchar- Kahn, M.E., Kotchen, M.J., 2011. Business cycle effects on concern about climate change: the chilling effect of recession. Climate Change Economics 2 (03), acteristics.Municipalitieswithhigherincome,lowerunemployment 257–273. andahighershareofyoungpeopleshowahigherpositiveeffectof Kahn,M.E.,Morris,E.A.,2009.Walkingthewalk:theassociationbetweencommunity thecommitmentonthevoteshareofincumbentmayors. environmentalismandgreentravelbehavior.JournaloftheAmericanPlanning These findings are obtained using some control variables, and Association75(4),389–405. List,J.A.,Sturm,D.M.,2006.Howelectionsmatter:theoryandevidencefromenviron- under the exogeneity assumption for the instrument; the latter mentalpolicy.TheQuarterlyJournalofEconomics121(4),1249–1281. amountstotheassumptionthattheinstitutionofaCovenantTerri- Matisoff,D.C.,2013.Differentraysofsunlight:understandinginformationdisclosure torialCoordinator(CTC)isexogenoustothelocalmayoralelections. andcarbontransparency.EnergyPolicy55(0),579–592. MEF,Datisubasecomunale:redditieprincipalivariabiliirpef.http://www1.finanze. As always, availability of more control variables and/or of more gov.it/finanze2/pagina_dichiarazioni/dichiarazioni.php.2015-09-30. instrumentswouldallowformorepreciseinferentialresults;further Millard-Ball, A., 2012. Do city climate plans reduce emissions? Journal of urban researchmayimproveonthissituation. economics71(3),289–311. Ministerodell’Interno,Archiviostoricodelleelezioni.http://elezionistorico.interno.it/. Thepresentresultsareconsistentwithboththewidelypledged 2014-10-31. supportstatedinopinionsurveys,suchastheSpecialEurobarom- OECD,2003.VoluntaryApproachesforEnvironmentalPolicy:Effectiveness,Efficiency eter 365, and with the global and intergenerational dimension of and Usage in Policy Mixes. OECD Publishing, Paris. http://dx.doi.org/10.1787/ 9789264101784-en. climatechange.Finally,thecurrentstudyfocusedonemissionreduc- Persson,T.,Tabellini,G.E.,2002.PoliticalEconomics:ExplainingEconomicPolicy.MIT tion commitments. Implementation of GHG reduction measures is press. on-goingandthemonitoringreportswillrevealtheireffectiveness Solé-Ollé,A.,Viladecans-Marsal,E.,2013.Dopoliticalpartiesmatterforlocallanduse policies?JournalofUrbanEconomics78, 42–56. inthenearfuture. TheUSConferenceofMayors,600Mayorsinall50StatesandPuertoRicoTakeAction toReduceGlobalWarming.pressrelease,072007. Headquarter,U.N.,2014.ThecompactofMayorsActionStatement.TechnicalReport, Acknowledgments ClimateSummit2014. Wooldridge,J.M.,2002.EconometricAnalysisofCrossSectionandPanelData.MIT TheauthorsaregratefultoCatherineSimonetforinsightfulcom- press. ments;theparticipantstotheseminaron‘Citizens’supportforGHG Zheng,S.,Kahn,M.E.,Sun,W.,Luo,D.,2014.IncentivesforChina’surbanmayorsto mitigatepollutionexternalities:theroleofthecentralgovernmentandpublic emission reduction programmes’, European Commission - DG JRC, environmentalism.RegionalScienceandUrbanEconomics47(0),61–71. Ispra (July 3rd, 2014); and two anonymous referees. This research

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.