ebook img

Diversity and composition of herbaceous angiosperms along gradients of elevation and forest-use PDF

17 Pages·2017·7.81 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Diversity and composition of herbaceous angiosperms along gradients of elevation and forest-use

RESEARCHARTICLE Diversity and composition of herbaceous angiosperms along gradients of elevation and forest-use intensity JorgeAntonioGo´mez-D´ıaz1*,ThorstenKro¨mer2,HolgerKreft3,GerhardGerold1,Ce´sar IsidroCarvajal-Herna´ndez4,FelixHeitkamp1 1 SectionofPhysicalGeography,Georg-August-Universita¨tGo¨ttingen,Go¨ttingen,Germany,2 Centrode InvestigacionesTropicales,UniversidadVeracruzana,Xalapa,Veracruz,Mexico,3 Departmentof Biodiversity,Macroecology&Biogeography,Georg-August-Universita¨tGo¨ttingen,Go¨ttingen,Germany, a1111111111 4 HerbarioCIB,InstitutodeInvestigacionesBiolo´gicas,UniversidadVeracruzana,Xalapa,Veracruz,Mexico a1111111111 a1111111111 *[email protected] a1111111111 a1111111111 Abstract Terrestrialherbsareimportantelementsoftropicalforests;however,thereisalackof researchontheirdiversitypatternsandhowtheyrespondtodifferentintensitiesofforest- OPENACCESS use.Theaimofthisstudywastoanalyzethediversityofherbaceousangiospermsalong Citation:Go´mez-D´ıazJA,Kro¨merT,KreftH,Gerold gradientsofelevation(50mto3500m)andforest-useintensityontheeasternslopesofthe G,Carvajal-Herna´ndezCI,HeitkampF(2017) Diversityandcompositionofherbaceous CofredePerote,Veracruz,Mexico.Werecordedtheoccurrenceofallherbaceousangio- angiospermsalonggradientsofelevationand spermspecieswithin120plotsof20mx20meach.Theplotswerelocatedateightstudy forest-useintensity.PLoSONE12(8):e0182893. locationsseparatedby~500minelevationandwithinthreedifferenthabitatsthatdifferin https://doi.org/10.1371/journal.pone.0182893 forest-useintensity:old-growth,degraded,andsecondaryforest.Weanalyzedspeciesrich- Editor:RunGuoZang,ChineseAcademyof nessandfloristiccompositionofherbcommunitiesamongdifferentelevationsandhabitats. Forestry,CHINA Ofthe264plantspeciesrecorded,31areendemictoMexico.Bothα-andγ-diversitydisplay Received:September16,2016 ahump-shapedrelationtoelevationpeakingat2500mand3000m,respectively.Therela- Accepted:July26,2017 tivecontributionofbetween-habitatβ-diversitytoγ-diversityalsoshowedaunimodalhump Published:August8,2017 whereaswithin-habitatβ-diversitydeclinedwithelevation.Forest-useintensitydidnotaffect α-diversity,butβ-diversitywashighbetweenold-growthandsecondaryforests.Overall,γ- Copyright:©2017Go´mez-D´ıazetal.Thisisan openaccessarticledistributedunderthetermsof diversitypeakedat2500m(72species),drivenmainlybyhighwithin-andamong-habitatβ- theCreativeCommonsAttributionLicense,which diversity.Weinferthatthisbeltishighlysensitivetoanthropogenicdisturbanceandforest- permitsunrestricteduse,distribution,and useintensification.At3100m,highγ-diversity(50species)wasdrivenbyhighα-andwithin- reproductioninanymedium,providedtheoriginal habitatβ-diversity.There,losingaspecificforestareamightbecompensatedifsimilar authorandsourcearecredited. assemblagesoccurinnearbyareas.Thehighβ-diversityandendemismsuggestthatmixes DataAvailabilityStatement:Allrelevantdataare ofdifferenthabitatsareneededtosustainhighγ-richnessofterrestrialherbsalongthisele- withinthepaperanditsSupportingInformation files. vationalgradient. Funding:Thisworkwassupportedbythe DeutscheForschungsgemeinschaft(HE6726/4). Researchermobilitywasgrantedwithintheproject BIOVERAtoTK(CONACyT)andFH(bytheDAAD withfundingoftheBundesministeriumfu¨rBildung Introduction undForschung(BMBF)).JAGDwasfundedbythe Themajorityofbiomesareundergoingrapidchanges,especiallyinthetropics[1].Conse- ConsejoNacionaldeCienciayTecnolog´ıa(216230/ 311672)andtheDeutshceAkademischer quently,growinghumanpressureonecosystemsposesamarkedthreattoglobalbiodiversity PLOSONE|https://doi.org/10.1371/journal.pone.0182893 August8,2017 1/17 Herbdiversityalonggradientsofelevationandforest-useintensity Austauschdienst(91549681).TheresearchofTK [2].Consideringcurrentratesofdeforestationandforestdegradation[3],undisturbedforests wassupportedbyCONACyT.Thefundershadno willbecomescarceandincreasinglyfragmented[4].Deforestationforagriculture,aswellas roleinstudydesign,datacollectionandanalysis, non-sustainableagrarianandforestrypractices,increasesthedemandfornewlandthreaten- decisiontopublish,orpreparationofthe ingprimaryforestsandassociatedbiodiversity[5].Forest-useintensityisdefinedasaforest manuscript. disturbancederivedfromthehumanactionactingatabroaderlandscapelevel.Theeffectsof Competinginterests:Theauthorshavedeclared forestconversiononplantdiversityarewellknown[6];however,thereisalackofknowledge thatnocompetinginterestsexist. onhowanthropogenicforest-useintensityaffectsdiversityandcompositionofplantcommu- nities[7].Forestdegradationmayhavedifferenteffectsonbiodiversity,dependingontheeco- system,thekindofdegradation(temporalandspatialextent,intensity)andthetaxaofinterest [6]. Aglobalmeta-analysisoftrendsofforestdegradationfoundanaveragelossof18%ofspe- ciesrichnessduetoforestuse[8].Accordingtotheanalysis,land-usechangeandtheincrease ofnon-nativeinvasivespecieshavethehighestnegativeimpactonspeciesrichness[8].How- ever,somelandscapeshaveexperiencedincreasesinplantspeciesrichnessbecauseinvasions ofexoticspeciesareexceedingthelossofnativespecies[9].Themagnitudeofanthropogenic changeandhighdiversityintropicalmountainscallsformorestudiestoidentifythepatterns ofdiversitychangeduetoforest-useintensityalongelevationalgradients[10]. Littleisknownabouttheinfluenceofforest-useintensityonherbaceousangiosperms despitetheirimportancefortropicaldiversityandecosystemfunction[11].Thefewstudies availablehavemixedresultswithforest-useintensityreportedtohavepositive,neutral,orneg- ativeeffects[12].Moreover,highnumbersofprimaryforestspeciesandendemicspecieshave beenfoundinnaturallyregenerating[13]andsecondaryforests.Thus,suchhabitatsmight helptoconserveendemicspecies[14].Forestusemayalsoleadtoanincreaseinspeciesnum- bersduetoanalterationofthelightregimeandasuppressionofmorecompetitiveherbs[15]. Contrastingfindingsmayreflectdifferentstudyconditions(biome,ecosystem,taxaofinter- est),differentscales(e.g.landscape,plot)andsamplingtechniquesinvolved[16].Therefore,it isimportanttocarryoutmoreempiricalresearchtoquantifytheeffectsofforest-useintensity onherbsusingarobustandreplicatedstudydesignthataccountsforthedifferentcomponents ofherbdiversity(α,β,andγ). Despitetheuncertaintiesaboutforest-useintensityeffectsonspeciesrichness,changesin speciescompositionhavebeenreportedoftenwiththerarestspeciesfoundmainlyinnative communities[17].Severalstudieshaveshownthatwithincreasingforest-useintensity,local (α-diversity)andtotal(γ-diversity)speciesrichnessdeclinedlinearly,whereasspeciesturnover betweenplotsincreased[18].Theforest-useintensityinthemostintensivelyusedplotsledto sparseherblayerandreducedspeciesrichness[19]. Studiesonlatitudinalandelevationalgradientsshowthateffectsofforest-useintensityon plantdiversitymaychangedependingontheecosystemorecozone.Ingeneral,α-andγ-diver- sityofplantsdecreasewithincreasinglatitude,[20,21],andthehighestdiversityofplantsand variousotherstaxaisusuallyconcentratedintropicallowlandareaswithhighandevenlydis- tributedrainfall[22,23].Severalstudiesoftropicalelevationalgradientshaveshownmid-ele- vationspeaksinspeciesdiversityfollowedbyalineardecrease[20]forvariousplantgroups [24].Mostofthepreviousstudiesonelevationalgradientsofforestherbsfocusedonselected herbaceousfamilies[25]andwereconductedinnear-naturalecosystems.Giventheongoing degradationofprimaryforests[6],studiesonelevationalgradientsshouldbeextendedto includehabitatsthatdifferinforest-useintensityoranthropogenicinfluence. Thisstudyaimstoassesshowherbaceousangiospermdiversityvariesalongelevationalgra- dientsinthetropicsandhowthosepatternsareaffectedbyvariationinforestuseintensity. Wethusfocusedonpatternsofα-,β-,andγ-diversityofherbaceousangiospermsalongcom- binedgradientsofelevationandforest-useintensity.Thestudywasconductedalongthe PLOSONE|https://doi.org/10.1371/journal.pone.0182893 August8,2017 2/17 Herbdiversityalonggradientsofelevationandforest-useintensity Fig1.MapoftheEasternslopesoftheCofredePeroteinVeracruzstate,Mexico.Blackdotsshowthestudylocations.1=LaMancha,2= Palmarejo,3=Chavarrillo,4=LosCapulines,5=ElZapotal,6=ElEncinal,7=LosPescados,and8=ElConejo. https://doi.org/10.1371/journal.pone.0182893.g001 EasternslopesofthevolcanoCofredePeroteincentralVeracruz,Mexico,alonganelevational gradientfromsealevelupto3500m,whichexhibitsalargerangeofenvironmentalconditions overashortgeographicdistanceofjustc.80km.Weestablishedplotsateightdifferentloca- tions(separatedbyc.500minelevation)andwiththreedifferentforest-useintensities(old- growth,degraded,andsecondaryforest). Methods Studyarea Weestablishedeightsitesalonganelevationalgradientbetween30and3540montheEastern slopesoftheNationalParkCofredePerote,anextinctvolcanoof4282melevationinthecen- tralpartofthestateofVeracruz,Mexico(Fig1).Thisregionislocatedatthejunctionofthe Trans-MexicanvolcanicbeltandtheSierraMadreOriental,amountainousareabetween19˚ 25’5.7”and19˚36’54”Nand94˚44’43.5”and97˚09’36.9”W.ThestateofVeracruzcovers 72420km2andhasadiverseangiospermflora(6876species),whichrepresentsabout31%of theMexicanflora[26].Morethan80%ofVeracruz’primaryvegetationhasbeenconverted PLOSONE|https://doi.org/10.1371/journal.pone.0182893 August8,2017 3/17 Herbdiversityalonggradientsofelevationandforest-useintensity Table1. ListofthestudylocationsandclimaticconditionsalongtheelevationalgradientattheCofredePerote,centralVeracruz,Mexico. Informa- tionisgivenonelevationalrange,vegetationtypeaccordingtoLeopold[29],meanannualtemperature(MAT),meanannualprecipitation(MAP),daysofrain (DR),anddaysbelow0˚CaccordingtoNationalMeteorologicalServiceofMexico(datafrom1951–2010)[30]. Location Elevation(m) Vegetationtype MAT(˚C) MAP(mm) DR DB LaMancha 30–50 Tropicalsemi-humiddeciduousforest 26 1221 81 0 Palmarejo 610–670 Tropicalsemi-humiddeciduousforest 23 938 86 0 Chavarrillo 900–1010 TropicalQuercusforest 21 1552 123 0 LosCapulines 1470–1650 Humidmontaneforest 18 1598 145 0 ElZapotal 2020–2230 Humidmontaneforest 14 3004 199 3 ElEncinal 2470–2600 Pinus-Quercusforest 12 1142 100 12 LosPescados 3070–3160 Pinusforest 10 821 113 14 ElConejo 3480–3540 Abiesforest 8 829 112 16 https://doi.org/10.1371/journal.pone.0182893.t001 andtheremainingpartsarehighlyfragmented[27],thereforeitisrecognisedasapriority regionforconservationinMexico[28]. Weplacedourstudylocationsatthefollowingelevationsabovesealevel:30–50m,610–670 m,900–1010m,1470–1650m,2020–2230m,2470–2600m,3070–3160mand3480–3540m (Table1,Fig1).Tosimplify,fromnowonwewillrefertoeverysiteasacategoricalunit(50, 650,1000,1500,2100,2500,3100,3500m).WeusedaGarmin1GPSMAP60Cxdeviceto recordinformationaboutgeographicalreferenceandelevation. Datacollection Thesamplingdesign,aswellasfrequentlyusedtermsareshowninFig2.Fieldworkwascon- ductedbetweenFebruary2012andJanuary2014.Wesampledthepresence/absenceofterres- trialherbaceousangiosperms,whichwedefinedasplantswithoutapersistentaboveground woodystemorplantswithonlyslightlywoodystems,rootedontheforestfloorandofshort stature(generally<1m);vineswereexcluded[31].Werecordedallspeciesin20m×20m plots,withoutconsideringseedlings[32].Wechooseaplotsizeof400m2becausefortheher- baceousflorainhumidtropicalforeststhisareaisregardedtoberepresentative,whilesmall enoughtominimisewithin-plotvariationofabioticfactors[33,34].Welocatedtheplotsinthe threedifferenthabitatssubjectedtodifferentdegreesofforest-useintensity;old-growth(OG), degraded(DE),andsecondaryforest(SE)stands(n=5plotsforeachhabitat).Thesecatego- riesfollowNewboldetal.[35]andaredefinedinTable2.Eachhabitatwaspresentateachof theeightlocationsresultinginatotalnumberof120plotsandasampledareaof48000m2. TheSecretar´ıadeMedioAmbienteyRecursosNaturales(SEMARNATSGPA/DGVS/2405/ 14)issuedusaplantcollectionpermit(NOM-059-SEMARNAT-2010),whichcoveredthe wholestudyareaandthecollectionofprotectedspeciesmentionedintheMexicanlegislation. Weusedelevation(m),meanannualtemperature(˚C),meanannualprecipitation(mm/a) andhabitat(afactorwiththreelevelsOG,DEandSE),aswellastheirinteractionasexplana- toryvariables.Weobtainedmeanannualtemperature(MAT)usingdataloggers(HOBOPRO v2)foroneyear(January-December2014).Weinstalledatotalof42dataloggers,twoinevery forest-usehabitatatsixelevations(500m,1000m,1500m,2500m,3000m,and3500m) alongtheentiregradient.Withintheplots,weplaceddataloggersontreesataheightbetween twoandthreemeters.Weobtainedmeanannualtemperaturedataforthetwoelevations(50 mand2000m)anddataofthemeanannualprecipitation(MAP)fromeightclimatological stations(neartothesamplingsites)operatingalongtheelevationalgradientduringtheperiod 1951–2010[30]. PLOSONE|https://doi.org/10.1371/journal.pone.0182893 August8,2017 4/17 Herbdiversityalonggradientsofelevationandforest-useintensity Fig2.Schematicrepresentationofthesamplingdesign.Wemeasuredα-diversityinplotsof20mx20m givenasameanoffiveplots.Fiveplotsrepresentonehabitat.Wedefinedhabitatasahomogenoustypeof forest-useintensitywithinonelocation.Alocationisrepresentativeofanelevationalbeltandharborsthree differenthabitats(old-growthOG,degradedDE,andsecondarySE).Wemeasuredtwodifferentβ-diversities basedonpairsofplots.Within-habitatβ-diversityrepresentsthecompositionalheterogeneityofahabitat.Itis measuredasthe1-Sørensenindexbasedonmultiplepairwisecomparisonsofthefiveplotswithineach habitatofaspecificlocation.Between-habitβ-diversityrepresentsthecompositionalheterogeneitybetween differentforest-useintensity.Measurementissimilartowithin-habitatβ-diversity,butmultiplepairwise comparisonsbasedontheplotsbetweenhabitatsofaspecificlocation.Wedefinedγ-diversityasthetotal numberofthelocalspeciespoolacrossall15plotswithinalocation,i.e.threehabitatswithfiveplotseach. https://doi.org/10.1371/journal.pone.0182893.g002 Speciesidentification Wecollectedateachlocation,butnotineveryplot,specimensofallspeciesifpossibleinqua- druplicatesanddepositedattheMexicanherbariaCIIDIR,MEXU,XAL,andXALU.Details aboutspeciesidentifications,geographicaldistributionandclassificationcanbefoundin Go´mez-D´ıazetal.[36].Thepresence/absencedataofallthespeciesfoundattheplotscanbe foundattheSupportingInformation(S1File). Dataanalyses Wecalculatedforeachofthe120herbcommunitiesinthedataset,i.e.replicatedplots(5plots perhabitatx8locations=120),α-diversity,theproportionofendemicsandβ-diversity[37]. Alpha-diversityisthecountofthenumberofspecies(plot-basedspeciesrichness)ineach standardisedreplicateplot[38].Inordertoevaluatethevalueofendemicspecies,wemeasured theproportionofendemicspeciesperplot.Weusedthedissimilarity(1-S)variantofthe Table2. Classificationofhabitatswithdifferentforest-useintensitiesaccordingtothemainphysiognomiccharacteristic,thegapfractioninthe canopy,dominanceofcanopytrees,thepercentageofshrubs,andthepresenceoflianas[35]. Habitat Characteristic Gaps(%) Forest-useintensity Canopytrees Shrub(%) Lianas Old-growth Noobviousforest-use,dominanceofmaturetrees <10 Low High <30 No Degraded Selectivelogging,grazingandunderstoryremoval 11–25 Medium Low 30–50 Low Secondary Regrownafterclear-cut >25 High verylow >50 High https://doi.org/10.1371/journal.pone.0182893.t002 PLOSONE|https://doi.org/10.1371/journal.pone.0182893 August8,2017 5/17 Herbdiversityalonggradientsofelevationandforest-useintensity Sørensenindex[37]asameasureofβ-diversityandwecalculateditas: b(cid:0) diversity¼1(cid:0) S ð1Þ whereSistheSørensenindex: 2C S¼ ð2Þ AþB whichisacoefficientofassociation,whereavalueof1showsthatapairofplotsunderconsid- erationhasexactlythesamespecies.TheSørensenindexcanbeadjustedtomeasurespecies turnover(effectiveorreal)[39].Theindex1-Sisalsoameasureofβ-diversitybecauseifacoef- ficientisnearto1,itshowsthattheunitsdonotsharespecies,and,therefore,theyhavehigh β-diversity[40].Asameasureforlandscape-scaleβ-diversity,wecomparedtheeffectofhabi- tatsonfloristiccompositionbetweenOGandDE,OGandSEaswellasDEandSEateachsite [41].Wecalculatedplot-by-plot,i.e.eachplotofhabitatAwascomparedtofiveorfour(inthe caseofwithinβ-diversity)otherplotsofhabitatB.Additionally,wecalculatedthestandard errorsfortheβ-diversityestimator,lettingastatisticallyrigorouscontrastoftwoorothersimi- larityindexvalues.Standarderrorswerecalculatedbythebootstrapprocess,whichneeds resamplingtheobserveddataforpairsofsamplesandre-computingtheestimatorsNtimes [41].Weperformedtheseanalysesofβ-diversityinEstimateS9.1.0[42]. Weusedasetofgeneralizedlinearmodels(GLM)andinformatictheoreticapproachbased onthebias-correctedAkaike’sinformationcriterion(AIC )toexaminetheextenttowhich c herbα-diversity,theproportionofendemicsandβ-diversityisrelatedtoelevation,habitat, MATandMAP.Thesesetsofmodelsaimedtodescribethepatternofdistributionofthe responsevariables,namelyherbα-diversity,theproportionofendemicsandβ-diversity.We usedelevation,elevation2,habitat,MAT,MAT2,MAP,MAP2andvarioustwo-wayandthree- wayinteractionsasexplanatoryvariablesinthesemodels.Weincludedpolynomialtermsof elevation,MATandMAPinordertodetectpotentialhumpshapesintherelationships betweenelevationandtheinter-correlatedclimaticvariableswiththeresponsevariables.We didnotincludethedatabelow500minthecaseofβ-diversityduetothelackofspeciesinsix plotsandweused“habitattransition”withsixlevels(OGtoOG,OGtoDE,OGtoSE,DEto DE,DEtoSEandSEtoSE)insteadoftheindependentvariable“habitat”.Weconstructed thirty-oneplausiblemodelscombiningthesevariablesforthissetofmodels[38]. WecheckeddatafornormalityusingtheShapiro-Wilknormalitytest.Wecheckedthe homogeneityofvarianceusingtheBartletttest.Noneofthevariablesfollowedanormaldistri- bution.Therefore,wechoseanerrorstructureforeachvariabledependingonthenatureof thevariable.Wechoosetheerrorstructureaccordingtothe“descdist”functionoftheRpack- age“fitdistrplus”version1.0–7.Weusedanegativebinomialerrorstructureformodelsofα- diversity.Weusedabetaerrorstructureformodelsoftheproportionofendemics.Weuseda log-normalerrorstructureformodelsofβ-diversity.Weusedmaximumlikelihoodestimation andAIC valuescomparedtochoosethebestmodelforeachresponsevariableineachsetof c models.WeperformedallanalysesinR3.2.1[43].Finally,wecalculatedanR2foreachmodel [38]. Multiplicativediversitypartitioning. Weusedmultiplicativediversitypartitioning[44] andfocusedonthreedistinctcomponentsofcommunitydifferentiation(α-diversity),(β- withinhabitat)andcompositionaldissimilarity(β-betweenhabitats)[45,46].Wepartitioned totalγ-diversityperlocationintomultiplicativecomponentsrepresentingperplotα-diversity, withinhabitatsβ-diversityandamonghabitatsβ-diversity.Weusedthefunction“multipart” oftheRpackage“vegan”topartitiondiversity[45,47].Throughthetext,wewillrefertothe resultsofthisanalysisasrelative(relativeα-diversity,β-withinhabitat,etc.) PLOSONE|https://doi.org/10.1371/journal.pone.0182893 August8,2017 6/17 Herbdiversityalonggradientsofelevationandforest-useintensity Table3. Summariesofgeneralizedlinearmodels. Thesummarieslinkherbα-diversity,theproportionofendemicsandβ-diversitytoenvironmental explanatoryvariables,alonganelevationalgradientatcentralVeracruz,Mexico.Wereportedthebestmodels,accordingtothebias-correctedAkaikeinfor- mationcriterion(AICc).WealsogivethechangeinAICcbetweenthebestmodelandthenextbestandworst.Finally,anR2measuringvariationexplainedby themodelisgiven. Response Model AIC ΔAIC (next ΔAIC R2 c c c best) (worst) α-diversity Elevation+elevation2+habitat+MAT+MAP2+elevation:MAT+elevation:elevation2 570.96 0.1 1023.3 0.69 +MAP:elevation2 theproportionof Elevation+elevation2+habitat+MAT+MAP2+elevation:MAT+elevation:elevation2 -162.50 1.9 111.7 0.41 endemics +elevation:MAT2+elevation:elevation2:MAT β-diversity Elevation+elevation2+change+MAT+MAP+elevation:change+elevation:MAT 287.41 1.7 450.6 0.49 +elevation2:change+elevation2:MAT+change:MAT+MAT:MAP+elevation:change: MAT+elevation2:change:MAT https://doi.org/10.1371/journal.pone.0182893.t003 Estimationofspeciesdiversity(Hillnumbers). FollowingChaoandJost[48],weuseda diversityprofileestimatorofqD(Hillnumbers).Thediversityestimatoroforderqineachpro- filerepresentstheasymptoteintherarefactionandextrapolationcurves[49].Wecalculated theprofileestimatorwiththefunction“diversity”oftheRpackage“SpadeR”[50].Weconsid- eredthecasesofqfrom0to3withincrementsof0.25. Resultsanddiscussion Alphadiversity Elevation,elevation2,habitat,MAT,MAP2,interactionsbetweenelevationandelevation2,an interactionbetweenelevationandMAT,aswellasaninteractionbetweenelevation2and MATmodeledbesttheα-diversity(Table3).Thismodelexplainedalargeamountofthevari- anceinspeciesrichness(GLMR2=0.69).Alpha-diversityfollowedahump-shapedpattern, showingapeakat2500manddeclinestowardstheextremesofthegradientthatdonotchange dependingonthehabitat(Fig3,Table4).FewerspeciesarefoundathighMATandthiseffect isgreatestatlowelevationsduetotheinclusionoftheMAT+elevationinteraction. Hump-shapeddiversitypatternshavebeenreportedfordifferentgroupsofvascularplants [24],suchaspalms,Acanthaceae,Bromeliaceaeandwoodyplantsalongtropicalmountains [51–53].Comparedtopreviousfindings,ourresultsshowthepeakinα-diversityshifted towardshigher,insteadofmid-elevations[54].Oneexplanationforthispatternisthatherbs areadaptedtocoldclimatesandhadasuccessintemperatezonesduetobeannualandthe productionofundergroundstructures(e.g.rhizomesandstolons)[55]. LowerelevationsinVeracruzaresubjecttoprolongeddryseasons(Table2),whichmay limitα-diversity.Withincreasingelevation,precipitationincreases,whiletemperaturesand potentialevapotranspirationdecrease.Speciesrichnessoffernshasbeenreportedtobeposi- tivelyrelatedtohumidity[56].Inourstudy,angiospermrichnesspeakedbetween2500mand 3100m,whereprecipitationandthenumberofrainydaysalreadydecrease.However,the Pinus-Quercusforestsat2500mareoftensubjecttofog,whereasinPinusforests(3100m) lighttransmissiontotheforestfloorishigh[57],whichlikelyincreasesthegroundcoverof angiospermsandthusalsotheirdiversity. Surprisingly,forest-useintensityhadnosignificanteffectonα-diversity(Fig3).Thelackof adetectablenet-changeinα-diversitymightindicatethatthelevelofforest-useintensityisstill relativelymoderate;however,otherlifeforms(e.g.trees,epiphytesandferns)mightshowcon- trastingpatterns.Itisquitewelldocumentedthatforestherbsprofitfrombetterlightcondi- tionsinDEorSE.Newboldetal.[35],forexample,foundthattherichnessofvascularplant speciescanincreaseby40%duetotheconversionofold-growthforeststosecondary PLOSONE|https://doi.org/10.1371/journal.pone.0182893 August8,2017 7/17 Herbdiversityalonggradientsofelevationandforest-useintensity Fig3.Alpha-diversityofherbaceousangiospermsalonggradientsofelevationandforest-use intensityattheCofredePerote,centralVeracruz,Mexico.Wefitthelinesfromanegativegeneralized linearmodel(GLM),theshadedareamarksconfidenceintervals(CI=1.96timesstandarderror).Difference tozeroissignificantfortheintercept(xy,OGat50m,p<0.001),butitisnotsignificantfortheeffectofhabitat (DE:p=0.453,SE:p=0.446).Observedspeciesrichnesson20m×20mplotsalongtheelevational gradientforOG(green),DE(blue),andSE(red). https://doi.org/10.1371/journal.pone.0182893.g003 vegetation,butmoreseverehabitatconversion,e.g.fromforesttointensivecropland, decreasesspeciesrichness. Proportionofendemicspecies Thebestmodelfortheproportionofendemicspecieswastheonethatincludedelevation,ele- vation2,habitat,MAT,MAP2andtheinteractionbetweenelevationandMAT,elevationand elevation2,elevation2andMATandatripleinteractionwithelevation,elevation2andMAT (Fig4,Table3).Theproportionofendemicspeciesshowedanon-linearpatternalongtheele- vationalgradientwiththehighestproportionat500m(Fig4,Table4).Thereisnoeffectof forest-useintensityontheproportionofendemicspecies,thelackofapatternontheendemic speciescanbeattributedtotheadaptationoftheendemicherbaceousplant’sspeciesofMexico toseveralpatternsofdisturbanceortheextinctionofpreviousendemicspecies.Thismodelof theproportionofendemicspecieshadanR2of0.41. Betaandgammadiversity Incontrasttorichness,forest-useintensityhadmarkedeffectsonfloristiccomposition,which wasmostvisiblewhenlookingathabitattransitions(Table5).Within-habitatβ-diversitywas generallylower(0.42–0.52)thanbetween-habitatβ-diversity(0.58–0.66).Unsurprisingly,we PLOSONE|https://doi.org/10.1371/journal.pone.0182893 August8,2017 8/17 Herbdiversityalonggradientsofelevationandforest-useintensity Table4. Parameterestimatesfromgeneralizedlinearmodels. Theparameterslinkherbα-diversity,theproportionofendemicsandβ-diversitytoenvi- ronmentalexplanatoryvariables,alonganelevationalgradientatcentralVeracruz,Mexico.Estimatesareonthestandardizedscale±standarderror.We markedsignificantestimateswithanasterisk(*<=0.05,**<=0.01and***<0.001).Emptycellsindicatetermsnotincludedinthebestmodelforagiven responsevariable. Estimates Term α-diversity theproportionofendemics β-diversity Elevation -5.66±0.04*** 7.22±1.25 -2.89±0.38*** Elevation2 7.09±0.28** -5.74±1.72 1.98±0.24*** Habitat.DE 0.01±7.78E-2 0.08±0.02 0.05±3.72E-3 Habitat.SE 16.76±0.85 0.27±0.02 -7.23±0.28* MAT -1.23±0.02*** -0.84±1.25 -2.47±0.28*** MAP 29.06±6.68 MAP2 -0.04±1.77E-03*** 0.70±0.22*** Elevation:MAT 9.23E-4±2.24E-5** 5.26±3.60 0.26±0.03*** Elevation:Habitat.DE 0.35±0.01 Elevation:Habitat.SE 0.57±0.07 Elevation:elevation2 -7.96E-4±6.49E-5* -0.37±0.06 Elevation2:Habitat.DE -53.4±6.65* Elevation2:Habitat.SE 5.42E-6±8.04E-7 Elevation2:MAT -0.07±6.49E-3 -8.41±4.13*** 0.03±6.67E-3*** Habitat.DE:MAT -71.2±7.82 Habitat.SE:MAT 28.46±4.17* MAT:MAP 34.74±1.94*** Elevation:elevation2:MAT 2.10±0.89** Elevation:Habitat.DE:MAT -0.05±1.94E-3* Elevation:Habitat.SE:MAT 10.24±2.29* Elevation2:Habitat.DE:MAT 1.23E-5±1.94E-6 Elevation2:Habitat.SE:MAT -3.70E-3±2.33E-4* https://doi.org/10.1371/journal.pone.0182893.t004 foundthehighestdissimilarityinthetransitionfromOGtoSE,whereasthemosthomogenous speciespoolwaswithinOG.Thehighβ-diversitybetweenhabitatsindicatedwiderenviron- mentaldifferences[58]thantheheterogeneityofplotswithinthesamehabitattype. Thebestmodelforβ-diversityincludedthemaineffectsofelevation,elevation2,change, MAT,MAPandinteractionsbetweenelevationandchange,elevationandMAT,elevation2 andchange,elevation2andMAT,changeandMAT,MATandMAP,aswellastripleinterac- tionsamongelevation,change,MATandelevation2,change,MAT(Table3).Thismodel explainslittlevariation(R2=0.49).Therewasamarkedeffectofelevationonβ-diversity(Fig 5,Table4).Within-habitatβ-diversityshowedaclearhumped-shapedpatternforOGandSE withpeaksbetween2500mand3000m.DE,however,hadtheirhighestβ-diversityat650m withasubsequentdecline.Obviously,DEatlowerelevationsexhibitsadifferentresponseto environmentalconditionscomparedtoOGandSE.Degradationmayleadtoahigherhetero- geneityofenvironmentalconditionsand,consequently,offerdiversenichestriggeringcom- munitydifferentiation[59].Beta-diversitybetween-habitatswasgenerallyhighbutvariedwith thetypeofhabitattransition.InthetransitionfromOGtoSE,therewasaturnoverofc.50% ofthespeciesatbothextremesoftheelevationalgradient.Between1500mand2500m,how- ever,75%ofthespeciesweredifferentwhencomparingOGtoSE.Habitattransitionsrelated todegradation(OG-DE,DE-SE)showedhighestβ-diversityat650mand2500manddeclined withincreasingelevation.Endemicspeciescontributetothispatternonlyat650mwherewe foundtheirpeak(Fig4).Especiallyat3100mand3500m,thechangeinspeciescomposition PLOSONE|https://doi.org/10.1371/journal.pone.0182893 August8,2017 9/17 Herbdiversityalonggradientsofelevationandforest-useintensity Fig4.Theproportionofendemicspeciesofherbaceousangiospermsalonggradientsofelevation andforest-useintensityattheCofredePerote,centralVeracruz,Mexico.WefitthelinesfromaGLM withabetaerrorfamily,theshadedareamarksconfidenceintervals(CI=1.96timesstandarderror). Differencetozeroisnotsignificantfortheintercept(xy,OGat50m,p=0.066)aswellasfortheeffectof habitat(DE:p=0.771,SE:p=0.226).Observedproportionofendemicspecieson20m×20mplotsalong theelevationalgradientforOG(green),DE(blue),andSE(red). https://doi.org/10.1371/journal.pone.0182893.g004 withthetransitionfromOGtoDEwasrelativelylow.Thisindicatesthatpresentenvironmen- talconditionsfavouraspectrumofadaptedspecies[60],whichthriveregardlessofthehabitat type.Above3100mtherearefewerspecies,whichareadaptedtoextremeclimateevents,such asdaysbelow0˚C,lowertemperatureandprecipitation(Table1). Werevealedtherelativecontributionofrelativeα,relativewithin-habitatβ,andrelative between-habitatsβ-diversitytoγusingthemultiplicativepartitioningapproach(Fig6).The contributionofrelativeα-diversitywasonlybetween3and13(Fig6).Diverseforesthabitats supporthighspeciesdiversityandleadtohighrelativeβ-diversitybetween-habitats(β ) b Table5. Averageeffectsofthehabitatchange. Meanβ-diversityateveryhabitattransition,lettersin superscriptdifferencesingroupsafterTukeyposthoctest(HSD=0.138). Habitattransition β-diversity(1-S) Old-growthtosecondary 0.66a Degradedtosecondary 0.61ab Old-growthtodegraded 0.58ab Degradedtodegraded 0.52bc Secondarytosecondary 0.48bc Old-growthtoold-growth 0.42c https://doi.org/10.1371/journal.pone.0182893.t005 PLOSONE|https://doi.org/10.1371/journal.pone.0182893 August8,2017 10/17

Description:
use. The aim of this study was to analyze the diversity of herbaceous known about the influence of forest-use intensity on herbaceous angiosperms.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.