ebook img

Distribution of joint local and total size and of extension for avalanches in the Brownian force model PDF

1.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Distribution of joint local and total size and of extension for avalanches in the Brownian force model

DistributionofjointlocalandtotalsizeandofextensionforavalanchesintheBrownianforcemodel Mathieu Delorme, Pierre Le Doussal and Kay Jo¨rg Wiese CNRS-LaboratoiredePhysiqueThe´oriquedel’EcoleNormaleSupe´rieure,24rueLhomond,75005Paris,France TheBrownianforcemodel(BFM)isamean-fieldmodelforthelocalvelocitiesduringavalanchesinelastic interfaces of internal space dimension d, driven in a random medium. It is exactly solvable via a non-linear differentialequation. Westudyavalanchesfollowingakick,i.e.astepinthedrivingforce. Wefirstrecallthe calculationofthedistributionsoftheglobalsize(totalsweptarea)andofthelocaljumpsizeforanarbitrarykick amplitude.Weextendthiscalculationtothejointdensityoflocalandglobalsizeswithinasingleavalanche,in thelimitofaninfinitesimalkick.Whentheinterfaceisdrivenbyasinglepointwefindnewexponentsτ =5/3 0 6 andτ = 7/4,dependingonwhethertheforceorthedisplacementisimposed. Weshowthattheextensionof 1 a“singleavalanche”alongoneinternaldirection(i.e.thetotallengthind = 1)isfiniteandwecalculateits 0 distribution,followingeitheralocaloraglobalkick. InallcasesitexhibitsadivergenceP((cid:96))∼(cid:96)−3atsmall 2 (cid:96).Mostofourresultsaretestedinanumericalsimulationindimensiond=1. n a I. INTRODUCTION linearinstantonequationandperformingLaplaceinversions, J whichisnotalwaysaneasytask.Globalavalancheproperties, 9 such as the probability distribution function (PDF) of global 1 In many physical systems the motion is not smooth, but proceedsbyavalanches. Thisjerkymotioniscorrelatedover sizeS,ofduration,andofvelocityhavebeenobtainedforar- ] bitrary driving. Detailed space time properties however are n a broad range of space and time scales. Examples are mag- more difficult. In Ref. [13] a finite wave-vector observable n netic interfaces, fluid contact lines, crack fronts in fracture, was calculated, demonstrating an asymetry in the temporal - strike-slip faults in geophysics and many more [1–3]. These s shape. Although the distribution of local avalanche sizes S i systemshavebeendescribedusingthemodelofanelasticin- r d terfaceslowlydriveninarandommedium. Thismodelisim- has been obtained in some instances, this is not the case for . thedistributionofthespatialextension(cid:96)ofanavalanche,i.e. t portantforavalanches, bothconceptuallyandinapplications a the range of points which move during an avalanche, an im- [4–6]. The full model of an interface of internal dimension m portantobservableaccessibleinexperiments. Notethateven d, inpresenceofrealisticshort-rangeddisorderisdifficultto - the fact that an avalanche has a finite extent, instead of an d treatanalytically,andrequiresmethodssuchastheFunctional exponentially decaying tail in its spatial extension is a non- n RenormalizationGroup(FRG)[7–14]. trivialresult,whichuptonowwasonlyprovenforverylarge o A simpler version of the model, the so-called Brownian avalanchesintheBFM[19]. c force model (BFM) introduced in [10–13] is very interest- [ ing in several respects. First it is exactly solvable, and sev- 1 eralavalancheobservableshavebeencalculated,asdiscussed v below. Second, it was shown [11, 13] to be the appropriate x 0 mean-fieldtheoryforthespace-timestatisticsofthevelocity 4 u 9 field in a single avalanche for d-dimensional interfaces close xt=0 u 4 to the depinning transition for d ≥ duc with duc = 4 for xt=∞ 0 shortrangedelasticityandduc =2forlong-rangedelasticity. . Remarkably,whenconsideringthedynamicsofthecenterof 1 massoftheinterface, itreproducestheresultsofthesimpler 0 6 ABBM model, a toy model for a single degree of freedom r S 1 (particle), introduced long ago on a phenomenological basis r S : todescribeBarkhausenexperiments(magneticnoise)[15,16] l v and much studied since [1, 12, 17]. Last but not least, the i X BFM is the starting point for a calculation of avalanche ob- r servables beyond mean-field, using the FRG in a systematic a expansionind −d[11,13]. uc ThekeypropertywhichmakestheBFM(andtheABBM) model solvable is that the disorder is taken to be a Brown- ian random force landscape. Since it can be shown that un- der monotonous forward driving the interface always moves forward(Middleton’stheorem[18]),theresultingequationof u motion for the velocity field is Markovian, and amenable to exactmethods. Despite being exactly solvable, the explicit calculation of avalanche observables in the BFM requires solving a non- FIG.1.Anavalancheind=1. 2 Drivingprotocol Observable Exponent II. AVALANCHEOBSERVABLESOFTHEBFM anyforcekick globalsizeS τ =3/2 A. TheBrownianForceModel uniformforcekick localsizeS τ =4/3 0 0 uniformforcekick S atfixedS τ =2/3 0 0 Inthispaper,westudytheBrownianForceModel(BFM)in localizedforcekick localsizeS τ =5/3 0 0 spacedimensiond,definedasthestochasticdifferentialequa- localdisplacementimposed globalsizeS τ =7/4 tion(intheItosense): anyforcekick extension(cid:96) κ=3 (cid:112) η∂ u˙ =∇2u˙ + 2σu˙ ξ +m2(w˙ −u˙ ). (1) t xt x xt xt xt xt xt TABLEI.Summaryofsmall-scaleexponentsfordifferentdistribu- tionsintheBrownian-ForceModel,dependingontheobservableand This equation models the overdamped time evolution, with thedrivingprotocol. friction η, of the velocity field u˙ ≥ 0 of an interface with xt internalcoordinatex∈Rd;thespace-timedependenceisde- notedbyindicesu˙(x,t) ≡ u˙ . Itisthesumofthreecontri- xt butions: Theaimofthispaperistocalculatefurtherobservablesfor • short-rangedelasticinteractions, the BFM which contain information about local properties, such as the joint density of global and local avalanches, and • stochastic contributions from a disordered medium, thedistributionofextensions. Weconsidervariousprotocols, where ξ is a unit Gaussian white noise (both in x and where the interface is either driven uniformly in space or t): at a single point; in the latter case we identify new critical ξ ξ =δd(x−x(cid:48))δ(t−t(cid:48)), (2) exponents. We study avalanches following a kick, i.e. a step xt x(cid:48)t(cid:48) inthedrivingforce. • aconfiningquadraticpotentialofcurvaturem,centered atw ,actingasadriving. xt The article is structured as follows: In section II we re- Thedrivingvelocityischosenpositive,w˙ ≥ 0,anecessary callthedefinitionoftheBFMandofthemainavalancheob- xt condition for the model to be well defined, as it implies that servables, together with the general method to obtain them u˙ ≥0atallt>0ifu˙ ≥0. fromtheinstantonequation. SectionIIIstartsbyrecallingthe xt xt=0 Equation(1),takenhereasadefinition,canalsobederived calculationofthedistributionsoftheglobalsize(totalswept fromtheequationofmotionofanelasticinterface,parameter- area)S andofthelocaljumpsizeS ofanavalanche,foran r izedbyapositionfield(displacementfield)u inaquenched arbitrarykickamplitude. InSectionIIICweextendthiscal- xt randomforcefieldF(u,x), culationtothejointdensityρ(S ,S)oflocalandglobalsize r forsingleavalanches,i.e.inthelimitofaninfinitesimalkick. η∂ u =∇2u +F(u ,x)+m2(w −u ). (3) t xt x xt xt xt xt InSectionIVwestudythecaseofaninterfacedrivenatasin- glepoint. Whentheforceatthispointisimposed, wefinda The random force field is a collection of independent one- new exponent τ = 5/3 for the PDF of the local jump S at sidedBrownianmotionsintheudirectionwithcorrelator 0 0 that point. When the local displacement is imposed, we find anewexponentτ = 7/4forthePDFoftheglobalsizeS. In F(u,x)F(u(cid:48),x(cid:48))=2σδd(x−x(cid:48))min(u,u(cid:48)). (4) SectionVweshowthattheextension(cid:96)ofasingleavalanche Taking the temporal derivative ∂ of Eq. (3), and assuming alongoneinternaldirection(i.e.thetotallengthind = 1)is t forward motion of the interface, one obtains Eq. (1) for the finite;wecalculateitsdistribution,followingeitheralocalor velocityvariable∂ u ≡u˙ (weuseindifferently∂ oradot aglobalkick. InallcasesitexhibitsadivergenceP((cid:96))∼(cid:96)−3 t xt xt t todenotetimederivatives). Thefactthattheequationforthe atsmall(cid:96),withthesameprefactor.Alltheseexponentscanbe velocityisMarkovianevenforaquencheddisorderisremark- foundinTableI.Finally,inSectionVIwestudytheposition ableandresultsfromthepropertiesoftheBrownianmotion. oftheinterface,whichisanon-stationaryprocess.Weexplain Details of the correspondence are given in [12, 13] where how the Larkin and BFM roughness exponents emerge from subtleaspectsofthepositiontheory,anditslinkstothemean- the dynamics. Most of our results are tested in a numerical field theory of realistic models of interfaces in short-ranged simulationoftheequationofmotionind=1. disorderviatheFunctionalRenormalisationGroup(FRG)are discussed. In the last section of this paper we will mention ThetechnicalpartsofthecalculationsarepresentedinAp- somepropertiesofthepositiontheoryoftheBrownianforce pendices A to J, together with general material about Airy, model. WeierstrassandEllipticfunctions. Ashortpresentationofthe numericalmethodsisalsoincluded. Finally note a complementary recent study of the BFM, B. Avalanchesobservablesandscaling where the joint PDF of the local avalanche size at all points wasobtained. Fromthat,thespatialshapeofanavalanchein The BFM (1) allows to study the statistics of avalanches thelimitoflargeaspectratioS/(cid:96)4wasderived[19]. asthedynamicalresponseoftheinterfacetoachangeinthe 3 driving.Weconsidersolutionsof(1)asaresponsetoadriving x oftheform (cid:90) r1 Sr = 0 w˙ =δw δ(t) , δw ≥0 , δw =L−d δw >0. (5) 1 xt x x x x Theinitialconditionis u˙ =0. (6) xt=0 l Supp Thissolutiondescribesanavalanchewhichstartsattimet=0 and ends when u˙ = 0 for all x. The time at which the xt avalancheends,alsocalledavalancheduration,wasstudiedin r S > 0 2 r [20]anditsdistributiongiveninvarioussituations. 2 Within the description (3), i.e. in the position theory, it u y correspondstoaninterfacepinned,i.e.atrestinametastable state at t < 0, it is submitted at t = 0 to a jump in the total applied force m2δw. More precisely, the center of the confining potential jumps at t = 0 from w (where it was FIG.2.Anavalancheind=2;thetransversedirectionisorthogonal x for t < 0) to w = w + δw (where it stays for all to the plane of the figure and the colored zone corresponds to the xt=0+ x x supportoftheavalanche. t>0). Asaconsequence,theinterfacemovesforward(since δw ≥ 0) up to a new metastable state. This is represented x in figure 1, where u is the initial metastable state and xt=0 avalanchesofad-dimensionalinterfaceisdonewiththe u isthenewmetastablestateattheendoftheavalanche. xt=∞ definition In fact, as we will see from the distribution of avalanche durations, the new metastable state is reached almost surely (cid:90) ∞ inafinitetime. Fordetailsonthesemetastablestatesandthe (cid:96)= drθ(Sr >0), (9) system’spreparationsee[12,13]. −∞ whereθistheHeavisidefunction. Notethatevenfora Wenowdiscusstheavalancheobservablesatthecenterof d-dimensionalinterface,theextension(cid:96)isaunidimen- this paper. They can be computed from the solution of (1) sionalobservable(cf. figure2). given(5)and(6); theyarerepresentedinfigure1foramore visualdefinitioninthecased=1. Notethat (cid:92) • Globalsizeoftheavalanche: S >0 ⇔ Supp {r}×Rd−1 (cid:54)=∅ (10) r (cid:90) (cid:90) ∞ S = u˙ dt. (7) whereSuppdenotesallthepointsoftheinterfacemovingdur- tx x∈Rd 0 inganavalanche(i.e.itssupport). Weusenaturalscales(orunits)toswitchtodimensionless This is the total area swept by the interface during the expressions,bothforthe(localandglobal)avalanchesizeS , avalanche. m asforthetimeτ expressedas m • Localsizeoftheavalanche: σ η S = , τ = . (11) (cid:90) (cid:90) ∞ m m4 m m2 S =m−1 u˙ dt. (8) r tx x∈{r}×Rd−1 0 The extension, a length in the internal direction of the inter- face,isexpressedinunitsofm−1.Thisisequivalenttosetting This is the size of the avalanche localized on a hy- m=σ =η =1. Allexpressionsbelow,exceptexplicitmen- perplane, where one of the internal coordinates is r; tion,areexpressedintheseunits. the factor m−1 allows to express S and Sr using the While Sm is the large-size cutoff for avalanches, there is same units (see below). In d = 1 this yields Sr = genericallyalsoasmall-scalecutoff. AsintheBFMthedis- m−1(cid:82)0∞u˙trdt, i.e.thetransversaljumpatthepointr orderisscale-invariant(bycontrastwithmorerealisticmod- of the interface. For d > 1 the variable r is still one- elswithshort-rangedsmoothdisorder), itistheincrementin dimensional, andSr thetotaldisplacementinahyper- thedrivingδw whichsetsthesmall-scalecutoffforthelocal planeoftheinterface. andglobalsizeofavalanches. Theyscaleasmin(S) ∼ δw2 (globalsize)andmin(S )∼δw3(localsize). r • Avalancheextension: Masslesslimit Ford = 1,theextension(denoted(cid:96))ofanavalancheis the lenght of the part of the interface which (strictly) There are cases of interest where the mass m → 0. This moves during the avalanche. The generalisation to canbedefinedfromtheequationsofmotion(1)and(3)with 4 thechanges 103 Theoretical distribution Pδw(S) m2(w −u )→f Numerical simulation xt xt xt (12) 102 m2(w˙ −u˙ )→f˙ . xt xt xt 101 Inthatcaseitisnaturaltoconsiderdrivingwithagivenforce 100 f , rather than by a parabola. The definition of the observ- abxtles is the same except that the factor of m−1 is not added 10-1 inthedefinition(8). Tobringσandηtounity,wethendefine 10-2 timeinunitsofη anddisplacementsuinunitsofσ. There- sults will still have an unfixed dimension of length. In some 10-3 of them, the system size L leads to dimensionless quantities 10-4 (it also acts as a cutoff for large sizes, although we will not usethisexplicitly). 10-5 10-3 10-2 10-1 100 101 C. Generatingfunctionsandinstantonequation FIG.3. Greenhistogram: globalavalanche-sizedistributionfroma directnumericalsimulationofadiscretizedversionofEq.(1)with parameters : N = 1024,m = 0.01,df = m2δw = 1 and dt = To compute the distribution of the observables presented 0.05.Redline:theoreticalresultgiveninEq.(16).Fordetailsabout above, we use a result from [12, 13] which allows us to ex- thesimulationseeappendixH. press the average over the disorder of generating functions (Laplacetransforms)ofu˙ ,solutionof(1). Indimensionless xt units,thisresultreads III. DISTRIBUTIONOFAVALANCHESIZE (cid:28) (cid:18)(cid:90) (cid:19)(cid:29) G[λxt]= exp λxtu˙xt =e(cid:82)xtw˙xtu˜xt . (13) A. Globalsize xt Asdefinedin(7)theglobalsizeofanavalancheisthetotal Here(cid:104)···(cid:105)denotestheaverageoverdisorder. u˜isasolution areasweptbytheinterface.ItsPDFwascalculatedin[11–13] ofthedifferentialequation(calledinstantonequation) andreads,indimensionlessunits, ∂x2u˜+∂tu˜−u˜+u˜2 =−λxt. (14) Pδw(S)= 2√δπwˆS32e−(S−4δSwˆ)2 . (16) Sinceavalancheobservablesthatweconsiderareintegralsof Hereδwˆ = Ldδw. Thisresultdoesnotdependonthespatial the velocity field over all times (c.f. observable definitions formofthedriving(itcanbelocalized,uniform,oranything above),thesourcesλ weneedin(13)aretimeindependent. inbetween),aslongasitisappliedasaforceontheinterface. xt Thusweonlyneedtosolvethespacedependent,buttimein- Driving by imposing a specific displacement at one point of dependent,instantonequation theinterfaceisanotherinterestingcasethatleadstoadifferent behavior,seeSectionIVB. u˜(cid:48)(cid:48)−u˜ +u˜2 =−λ . (15) Wecantestthisagainstadirectnumericalsimulationofthe x x x x equation of motion (1). There is excellent agreement over 5 The prime denotes derivative w.r.t x. In the massless case decades,withnofittingparameter,seeFig.3. discussed above, the term −u˜ is absent, all other terms are Avalancheshavethepropertyofinfinitedivisiblity,i.e.they x identical. areaLevyprocess. Thiscanbewrittenasanequalityindis- tribution,i.e.forprobabilities, The global avalanche size implies a uniform source in the instanton equation: λx = λ, while the local size implies a P ∗P =d P . (17) localizedsourceλ = λδ1(x). Toobtaininformationonthe δw1 δw2 δw1+δw2 x extension of avalanches, we need to consider a source local- Itimpliesthatwecanextractfromtheprobabilitydistribution ized at two different points in space, λ = λ δ(x − r ) + (16)thesingleavalanchedensityperunitδw thatwedenote x 1 1 λ δ(x−r ). ρ(S)andwhichisdefinedas 2 2 This instanton approach, which derives from the Martin- P (S) (cid:39) δwρ(S). (18) δw Siggia-Roseformulationof(1),allowsustocomputeexactly δwˆ(cid:28)1 disorder averaged observables for any form of driving, by This avalanche density contains the same information as the solving a “simple” ordinary differential equation, which de- fulldistribution(16);itsexpressionis pendsontheobservablewewanttocompute,i.e.onλ ,but xt not on the form of the driving w˙xt. For a derivation of (13) ρ(S)= √Ld e−S4 ∼S−τ . (19) and(14)wereferto[12]. 2 πS32 5 Itisproportionaltothesystemvolumesinceavalanchesoccur anywhere along the interface. It defines the avalanche expo- 106 Theoretical distribution Pδw(S0) nentτ = 3 fortheBFM.DuetothedivergencewhenS →0 105 Numerical simulation 2 itisnotnormalizable(itisnotaPDF),butastheinterfacefol- 104 lows on average the confining parabola, it has the following 103 property 102 (cid:90) ∞ 101 dSSρ(S)=Ld. (20) 100 0 10-1 In this picture, typical, i.e. almost all avalanches are of van- 10-2 ishingsize,S ≈ 0,ormorepreciselyS ≤ δwˆ2,butmoments 10-3 ofavalanchesaredominatedbynon-typicallargeavalanches (oforderS ). 10-4 m 10-5 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 B. Localsize FIG.4. Greenhistogramm: Localavalanche-sizedistributionfrom WenowinvestigatethedistributionoflocalsizeS asde- r adirectnumericalsimulationofadiscretizedversionof(1)withpa- finedinEq.(8). Wehavetospecifytheformofthekick;we rametersN = 1024,m = 0.01,df = m2δw = 1,anddt = 0.05. startwithoneuniform(inx):δwx =δwforallx∈R. Inthis Redline: thetheoreticalresultgiveninEq.(21). Fordetailsabout casethesystemistranslationnalyinvariant,andwecanchoose thesimulationseeappendixH. r =0,asanylocalsizewillhavethesamedistribution. The distribution of S is obtained by solving Eq. (15) 0 with the source λx = λδ(x), and then computing the C. Jointglobalandlocalsize inverse Laplace transform with respect to λ of G(λ) = exp(δw(cid:82) u˜λ), where u˜λ is the instanton solution (depend- x Wenowextendtheseresultswithanewcalculationofthe ingonλ). Thishasbeendonein[13];thefinalresultis jointdensityoflocalandglobalsizes. ConsiderP (S ,S), δw 0 P (S )= 2×313e6δwˆδwˆAi(cid:32)(cid:18) 3 (cid:19)13 (S +2δwˆ)(cid:33) tuhneifjoorimntkPiDckFδowf.loFcoarlasribzietrSar0yaδnwdgitlodboaelssnizoetaSd,mfoitllaowsiimngplae δw 0 S43 S0 0 explicit form (see Appendix D). We thus again consider the 0 (21) 2Ld−1 (cid:18)2S (cid:19) “single avalanche” limit δw → 0. It defines the joint den- (cid:39)δwˆ(cid:28)1 δw πS0 K13 √30 . csiatlycuρl(aSte,.SE0q),uviviaalePnδtwly(So0n,eSc)an(cid:39)coδnwsiρd(eSr0th,eSc)o,nwdhitiicohnwalepnroobw- abilityP (S |S)ofthelocalsize,giventhattheglobalsize Hereδwˆ =Ld−1δw,AiistheAiryfunction,andKtheBessel δw 0 isS. Inthelimitδw →0thesetwoobjectsarerelatedby function. WeusethatAi(x)= 1(cid:112)xK (2x3/2)forx>0. π 3 1/3 3 This distribution has again the property of infinite divisibil- ρ(S ,S) ity, whichisfarfromobviousonthefinalresultsbut, canbe P0+(S0|S)= ρ(0S) , (23) checkednumerically. The small-δw limit defines the density per unit δw of the where ρ(S) is given in Eq. (19); the two factors of δw can- localsizesofa“singleavalanche”,whichisgivenby cel.ForsimplicitywediscusstheresultforP (S |S).While 0+ 0 2Ld−1 (cid:18)2S (cid:19) bothρ(S)andρ(S0,S)arenotprobabilities,i.e.theycannot ρ(S )= K √0 benormalizedtoone,wewillshowthattheconditionalprob- 0 πS0 31√ 3 (22) abilityP0+(S0|S)iswell-defined,andnormalizedtounity. (cid:39) Ld−1 63Γ(1/3) ∼S−τφ . AnaturaldecompositionofthisconditionalPDFis S0(cid:28)1 πS 4/3 0 0 (cid:18) (cid:90) (cid:19) P (S |S)=Pˆ (S |S)+δ(S ) 1− Pˆ (u|S) . Itssmall-sizebehaviordefinesthelocalsizeexponentτ = 4 0+ 0 0+ 0 0 0+ φ 3 u>0 fortheBFM. (24) Thedistribution(21),orthedensity(22),canbecompared The first term is the smooth part defined for S > 0 which 0 totheresultsofdirectnumericalsimulationsoftheBFM,and comes from the avalanches containing the point r = 0. The theagreementisverygoodover7decades,withoutanyfitting second term arises from all avalanches which do not contain parameter,c.f. Fig.4. thepointr = 0. Thistermcontainsasubstractionsothatthe Another interesting property is that the tail of large local total probability is normalized to unity, (cid:82) P (S |S) = 1, sizesbehavesasρ(S0) (cid:39)S0(cid:29)1 S0−3/2e−2S0/√3,i.e.withthe asitshouldbe. S0 0+ 0 samepower-lawexponentinthepre-exponentialfactorasthe Thesmoothpartiscalculatedusingtheinstanton-equation globalsize. approach. ThedetailsaregivenAppendixD.Thefinalresult 6 Explicitly 105 √ 104 P˜ (S |S)= 4 πe−32α3 (cid:104)αAi(cid:0)α2(cid:1)−Ai(cid:48)(cid:0)α2(cid:1)(cid:105), (31) 103 0+ 0 313Γ(cid:0)14(cid:1)S023S14 with α defined in Eq. (26). It is now normalized to unity, 102 (cid:82) P˜ (S |S) = 1. One sees that the typical local size S0>0 0+ 0 101 scalesasS0 ∼ S3/4. Computingthefirstm√omentwefindits conditionalaveragetobe(cid:104)S (cid:105) = π S3/4. ItsPDF 100 0 S,S0>0 3Γ(1/4) hastwolimitingbehaviors, 1100--21 NNNThuuuemmmoeeererrriiitcccicaaaalll lddd diiisssistttrrrtiiirbbbibuuuutttiiitoooionnnn www (iiiδtttwhhh =SSS0>>>+000)...001011 P˜0+(S0|S)(cid:39)Γe(−541)2SSS30434√ forS0 (cid:29)S34 (32) π 10-6 10-5 10-4 10-3 10-2 10-1 100 323Γ(31)Γ(54)S023S41 forS0 (cid:28)S34 . FIG.5. Distributionofα,definedinEq.(26),fromnumericalsim- The first one shows that the probability of avalanches which ulations (N = 1024,m = 0.02,δw = 10,dt = 0.01). This is comparedtothetheoreticalprediction(33). Keepingonlylarge-size are “peaked” at r = 0 decays very fast. The second shows avalanches,thisconverges(withoutanyadjustableparameter)tothe an integrable divergence at small S0 with an exponent 2/3. δw=0+result. Comparing, for instance, with the behavior of the local size density (22), we see that conditioning on S yields a rather differentbehaviorandexponent. takesthescalingform It is interesting to note that changing variables in Eq. (31) Pˆ0+(S0|S)= L1 4×S023323e−23α3(cid:104)αAi(cid:0)α2(cid:1)−Ai(cid:48)(cid:0)α2(cid:1)(cid:105) (25) fromP˜S0(αto|Sα),d=efi√ne3dπein−(322α63),(cid:104)αgivAeis(cid:0)α2(cid:1)−Ai(cid:48)(cid:0)α2(cid:1)(cid:105), (33) with 0+ Γ(cid:0)14(cid:1)α34 α:= 323S043 . (26) wcahlliychasisintodwoeisnndoetpreenqduainretoafnSy,caonndditthiuosnneiansgie.rFtiogtuerset5nusmhoewris- S the agreement of these predictions with numerical simula- Thefactor1/Lisnaturalsinceonlyafractionoforder1/Lof tions,inthelimitoflargeS whichisequivalenttoδw = 0+ avalanchescontainsthepointr =0. Aswritten, thissmooth asusedinthetheoreticalderivation. partisnotnormalized. Itsintegralisequaltotheprobabilityp thatthepointS hasmoved(i.e.S >0)duringanavalanche, 0 0 forwhichwefind D. Scalingexponents p:=(cid:90) ∞dS0Pˆ0+(S0|S)= SL14 3Γ√(cid:0)π14(cid:1) . (27) Let us now discuss the various exponents obtained until 0 now. Theyareconsistentwiththeusualscalingargumentsfor Thescalingofthisprobabilitywithsizeshowsthatinasingle interfaces. Ifanavalanchehasanextensionoforder(cid:96)(inthe avalanche only a finite portion of the interface is moving. If codirectionofthehyperplaneoverwhichthelocalsizeiscal- weassumestatisticaltranslationalinvariancewededucethat culated), thetransversedisplacementscalesasu ∼ (cid:96)ζ. Here theroughnessexponentζ fortheBFMwithSRelasticityis p=(cid:104)(cid:96)(cid:105) /L, (28) S ζ =4−d. (34) where(cid:96)istheextensiondefinedin(9),and(cid:104)(cid:96)(cid:105) itsmeanvalue BFM S conditionedtotheglobalsizeS. Hencewededucethat The avalanche exponent for the global size follows the 3Γ(cid:0)1(cid:1) Narayan-Fisher(NF)prediction[8] (cid:104)(cid:96)(cid:105)S = √π4 S14 . (29) 2 BFM 3 τ =2− −−→ . (35) d+ζ 2 InthefollowingsectionswewillinfactcalculatethePDFof theextension(cid:96). The global size then scales as S ∼ (cid:96)d+ζ, since all d internal Bydividingbyp,wecannowdefineagenuinenormalized directions are equivalent, and the transverse response scales PDFforS ,P˜ (S |S),conditionedtobothSandS >0,so 0 0+ 0 0 1 thatthedecomposition(24)becomes withtheroughnessexponentζ. Inturnthisgives(cid:96) ∼ Sd+ζ. IntheBFMwithSRelasticitythisleadsto(cid:96)∼S1/4asfound P (S |S)=pP˜ (S |S)+δ(S )(1−p). (30) above. 0+ 0 0+ 0 0 7 Similarly,thelocalsize,definedhereastheavalanchesize B. Imposeddisplacementatapoint inside a dφ-dimensionel subspace, is S0 ∼ (cid:96)dφ+ζ , leading to a generalized NF value τφ = 2− dφ2+ζ. In the BFM we We analyze the problem in the massless case. To impose havefocusedonthecasedφ = d−1(i.e. thesubspaceisan the displacement at point x = 0 we replace in the equation hyperplane), hence dφ +ζ = 3 and the local size exponent of motion (1) and (3), m2 → m2δ(x). Hence there is no becomesτ =4/3. ItalsoimpliesS ∼(cid:96)3,henceS ∼S3/4 global mass, but a local one to drive the interface at a point. φ 0 0 asfoundabove. Toimposethedisplacement,weconsiderthelimitm2 →∞. Inthatlimitu =w ,andthelocalsizeoftheavalanche x=0,t 0,t S isequaltoδw . 0 0 IV. DRIVINGATAPOINT:AVALANCHESIZES WhilethelocalsizeS isfixedbythedriving,wecancalcu- 0 latethedistributionofglobalsizes. ItisobtainedinAppendix Here we briefly study avalanche sizes for an interface EusinganinstantonequationwithaDiracmassterm. Itcan driven only in a small region of space, e.g. at a point. There bemappedontothesameinstantonequationasstudiedforthe aretwomaincases: jointPDFoflocalandglobalsizes. TheLaplace-transformof the result for the PDF is given in Eq. (E6). Its small-driving • the local force on the point is imposed, which in our limit,i.e.thedensity,is framework means to consider a local kick δw = x √ δwδ(x). In the massless setting it amounts to use 3 f =δfδ(x), ρ(S)= ∼S−τloc.driv. (40) x Γ(1/4)S7/4 • thedisplacementu ofonepointoftheinterfaceis x=0,t withadistinctexponent imposed. 7 As we now see this leads to different universality classes τloc.driv. = 4 . (41) andexponents. V. DISTRIBUTIONOFAVALANCHEEXTENSIONS A. Imposedlocalforce In this section we study the distribution of avalanche ex- Consideranavalanchefollowingalocalkickatx = 0,i.e. tensions. IntheBFMtheycanbecalculatedanalytically. We δw =δw δ(x). x 0 startbyrecallingstandardscalingarguments. In the BFM the distribution of the global size of an avalanche does not depend on whether the kick is local in space or not. One still obtains [13] the global-size distribu- A. Scalingargumentsforthedistributionofextensions (cid:82) tionasgiveninEq.(16)withδwˆ = δw =δw . x x 0 Thedistributionofthelocalsizeatthepointofthekick is Asmentionedinthelastsection,weexpectthattheglobal more interesting. The calculation is performed in Appendix size S and the extension (cid:96) of avalanches are related by the C2. Forsimplicitywerestricttod = 1,thegeneralcasecan scalingrelation beobtainedasabovebyinsertingfactorsofLd−1.Thefullre- sultforthePDF,P (S ),isgivenin(C7)andisbulky.Inthe S ∼(cid:96)d+ζ (42) δw0 0 limit δw → 0 it simplifies. Noting P (S ) (cid:39) δw ρ(S ), 0 δw0 0 0 0 intheregionofsmallavalanchesS (cid:28) S (indimensionfull thecorrespondinglocal-sizedensitybecomes m units). Fromthedefinitionoftheavalanche-sizeexponent 1 (cid:16) (cid:17) ρ(S )=− Ai(cid:48) 31/3S2/3 . (36) 0 31/3S5/3 0 P(S)∼S−τ (43) 0 At small S , or equivalently in the massless limit at fixed andusingthechangeofvariablesP(S)dS =P((cid:96))d(cid:96)wefind 0 δf =m2δw ,itdivergesas 0 0 P((cid:96))∼(cid:96)−κ with κ=1+(τ −1)(d+ζ). (44) S−5/3 ρ(S ) (cid:39) 0 ∼S−τ0,loc.driv. . (37) Usingthevalueforτ fromtheNFrelation(35)weobtain 0 S0(cid:28)1 32/3Γ(1/3) 0 2 Thisleadstoanewavalancheexponent τ =2− . (45) d+ζ 5 τ0,loc.driv. = 3 . (38) ForSRelasticity,thisyields Thecutoffatsmallsizeisgivenbythedriving,S ∼ δw3/2. κ=d+ζ−1. (46) 0 0 AtlargeS thePDFiscutbythescaleS ≡1anddecaysas 0 m ThepredictionfortheBFMisthatζ =4−dandτ = BFM BFM S−3/2 √ 3/2,whichleadsto ρ(S ) (cid:39) √0 e−2S0/ 3. (39) 0 S0(cid:29)1 2 π31/4 κBFM =3 (47) 8 inalldimensions. Wewillnowcheckthispredictionfromthe slower). Thentheintegralin(49)isnotconvergent, equalto scalingrelationswithexactcalculationsontheBFMmodelin −∞,whichimplies d=1. P (S =0,S =0)=0. δwx r1 r2 B. Instantonequationfortwolocalsizes Thismeansthattheavalanchecontainssurelyatleastoneof thepointsr orr . 1 2 (ii)-Ifδw vanishesfastenough,forexampleifδw islo- If we want to investigate the joint distribution of two lo- x x calisedawayfromx=±r (e.gδw =δwδ(x−y)forsome cal sizes at points r and r , we need to solve the instanton 1,2 x 1 2 y ∈R\{r ,r }),theprobablity(49)becomesnontrivial. equationwithtwolocalsources, 1 2 u˜(cid:48)(cid:48)−u˜ +u˜2 =−λ δ(x−r )−λ δ(x−r ). (48) x x x 1 1 2 2 C. Avalancheextensionwithalocalkick Thissolutionisdifficulttoobtainforgeneralvaluesofλ and 1 λ . Neverthelessλ →−∞isaninterestingsolvablelimit, Wenowconsideralocalkickcenteredatx = 0,i.e.w = 2 1,2 x and sufficient to compute the extension distribution. Let us δw δ(x). Iffurther0<r <r ,then 0 1 2 denotebyu˜ (x)asolutionofEq.(48)withr <r inthis limit λ1,2 →r1,r−2∞. It allows to express the pro1babil2ity that Pδw0(Sr1 =0,Sr2 =0)=Pδw0(Sr1 =0) . (54) two local sizes in an avalanche following an arbitrary kick δwxequal0, Thiscomesfromthefactthatintheintervalx∈[−∞,r1],the solution u˜ (x) is identical to the instanton solution with r1,r2 Pδwx(Sr1 =0,Sr2 =0) onlyoneinfinitesourceatr1(inotherword,itdoesnot“feel” (cid:18)(cid:90) (cid:19) (49) thesourceinr2). Thisshowsforinstancethatthesupportof =exp δw u˜ (x) . the avalanche is larger or equal than the set of points where x r1,r2 x∈Rd thedrivingisnon-zero. Thispropertyalsoshowsthatavalanchesareconnected,i.e. We further restrict for simplicity to the massless case, i.e. it is impossible to draw a plane where the interface did not withoutthelineartermu˜ inEq.(48). Oneeasilyseesfrom x movebetweentwomovingpartsoftheinterface. Asafunc- thelatterequationthatu˜ takesthescalingform r1,r2 tionofr (whichisone-dimensional), thesupport(i.e.theset (cid:18) (cid:19) of points where S > 0) of an avalanche following a local 1 2x−r −r r u˜r1,r2(x)= (r −r )2 f 2(r −1 r )2 . (50) kick at x = 0 must be an interval. Since this interval con- 1 2 2 1 tains x = 0 we will write it as [−(cid:96) ,(cid:96) ] with (cid:96) > 0 and 1 2 1 (cid:96) >0. Thisallowstodefinetheextensionofanavalancheas Thefunctionf(x)issolutionof 2 (cid:96)=(cid:96) +(cid:96) . 1 2 f(cid:48)(cid:48)(x)+f(x)2 =0. (51) TocalculatethejointPDFof(cid:96)1 and(cid:96)2 forakickatx = 0 we consider (49) with r = −x < 0 < r = x . Us- 1 1 2 2 Itdivergesatx = ±1,vanishesatx → ±∞andisnegative ingthepreviousresultsabouttheinstantonequationwithtwo 2 everywhere: f(x) ≤ 0. Asδw ≥ 0,thelatterisanecessary sources, and the fact that the interface model is translation- x conditions.t.theprobability(49)isboundedbyone. aly invariant, we obtain the joint cumulative distribution for Intheintervalx∈]−1,1[,thescalingfunctionf(x)canbe (cid:96)1 >0and(cid:96)2 >0: 2 2 expressedintermsoftheWeierstrassP-function,see(I15), F (x ,x ):=P ((cid:96) <x ,(cid:96) <x ) . (55) δw0 1 2 δw0 1 1 2 2 (cid:18) 1 Γ(1/3)18(cid:19) f(x)=−6P x+ 2;g2 =0;g3 = (2π)6 . (52) Itcan,foranyx1,x2 > 0,beexpressedintermsofthefunc- tionf obtainedintheprecedingsection, The value of g > 0 is consistent with the required period 3 F (x ,x )=P (S =0,S =0) 2Ω=1,see(I12). NotefromAppendixIthatthereisanother δw0 1 2 δw0 r1 r2 (cid:16) √ (cid:17)6 (cid:18)(cid:90) (cid:19) solutionoftheform(52)withg = − 2 π Γ(1/3) < 0 =exp δw δ(x)u˜ (x) 3 413Γ(5/6) x 0 −x1,x2 . (56) Fwohric|xh|v≥iol1a/te2s,tthheefcuonncdtiiotinonf(fx()xr)ea≤ds0, hence is discarded. =eδw0(x1+1x2)2f(cid:16)−2(xx21−+xx12)(cid:17) 6 Since the argument of f is within the interval ] − 1,1[ we f(x)=− . (53) 2 2 (|x|−1/2)2 mustusetheexpression(52). Fromthisonecanobtainseveralresults. Firsttakingx → 2 One property of the solution u˜r1,r2(x) is that it diverges as ∞oneobtainsthePDFof(cid:96)1alone, ∼(x−r )−2whenx≈r . Therearethustwocases: 1,2 1,2 or(vi)an-isthheesdtroiovinslgowδwlyxniesarnothni-szeprooinatt(oe.nge. oonfltyhelisneeaprolyintosr, Pδw((cid:96)1)= 12(cid:96)δ3we−δw(cid:96)621 . (57) 1 9 100 Small scale power law 101 Large scale asymptotic 80 Theoretical density distribution Numerical simulation 100 60 10-1 40 10-2 20 10-3 10-4 (cid:45)0.4 (cid:45)0.2 0.2 0.4 10-5 FIG. 6. Decay amplitude R(k) as a function of the aspect ratio k 100 101 involvedinthejointdensityof(cid:96)andk,anddefinedinEqs.(60)and (61). FIG.7. Thedistributionofextensionsρ((cid:96)),asobtainedfromtheel- lipticintegrals(F7)and(F8)(blackline).The(straight)greendotted lineisthesmall-(cid:96)asymptotics(69),whereasthe(curved)reddotted Asimilarresultholdsfor(cid:96) . 2 lineisthelarge-(cid:96)asymptotics(71).Thenumericalsimulation(green In principle, one can now obtain the distribution of histogram)iscutatsmallscaleduetodiscretizationeffects. avalanchesextensions (cid:90) ∞ (cid:90) ∞ P ((cid:96))= d(cid:96) d(cid:96) δ((cid:96)−(cid:96) −(cid:96) )∂ ∂ F ((cid:96) ,(cid:96) ) δw0 1 2 1 2 (cid:96)1 (cid:96)2 δw0 1 2 However,inthelimitofasmallδwwhichisalsothelimitofa 0 0 (58) “singleavalanche”,wecanrecovertheresultforthedistribu- Ithasarathercomplicatedexpression. Letusdefineinaddi- tion of extensions. This is consistent with the idea that “sin- tiontothetotallength,theaspectratio gleavalanches”donotdependonthewaytheyaretriggered. These calculations allow to obtain the extension distribution (cid:96) −(cid:96) 1 1 k = 1 2 , − <k < . (59) withoutsolvingexplicitlytheinstantonequation. (Theuseof 2((cid:96)1+(cid:96)2) 2 2 ellipticintegralsisinfactequivalenttotheuseofWeierstrass functionsassolutionsoftheinstantonequation,c.f.Appendix Using a change of variables, we obtain the joint density of I). totalextensionandaspectratiointhelimitδw →0, 0 Wenowfocusonthefollowingratioofgeneratingfunctions 1 R(k) ρ((cid:96),k):= lim P ((cid:96),k)= , (60) δw0→0δw0 δw0 (cid:96)3 (cid:104)eλ1s0+λ2sr(cid:105) (65) (cid:18) 1(cid:19) (cid:104)eλ1s0(cid:105)(cid:104)eλ2sr(cid:105) R(k):=6f(k)+6kf(cid:48)(k)+ k2− f(cid:48)(cid:48)(k). (61) 4 in the limit λ ,λ → −∞. It compares the probability that 1 2 The function f(x) was defined in Eq. (52). While the prob- bothlocalsizess := S ands := S aresimultaneously0 0 0 r r ability as a function of (cid:96) decays as (cid:96)−3, the dependence totheproductofthetwoprobabiltiesthateachoneis0. on the aspect ratio is more complicated and plotted in fig- Wecanexpressthisratio,usingtheinstanton-equationap- ure 6. Note that in this expression f(k) can be replaced by proach,as f (k):=f(k)+ 6 + 6 ,whichisaregularfunc- reg (k+1)2 (k−1)2 tionofk,vanishingatk2=±1. In2tegrationoverkgives lim (cid:104)eλ1s0+λ2sr(cid:105) B 2 λ1,λ2→−∞(cid:104)eλ1s0(cid:105)(cid:104)eλ2sr(cid:105) (66) ρ((cid:96))= with (62) (cid:18)(cid:90) (cid:104) (cid:105)(cid:19) (cid:96)3 =exp δw u˜ (x)−u˜ (x)−u˜ (x−r) x r ∞ ∞ (cid:90) 1/2 √ x B =24+2 f (k)=8 3π. (63) reg whereu˜ := u˜ . Wedenotebyu˜ := u˜ , −1/2 r r1=0,r2=r ∞ r1=0,r2=∞ thesolutionoftheinstantonequationwithonesourceatr =0 andtheotheroneatinfinity. Itisthesameasthesolutionfor D. Avalancheextensionwithauniformkick only one source in r = 0. The above expression is valid for anyformofdrivingδw . x If a kick extends over the whole system, as e.g. a uniform Wecannowspecifytothecaseofsmallanduniformdriv- kick δwx = δw, the avalanche will have almost surely an ingδwx =δw;thequantityofinterestisthen infiniteextensionasthelocalsizeisnon-zeroeverywhere, (cid:90) P (S =0)=0 forany r ∈R. (64) Z(r)= u˜r(x)−u˜∞(x)−u˜∞(x−r). (67) δw r x 10 Whileu˜ (x)isnotintegrable,Z(r)iswelldefinedasthetwo Here the disorder has the correlations of independent one- r u˜ terms cancel precisely the two non-integrable poles lo- sidedBrownianmotion ∞ catedatx=0andx=r. Using that u˜ is a solution of Eq. (48), we can obtain an F(u,x)F(u(cid:48),x(cid:48))=2σδd(x−x(cid:48))min(u,u(cid:48)). (73) r expressionofZ(r)asanellipticintegral,seeAppendixFfor details of the calculation. The formulas written there are for Considertheinitialconditionu = 0. Wecanthencom- xt=0 themassivecase,butonlyallowtogetanimplicitexpression putethecorrelationfunctionoftheposition for Z(r). They however allow us to extract the small-scale behavioroftheavalanche-extensiondistribution(equivalently (cid:90) t themasslesslimit). Forsmallr,thebehaviorofZ(r)is uxt = u˙xsds 0 √ 4 3π Z(r)(cid:39) . (68) for a uniform driving wt = vtθ(t), starting at t = 0. The r calculationissketchedinAppendixJ.Indimensionlessunits andinFourierspace,theresultreads To understand the connection with the avalanche extension, whaevneesepdectoifigeedttbhaeckkitcoktthoebinetuenrpifroetramti,otnheoftw(6o5a).veNraogwesthoafttwhee (cid:104)u u (cid:105)c =v(cid:34)2q2(t−1)+2t−5 − 4e−(q2+1)t denominator are independant of r, and act only as a normal- qt −qt (q2+1)3 q2(q2+1)3 iiszatthieonprcoobnasbtailnittys.tThahtebnouthmseraatnodr,sintahreelsiimmiutlotafnλe1o,u2s→lye−q∞ual, 4e−t e−2(q2+1)t (cid:35) 0 r + + . (74) to0. Derivingthistwotimesw.r.t. r (whichletsthedenom- q2(2q2+1) (q2+1)3(2q2+1) inatorinvariant)givestheprobabilitythattheavalanchestart in x = 0 and end in x = r. Dividing by δw and taking the At large times, the displacement correlations behave as limit1 δw → 0 , we obtain the extension density in the limit (restoringunits) ofasingleavalancheas 2σvt 1 (cid:104)u u (cid:105)c (cid:39) . (75) ρ((cid:96))= δw∂r2eδwZ(r)|δw=0+,r=(cid:96) (69) qt −qt t→∞ (q2+m2)2 (cid:12) =∂2 Z˜(r)(cid:12) (cid:39)B˜(cid:96)−3 when (cid:96)→0 The q dependence is similar to the so-called Larkin random- r (cid:12) r=(cid:96) force model [21], but with a time-dependent amplitude, i.e. with the effective disorder is growing with time, which is natural √ given the correlations (73). The correlation of the position B˜ =8 3π. (70) thusremainsnon-stationaryatalltimes2. FromEq.(75)oneobtainsthecorrelationsofthedisplace- Werecoverherethe(cid:96)−3 divergenceforsmall(cid:96)oftheexten- mentinrealspace,stillinthelarge-tlimit sion of avalanches. Note that this calculation gives exactly thesameprefactorasinEq.(62),whichconfirmsthatweare (cid:90) ddq 1 studyingthesameobject,namelya“singleavalanche”. (uxt−u0t)2(cid:39)2vt (2π)d(q2+m2)2(1−cosqx) Finally, in themassive case, one canalso compute thetail oftheextensiondistribution,resultinginto(seeAppendixF) ∼vt×x2ζL (76) ρ((cid:96))(cid:39)72(cid:96)e−(cid:96)when(cid:96)→∞. (71) with ζL = (4−d)/2 the Larkin roughness exponent. Note that the average displacement is u = vt − 1−e−m2t (see xt m2 AppendixJ).HenceweseethattheBFMroughnessscaling VI. NON-STATIONNARYDYNAMICSINTHEBFM u ∼ x4−d isdimensionallyconsistentwiththecorrelationat largetimes, The easiest way to construct a position theory equiva- lent to the BFM model define in Eq. (1) is to consider the (u −u )2 (cid:39)2u x4−d. (77) xt 0t xt non-stationnary evolution of an elastic line in some specific quencheddisorder, This result, ζ = 4−d = ε, is in agreement with the FRG approch: the position theory of the BFM model is an exact η∂ u =∇2u +F (u ,x)+m2(w −u ). (72) t xt x xt xt xt xt fixedpointfortheflowequationoftheFRGwitharoughness exponentζ =ε,asdiscussedin[10,12]. 1Notethatthedenominatorscanthenbesettounity.Thereisnoambiguity sincethecalculationcouldbeperformedfirstatfinitebutlargeλi, and settingδwtozeroaftertakingthederivativeanddividingbyδw,andonly 2NotethattherearestationaryversionsoftheBFM,whichwewillnotdis- attheendtakingthelimitofinfiniteλi. cusshere,seediscussionsine.g.[11–13].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.