ebook img

Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication PDF

0.89 MB·
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication

Distributedconvexoptimizationviacontinuous-time ⋆ coordinationalgorithmswithdiscrete-timecommunication SolmazS. Kiaa JorgeCort´esb SoniaMart´ınezb 4 1 aDepartment of Mechanical and Aerospace Engineering, University ofCalifornia,Irvine 0 2 bDepartment ofMechanical andAerospace Engineering, University of California,San Diego g u A Abstract 2 2 This paper proposes a novel class of distributed continuous-time coordination algorithms to solve network optimization problemswhosecostfunctionisasumoflocalcostfunctionsassociatedtotheindividualagents.Weestablishtheexponential ] convergence of the proposed algorithm under (i) strongly connected and weight-balanced digraph topologies when the local C costs are strongly convex with globally Lipschitz gradients, and (ii) connected graph topologies when the local costs are O strongly convex with locally Lipschitz gradients. When the local cost functions are convex and the global cost function is strictly convex,we establish asymptotic convergence underconnected graph topologies. Wealso characterize thealgorithm’s . h correctness under time-varying interaction topologies and study its privacy preservation properties. Motivated by practical t considerations, we analyze thealgorithm implementation with discrete-time communication. We provide an upperbound on a thestepsizethatguaranteesexponentialconvergenceoverconnectedgraphsforimplementationswithperiodiccommunication. m Building on this result, we design a provably-correct centralized event-triggered communication scheme that is free of Zeno [ behavior.Finally,wedevelopadistributed,asynchronousevent-triggeredcommunicationschemethatisalsofreeofZenowith asymptoticconvergenceguarantees. Severalsimulations illustrate ourresults. 3 v 2 Keywords: cooperative control, distributedconvexoptimization, weight-balanced digraphs, event-triggered control. 3 4 4 . 1 Introduction Literature review: In distributed convex optimiza- 1 0 An important class of distributed convex optimiza- tion, most coordination algorithms are time-varying, 4 consensus-baseddynamics[Boydetal.,2010,Duchietal., tion problems consists of the (un-)constrained net- 1 2012, Johanssonetal., 2009, Nedi´c andOzdaglar, work optimization of a sum of convex functions, each : 2009, ZhuandMart´ınez, 2012] implemented in dis- v one representing a local cost known to an individual crete time. Recent work [GharesifardandCort´es, 2014, i agent. Examples include distributed parameter estima- X LuandTang,2012,WangandElia,2011,Zanellaetal., tion[Rametal.,2010,WanandLemmon,2009],statis- 2011]hasintroducedcontinuous-timedynamicalsolvers r tical learning [Boydetal., 2010], and optimal resource a whose convergence properties can be analyzed via allocation over networks [MadanandLall, 2006]. To classical stability analysis. This has the added advan- find the networkoptimizers, we propose a coordination tage of facilitating the characterization of properties modelwhereeachagentrunsapurelylocalcontinuous- such as speed of convergence, disturbance rejection, time evolution dynamics and communicates at discrete and robustness to uncertainty. WangandElia [2011] instantswithitsneighbors.Wearemotivatedbythede- establish asymptotic convergence under connected sire of combining the conceptual ease of the analysis of graphs and GharesifardandCort´es [2014] extend the continuous-timedynamicsandthepracticalconstraints design and analysis to strongly connected, weight- imposed by real-time implementations. Our design is balanced digraphs. The continuous-time algorithms basedonanovelcontinuous-timedistributedalgorithm in [LuandTang, 2012, Zanellaetal., 2011] require whose stability can be analyzedthrough standard Lya- twice-differentiable, strictly convex local cost func- punovfunctions. tions to make use of the inverse of their Hessian and need a careful initialization to guarantee asymptotic ⋆ convergence under undirected connected graphs. The Corresponding author:S.S.Kia novelclassofcontinuous-timealgorithmsproposedhere Emailaddresses: solmaz@uci.edu (Solmaz S.Kia), cortes@ucsd.edu (Jorge Cort´es), soniamd@ucsd.edu (upon which our implementations with discrete-time communicationarebuilt)do notsufferfromthe limita- (SoniaMart´ınez). Preprintsubmitted toAutomatica 25August 2014 tions discussed above and have, under some regularity 2 Preliminaries assumptions, exponential convergence guarantees. Our Inthissection,weintroduceournotationandsomebasic work here also touches, albeit slightly, on the concept concepts from convex functions and graph theory. Let of privacy preservation, see e.g., [Weeraddanaetal., RandZ denote,respectively,thesetofrealandnon- 2013,Yanetal.,2013]forrecentworksinthecontextof ≥0 negative integer numbers. We use () to represent the distributed multi-agent optimization. Regarding event- ℜ · realpart of a complex number. The transpose of a ma- triggered control of networked systems, recent years trix A is A⊤.We let 1 (resp. 0 ) denote the vectorof haveseenanincreasingbodyofworkthatseekstotrade n n nones(resp.n zeros),anddenotebyI the n niden- computation and decision making for less communica- n tion, sensing or actuator effort, see e.g. [Heemels etal., titymatrix.WeletΠn =In− n11n1⊤n.Whenc×learfrom 2012, MazoandTabuada, 2011, Wang andLemmon, the context, we do not specify the matrix dimensions. 2011].Closesttotheproblemconsideredhereareworks ForA Rn×m andB Rp×q,weletA Bdenotetheir ∈ ∈ ⊗ that study event-triggered communication laws for av- Kronecker product. For u Rd, u = √u⊤u denotes ∈ k k erage consensus, see e.g., [Dimarogonasetal., 2012, the standard Euclidean norm. For vectors u , ,u , 1 m ··· Garciaetal., 2013, NowzariandCort´es, 2014]. The u = (u , ,u ) is the aggregated vector. In a net- 1 m ··· strategies proposed in [WanandLemmon, 2009] save workedsystem,wedistinguishthelocalvariablesofeach communication effort in discrete-time implementations agentbya superscript,e.g.,xi isthe state ofagenti.If by using local triggering events but are not guaranteed pi Rd is a variable of agent i, the aggregated pi’s of to avoid Zeno behavior, i.e., an infinite number of trig- the∈network of N agents is p = (p1, ,pN) (Rd)N. gered events in a finite period of time. Our goal is to Forconvenience,we use r RN andR··· RN×(∈N−1), combine the best of both approaches by synthesizing ∈ ∈ 1 provably-correct continuous-time distributed dynam- r= 1 , r⊤R=0, R⊤R=I , RR⊤=Π . (1) N N−1 N ical systems which only require communication with √N neighbors at discrete instants of time. We are partic- ularly interested in the opportunistic determination of A differentiable function f : Rd R is strictly convex this communicationtimes viaeventtriggeringschemes. overaconvexsetC Rdiff(z x→)⊤( f(z) f(x))> ⊆ − ∇ −∇ Statementof contributions:We proposea novelclassof 0forallx,z C andx=z,anditism-stronglyconvex continuous-time, gradient-based distributed algorithms (m > 0) iff ∈(z x)⊤( 6 f(z) f(x)) m z x 2, for network optimization where the global objective for all x,z C−. A fun∇ction f−:∇Rd R≥d iskLip−schkitz ∈ → functionisthesumoflocalcostfunctions,oneperagent. withconstantM >0,orsimplyM-Lipschitz,overaset We prove that these algorithms converge exponentially C Rd iff f(x) f(y) M x y , for x,y C. ⊂ k − k ≤ k − k ∈ under strongly connected and weight-balanced agent Foraconvexfunctionf withM-Lipschitzgradient,one interactions when the local cost functions are strongly has f(z) f(x) 2 M(z x)⊤( f(z) f(x)) convexandtheirgradientsaregloballyLipschitz.Under forakll∇x,z −C∇ Rd.k ≤ − ∇ −∇ connected, undirected graphs, we establish exponential ∈ ⊂ We briefly review basic concepts from algebraic graph convergence when the local gradients are just locally theoryfollowing[Bulloetal.,2009].Adigraph, isapair Lipschitz, and asymptotic convergence when the local = ( , ), where = 1,...,N is the node set and cost functions are simply convex and the global cost G V E V { } is the edge set.An edgefromi to j,denoted function is strictly convex. We also study convergence E ⊆V ×V by (i,j), means that agent j can send information to under networks with time-varying topologies and char- agenti.Foranedge(i,j) , iis calledanin-neighbor acterizethetopologicalrequirementsonthecommunica- ∈E ofj andj iscalledanout-neighbor ofi.Agraphisundi- tiongraph,algorithmparameters,andinitialconditions rected if (i,j) anytime (j,i) . A directed path necessaryforanagenttoreconstructthelocalgradients ∈ E ∈ E is a sequence of nodes connected by edges. A digraph of local cost functions of other agents. Our technical is strongly connected if for every pair of nodes there is approachbuildsontheidentificationofstrictLyapunov a directed path connecting them. A weighted digraph is functions. The availability of these functions enable a triplet = ( , ,A), where ( , ) is a digraph and our ensuing design of provably-correctcontinuous-time A RN×GN is aVwEeighted adjaceVncEy matrix such that implementations with discrete-time communication. In a ∈> 0 if (i,j) and a = 0, otherwise. A weighted particular, for networks with connected graph topolo- ij ij digraphisundir∈ecEted ifa =a foralli,j .Werefer gies,weobtainanupperboundonthesuitablestepsizes ij ji ∈V to a stronglyconnected andundirected graphas a con- that guarantee exponential convergence under periodic nectedgraph.Theweightedin-andout-degrees ofanode communication.Buildingonthisresult,wedesignacen- i are, respectively, di = ΣN a and di = ΣN a . tralized, synchronous event-triggered communication in j=1 ji out j=1 ij scheme with an exponential convergence guarantees A digraph is weight-balanced if at each node i , ∈ V andZeno-freebehavior.Finally,we developa Zeno-free the weighted out-degree and weighted in-degree coin- asynchronous event-triggered communication scheme cide (although they might be different across different whose execution only requires agents to interchange nodes). Any undirected graph is weight-balanced. The informationwiththeirneighborsandestablishitsexpo- (out-)Laplacian matrix isL=Dout A,whereDout = nential convergence to a neighborhood of the network Diag(d1 , ,dN ) RN×N. Note−that L1 = 0. A optimizer.Severalsimulationsillustrateourresults. digraphouits·w··eighotu-tbal∈anced iff 1TL = 0 iff SNym(L) = N 2 (L+L)/2 is positive semi-definite. Based on the struc- in[GharesifardandCort´es, 2014,Wang andElia,2011] tureofL,atleastoneoftheeigenvaluesofLiszeroand require the communication of the corresponding vari- therestofthemhavenonnegativerealparts.Wedenote ables in both x and v. The synthesis of algorithm (4) the eigenvalues of L by λ ,...,λ , where λ = 0 and is inspired by the following feedback control consid- 1 N 1 (λ ) (λ ),fori<j,andtheeigenvaluesofSym(L) erations. In (4b), each agent follows a local gradient i j ℜ ≤ℜ by λˆ ,...,λˆ . For a strongly connected and weight- descentwhiletryingtoagreewithitsneighborsontheir 1 N balanceddigraph, zero is a simple eigenvalue of both L estimate of the final value. However, as the local gra- and Sym(L). In this case, we order the eigenvalues of dients are not the same, this dynamics by itself would Sym(L) asλˆ =0<λˆ λˆ λˆ andwehave never converge. Therefore, to correct this error, each 1 2 ≤ 3 ≤···≤ N agentusesanintegralfeedbacktermvi whoseevolution 0<λˆ I R⊤Sym(L)R λˆ I. (2) isdrivenby the agentdisagreementaccordingto(4a). 2 N ≤ ≤ Ouranalysisofthe algorithmconvergenceis structured Notice that for connected graphs λˆ = λ for i 1, ,N . For convenience, we definie L = Li I an∈d intwoparts,dependingonthedirectedcharacterofthe {Π=··Π· }I todealwithvariablesofdimensio⊗ndd N. interactions. Section 4.1 deals with strongly connected N ⊗ d ∈ andweight-balanceddigraphsandSection4.2dealswith connected graphs. In each case, we identify conditions 3 ProblemDefinition on the agent cost functions that guarantee asymptotic Consider a network of N agents interacting over a convergence.Giventhechallengesposedbydirectedin- strongly connected and weight-balanced digraph . formation flows, it is not surprising that we can estab- G Eachagenti hasadifferentiablelocalcostfunction lish stronger results under less restrictive assumptions fi : Rd R.∈TVhe global cost function of the network, forthe caseofundirectedtopologies. whichwe→assumetobestrictlyconvex,isf =ΣN fi(x). i=1 4.1 StronglyConnected,Weight-Balanced Digraphs Our aim is to design a distributed algorithm such that eachagentsolves Here, we study the convergence of the distributed op- min f(x) timization algorithm (3) over strongly connected and x∈Rd weight-balanced digraph topologies. We first consider using only its own local data and exchanged informa- thecasewheretheinteractiontopologyisfixed,andthen tionwithitsneighbors.Weassumetheaboveoptimiza- discussthetime-varyinginteractiontopologies.Thefol- tionproblemis feasible (which,together withthe strict lowingresultidentifiesconditionsonthelocalcostfunc- convexityoff,impliestheuniquenessoftheglobalopti- tions fi N andthe parameterβ toguaranteethe ex- mizer,whichwedenotex⋆ Rd).Wearealsointerested { }i=1 ponential convergence of (3) to the solution of the dis- ∈ in characterizing the privacy preservation properties of tributedoptimizationproblem. thealgorithmicsolutiontothisdistributedoptimization Theorem 1 (Convergence of (3) over strongly con- problem.Specifically,weaimtoidentifyconditionsguar- nectedandweight-balanceddigraphs): Let beastrongly anteeing that no information about the local costfunc- G connected and weight-balanced digraph. Assume each tion of an agent is revealed to, or can be reconstructed fi, i , is mi-strongly convex, differentiable, and by,any otheragentinthe network. its gra∈dieVnt is Mi-Lipschitz on Rd. Given α > 0, 4 Distributed Continuous-Time Algorithm for m = min m1,...,mN and M = max M1,...,MN , { } { } Convex Optimization letβ,φ>0satisfy φ+1>4M and In this section, we provide a novelcontinuous-time dis- γ=α2(φ+1)m+9βλˆ φα 4α2(Mm+(φ+1)2)>0, (5) 2 − tributed coordination algorithm to solve the problem statedinSection3andanalyzeindetailitsconvergence Then, for each i , starting from xi(0),vi(0) Rd prov˙pie=rtiαesβ.ForNj=i∈1aVija(xnid−wxitjh),α,β>0,consider (3a) lxweiis(tsht)thP→anNi=x1⋆veix(p0o)n=e∈n0tVdia,lltyhefaasltgoarsitthm→(∞3)woivtehraGram∈teakneos 7 1 x˙i = αXfi(xi) β N a (xi xj) vi, (3b) min , γ /(2λ¯F). (6) − ∇ − j=1 ij − − {16 9 } X Here,λ¯F is themaximumeigenvalue of Innetworkvariablesx,v (Rd)N,thealgorithmreadsas 1α(φ+1)I 0 0 v˙ =αβLx∈, (4a) F= 19 0 d α(φ+1)I I . (7) x˙ =−α∇f˜(x)−βLx−v. (4b) 2 0 I(N−1()Nd−1)d α1(IN(N−−11)d)d   Here, f˜: (Rd)N R is defined by f˜(x) = ΣN fi(xi). → i=1 PROOF. For weight-balanced digraphs, we have This algorithm is distributed because each agent only 1⊤L=0.Thus,leftmultiplying(4a)by1⊤ I resultsin needs to receive information from its out-neighbors N N⊗ d about their corresponding variables in x. In con- N v˙i=0 N vi(t)= N vi(0)=0, t 0. (8) trast, the continuous-time coordination algorithms i=1 ⇒ i=1 i=1 ∀ ≥ X X X 3 Next,weobtaintheequilibriumpointof(3),(x¯,v¯),from Next, we show that under φ+1 > 4M and (5), V˙ is negative definite. Invoking the assumptions on the lo- cal cost functions in the statement, and using the M- 0=αβLx¯, (9a) Lipschitzness of f˜and the m-strongly convexity of f˜ 0= α f˜(x¯) βLx¯ v¯. (9b) alongwith R⊤ ∇I =1 and z = y ,we have − ∇ − − k ⊗ dk k k k k (R⊤ I )h 2 h 2 My⊤h, (15a) Given(9a),x¯belongstothenull-spaceofL.Forstrongly k ⊗ d k ≤k k ≤ connecteddigraphsthenull-spaceofLisspannedby1N. y⊤h m y 2 =m z 2. (15b) Thus,x¯ =1 θ,whereθ Rd.Leftmultiplying (9b) ≥ k k k k N ⊗ ∈ by1⊤ I andusing(8),weobtain0= N fi(x¯i). Giventhese relationsandinvoking (2),wehave ThenN,t⊗hedoptimalitycondition f(x⋆)=0i=a1lo∇ngwith ∇f(θ)= Ni=1∇fi(θ)imply ∇ Pd V˙ ≤−α2((φ+1)9−4M)mz⊤z−176w⊤2:Nw2:N P x¯i =x⋆, i . φαβλˆ z⊤ z + 4α2(1+φ)2z⊤ z ∈V − 2 2:N 2:N 9 2:N 2:N 3 2α 2α(φ+1) Substituting this valuein(9b),weobtain w + (R⊤ I )h+ z ) 2. −k4 2:N 3 ⊗ d 3 2:N k v¯i = α fi(x⋆), i . (10) − ∇ ∈V Since z⊤z = z⊤z + z⊤ z , it follows that V˙ < 1 1 2:N 2:N Tostudythestabilityof (3),wetransfertheequilibrium min 7 ,1γ p 2 < 0, where γ is a shorthand nota- − {16 9 }k k pointtotheoriginandthenapplyachangeofvariables tion for the expression in (5). Thus, z 0 as t , equivalently xi x⋆, for all i , is e→xponentia→l w∞ith u=v−v¯, y=x−x¯, (11a) ratenolessthan→(6)(cf.[Khalil,∈20V02,Theorem4.10]).✷ u=([r R] I )w, y=([r R] I )z, (11b) ⊗ d ⊗ d InTheorem1,therequirement N vi(0)=0 istriv- whereweused(1).Wepartitionthenewvariablesasfol- i=1 d lows:w=(w ,w )andz=(z ,z ),wherew ,z ially satisfiedby eachagentwith vi(0)=0d. This is an 1 2:N 1 2:N 1 1 P Rd.Inthese new variables,the algorithm(3)readsas∈ advantagewithrespecttothecontinuous-timecoordina- tionalgorithmsproposedin[LuandTang,2012],which w˙1 =0d, requiresthenontrivialinitialization N fi(xi(0))= i=1∇ w˙2:N =αβ(R⊤LR⊗Id)z2:N, 0tida,liaznatdioinn [oZnanaelsltaaetetaclo.,m2m01u1n]i,cawtheidPchamreoqnugirenseitghhebionris- z˙ = α(r⊤ I )h, (12) 1 − ⊗ d andis subjectto communicationerror. z˙2:N =−α(R⊤⊗Id)h−β(R⊤LR⊗Id)z2:N −w2:N, Remark2 (Designparametersin(3)):Weprovidehere severalobservationsontheroleofthedesignparameters where αandβ.First,notetherealwaysexistα,βsatisfying(5), e.g., any β > 4(φ+1)2α/(9φλˆ ). The determination of h= f˜(y+x¯) f˜(x¯). (13) 2 ∇ −∇ theseparameterscanbeperformedbyindividualagents iftheyknowanupperboundonM,alowerboundonm, Note that the first equation in (12) corresponds to the andhaveknowledgeofλˆ ,eitherthroughadedicatedal- constantofmotion(8).Tostudythestabilityintheother 2 gorithmtocomputeit,seee.g.,Yangetal.[2010],oruse variables,considerthe candidate Lyapunovfunction alowerboundonit,seee.g.Mohar[1991].We haveob- 1 φα servedinsimulationthat(5)is onlysufficientandthat, V(z,w2:N)= α(φ+1)z1⊤z1+ z2:N⊤z2:N (14) in fact, the algorithm (3) converges for any positive α 18 2 1 andβ inournumericalexamples.Althoughnotevident + (αz2:N +w2:N)⊤(αz2:N +w2:N), in(6),onecanexpectthelargerαandβ are,thehigher 2α the rate of convergence of the algorithm (3) is. A coef- ficient α > 1 can be interpreted as a way of increasing with φ>0 as in the statement. Note that V λ¯F p 2, the strong convexity coefficient of the local cost func- ≤ k k withp=(z,w ).TheLiederivativeofV along(12)is 2:N tions.Acoefficientβ >1canbeinterpretedasameans 1 7 of increasing the graph connectivity. The relationship V˙ =− 9α2(φ+1)y⊤h− 16w⊤2:Nw2:N between these parameters and the rate of convergence of (3) is more evidentfor quadraticlocalcostfunctions −φαβz2:N⊤(R⊤Sym(L)R⊗Id)z2:N fi(x)= 1(x⊤x+x⊤ai+bi), i . In this case,the al- 4 4 2 ∈V + α2 (R⊤ I )h 2+ α2(1+φ)2z⊤ z gorithm (3) is a linear time-invariant system where the 9 k ⊗ d k 9 2:N 2:N eigenvaluesofthesystemmatrixare α,withmultiplic- 3w + 2α(R⊤ I )h+ 2α(φ+1)z ) 2. ityofNd,and βλi,i (λi’sareth−eeigenvaluesofL), −k4 2:N 3 ⊗ d 3 2:N k with multiplic−ity d. Th∈eVrefore, (3) converges regardless 4 of the value of α, β > 0 with an exponential rate equal for all t t⋆, it canuse the time history ofxj(t) to nu- ≤ tomin α,β (λ2) .Whendiscussingdiscrete-timecom- mericallyreconstructx˙j(t⋆).Becauseiisthein-neighbor { ℜ } munication,sometrade-offsariseregardingthechoiceof of j and its out-neighbors, it can use its knowledge of the parameters,aswe explainlaterin Section5. a ,k toreconstruct N a (xj(t) xk(t))forall Remark3 (Semiglobal convergence of (3) under loca•l tjk t⋆.∈AVgenticanreconstrukc=t1vjjk(t)from−(3a)uniquely gradientsthatarelocallyLipschitz):Theconvergencere- as≤it knows vj(0). Then,Pagent i has all the elements sult in Theorem 1 is semiglobal [Khalil, 2002] if the lo- to solve for fj(xj(t⋆)) in (3b). The lack of knowledge cal gradients are only locally Lipschitz or, equivalently, ∇ about any of this information would prevent i from re- Lipschitzoncompactsets.Infact,onecanseefromthe constructingexactlythe localgradientofj. ✷ proofofthe result that, for any compactsetcontaining the initial conditions xi(0) Rd andvi(0)=0 , i , d ∈ ∈V 4.2 ConnectedGraphs onecanfindφ>0andβ >0sufficientlylargesuchthat the compactset is containedin the regionof attraction Here,westudytheconvergenceofthealgorithm(3)over ofthe equilibriumpoint. connectedgraphtopologies.Whiletheresultsofthepre- • Next,westudytheconvergenceof (3)overdynamically vious section are of course valid for these topologies, changing topologies. Since the proof of Theorem 1 re- here,usingthestructuralpropertiesoftheLaplacianma- liesonaLyapunovfunctionwithnodependencyonthe trix of undirected graphs, we establish the convergence system parameters and its derivative is upper bounded of (3)foralargerfamilyoflocalcostfunctions.Indoing byaquadraticnegativedefinitefunction,wecanreadily so,wearealsoabletoanalyticallyestablishconvergence extend the convergence result to dynamically changing foranyα,β >0,asweshownext. networks.The proofdetails areomittedforbrevity. Theorem 6 (Exponential convergence of (3) over con- Proposition 4 (Convergence of (3) over dynamically nected graphs): Let be a connected graph. Assume the changinginteractiontopologies): Let beatime-varying local cost function fGi, i , is mi-strongly convex and digraph which is stronglyconnected aGnd weight-balanced differentiableonRd,and∈itVsgradientislocallyLipschitz. at all times and whose adjacency matrix is uniformly Then, for any α,β > 0 and each i , starting from bounded and piecewise constant. Assume the local cost xi(0),vi(0) Rdwith N vi(0)=0∈,tVhealgorithm (3) function fi, i , is mi-strongly convex, differentiable, over satisfi∈es xi(t) xi=⋆1as t exponentially fast. anditsgradien∈tVisMi-Lipschitz onRd.Givenα>0,let G →P →∞ β,φ>0satisfy φ+1>4M and (5)withλˆ replaced by 2 PROOF. We usethe equivalentrepresentation(12)of (λˆ ) =min λˆ (L ) , where is the index set of all 2 min 2 p the algorithm (3) obtained in the proof of Theorem 1. p∈P{ } P possible realizations of . Then, for each i ,starting Considerthe followingcandidate Lyapunovfunction from xi(0),vi(0) RdGwith N vi(0)=∈0 V, the algo- 1 φα rithm (3)over m∈akes xi(t) i=x1⋆ exponentdiallyfast as V(z,w2:N)= 2α(φ+1)z⊤1z1+ 2 z⊤2:Nz2:N (16) t . G P→ 1 →∞ + (αz2:N +w2:N)⊤(αz2:N +w2:N) Ourfinalresultofthissectioncharacterizesthetopolog- 2α ical requirements on the communication graph and the + 1 (φ+1)w⊤ (R⊤LR)−1 I w , knowledgeaboutthealgorithm’sparametersandinitial 2β 2:N ⊗ d 2:N conditionsthatallowapassiveagent(i.e.,anagentthat (cid:0) (cid:1) does not interfere in the algorithmexecution) to recon- withφ 1definedbelow.Given(2),V ispositivedefinite structthelocalgradientsofotheragentsinthenetwork. and rad≥iallyunbounded and satisfies V λ¯E p 2, with Proposition 5 (Privacy preservation under (3)): Let p=(z,w2:N) andλ¯E>0is the maximum≤eigeknvkalueof G beastronglyconnectedandweightbalanceddigraph.For α,β > 0, consider any execution of the coordination al- α(φ+1)Id 0 0 gorithm (3) over starting from xi(0),vi(0) Rd with E=1 0 α(φ+1)I I . N vi(0) = 0 .GThen, an agent i can re∈construct 2 (N−1)d (N−1)d thei=lo1cal gradiendt of another agent ∈j =V i only if j and  0 I(N−1)d α1I+(φ+β1)(R⊤LR)−1⊗Id aPll its out-neighbors are out-neighbors6 of i, and agent i   knows vj(0) and a , k (here we assume that the The Lie derivativeofV alongthe dynamics(12)is jk ∈ V agent i is aware of the identity of neighbors of agent j V˙ = α2(φ+1)y⊤h φαβz ⊤(R⊤LR I )z andithasmemorytosavethetimehistoryofthedatait − − 2:N ⊗ d 2:N receives from its out-neighbors). w ⊤w αw ⊤(R⊤ I )h. − 2:N 2:N − 2:N ⊗ d PROOF. Consideranarbitrarytimet⋆.Letibeanin- Next, we show that V˙ is upper bounded by a negative neighborofagentj andallofits out-neighbors.The al- definite function.We startbyidentifying acompactset gorithm(3)requireseachagenttocommunicateitscom- whose definition is independent of φ and contains the ponentofxtotheirin-neighbors.Sinceagentihasmem- set = (z,w ) RNd R(N−1)d V(z,w ) 0 2:N 2:N S { ∈ × | ≤ orytosaveinformationitreceivesfromitsout-neighbors V(z(0),w (0)) . For any given initial condition, 2:N } 5 let ρ = 1αz (0)⊤z (0) + (α+1)z (0)⊤z (0) + on Rd, and the global cost function f is strictly con- 0 2 1 1 2 2:N 2:N ( 1 + 1 + 1)w (0)⊤w (0)anddefine ¯ = z vex. Then, for any α,β > 0 and each i , starting sRe2Ntβλdis2|co12mα2αzp⊤1aczt12.+No412t:αeNzt⊤2h:Natz(2z:N2,:Nw≤2:Nρ0)}. O0bsiemrvpelSiet0shazt{th¯i∈0s frriothmmx(i3()0)o,vveir(0G)m∈aRkedxwii(tth)P→Nix=⋆1vasi(t0)→=∞∈0.dV, the algo- ∈S ∈S becauseV(z(0),w (0)) (φ+1)ρ and 2:N 0 ≤ PROOF. We use again the equivalent representa- 1 1 tion (12) of the algorithm (3) obtained in the proof 2α(φ+1)z⊤1z1+ 4α(φ+1)z⊤2:Nz2:N ≤ of Theorem 1. To study the stability of this system, considerthe followingcandidate Lyapunovfunction 1 1 2α(φ+1)z⊤1z1+ 2αφz⊤2:Nz2:N ≤V(z,w2:N). V(z,w )=1z⊤z+ 1 w ⊤ (R⊤LR)−1 I w . 2:N 2 2αβ 2:N ⊗ d 2:N Here, we used φ 1 in the first inequality. Since the (cid:16) (cid:17) ≥ change of variables (11a) and (11b) are linear, the cor- Given(2),V ispositivedefiniteandradiallyunbounded. responding x and y for z ¯ belong to compact sets, TheLie derivativeofV along (12)is givenby 0 ∈ S aswell.Then,theassumptiononthegradientsofthelo- V˙ = αy⊤( f(y+x¯) f(x¯)) βy⊤Ly calcostfunctionsimplies thatthereexistsM0 >0with − ∇T −∇T − h M0 y =M0 z ,forall z ¯0.Consequently, = α N yi⊤( fi(yi+x⋆) fi(x⋆)) βy⊤Ly. k k≤ k k k k ∈S − i=1 ∇ −∇ − k(R⊤⊗Id)hk2≤M02kzk2, ∀(z,w2:N)∈S0. To obtainXthe second summand, we have used z2:N = (R⊤ I )y and RR⊤ = I rr⊤. Since the lo- Thenwecanshow−αw2:N⊤(R⊤⊗Id)h≤ 12w⊤2:Nw2:N+ cal c⊗ostd functions are convNex−, the first summand 12α2M02z⊤z for (z,w2:N) ∈ S0. Using this inequality, of V˙ is non-positive for all y. Because the graph factthatthelocalcostfunctionsaremi-stronglyconvex is connected, the second summand is non-positive (andhence (15b)holds)andinvoking(2)we deduce with its null-space spanned by θ⊗1N, θ ∈ Rd. On this null-space, the first summand becomes V˙ ≤−α12w(φ⊤+w1)m(z+⊤1z11α+2Mz⊤22:(Nzz⊤2z:N)+−z⊤φαβzλ2z)⊤2.:Nz2:N b−eαθze⊤ro wNi=h1e(n∇θfi(=θ +0,xb⋆e)c−au∇sefi(xN⋆)), wfih(ixc)h=can fon(xly) − 2 2:N 2:N 2 0 1 1 2:N 2:N and thPe global cost function is stir=ic1t∇ly convex b∇y as- sumption. Then, the two summPands of V˙ can be zero Letφ+1=21mM02+2m1α2δ0,whereδ0>0issuchthatφ≥1 simultaneously only when yi = 0, for all i , (sinceM0doesnotdependonφ,thischoiceisalwaysfea- which is equivalent to z = 0. Thus, V˙ is neg∈atiVve sible). Then, we have V˙ ≤−21min{1,δ0}kpk2. As such, semi-definite, with V˙(z,w2:N) = 0 happening on the the Lyapunov function (16) satisfies all the conditions set = (z,w ) RNd R(N−1)d z = 0 . 2:N of [Khalil, 2002, Theorem 4.10], for the dynamics (12). NoteSthat{(12) on r∈educes t×o w˙ = |0, z˙ = 0}, 2:N 1 Therefore,the convergenceofz 0 as t , equiva- and z˙ = w S. Therefore, the only trajectory lently xi x⋆,for alli ,is ex→ponentia→l. ∞ ✷ of (122):Nthat r−ema2:iNns in is the equilibrium point → ∈V S (z = 0,z = 0,w = 0). The LaSalle invariance 1 2:N 2:N Remark7 (Boundonexponentialrateofconvergence): principle (cf. [Khalil, 2002, Theorem 4.4 and Corol- One can see from the proof of Theorem 6 that, for a lary 4.2]) now implies that the equilibrium is globally giveninitialcondition,therateofconvergenceisatleast asymptoticallystableor,inotherwords,xi x⋆, i 41(min{1,δ0})/λ¯E > 0. The guaranteed rate of conver- globallyasymptotically. → ∈✷V genceisthereforenotuniform,unlessthelocalgradients are globally Lipschitz. In this case, one recoversthe re- Remark9 (Simplification of (3)): For strictly convex sultinTheorem1but forarbitraryα, β >0. local cost functions, using the LaSalle function of the • NotethatinTheorem6thelocalLipschitznessof fiis proof of Theorem 8, one can show that the asymptotic triviallyheldiffi istwicedifferentiable.TheLya∇punov convergetothe optimizer,startingfromthe initialcon- function (16) identified in the proof of this result plays dition stated in Theorem 8, is also guaranteed for the akeyrolelaterinourstudyofthealgorithmimplemen- followingalgorithmoverconnectedgraphs tation with discrete-time communication in Section 5. N Next,westudytheconvergenceofthealgorithm(3)over v˙i = aij(xi xj), j=1 − connectedgraphswhenthelocalcostfunctionsareonly x˙i =Xfi(xi) vi. convex.Here,thelackofstrongconvexitymakesusrely −∇ − • on a LaSalle function, rather than on a Lyapunov one, toestablishasymptoticconvergencetothe optimizer. 5 Continuous-time Evolution with Discrete- TimeCommunication Theorem 8 (Asymptotic convergence of (3) over con- nected graphs): Let be a connected graph. Assumethe Here,weinvestigatethedesignofcontinuous-timecoor- G local cost function fi, i , is convex and differentiable dination algorithms with discrete-time communication ∈V 6 to solve the distributed optimization problem of Sec- 1 (αM +1)ζ τ= ln 1+ , tion 3. The implementation of (3) requires continuous- αM +1 αM +1+βλ √1+α2(1+ζ) N time communication among the agents. While this (cid:16) (cid:17) (20) abstraction is useful for analysis, in practical scenarios communication is only available at discrete instants where ζ2 = 2ǫ(1−ǫ)λ2min{δ,1} . Then, if ∆ (0,τ), of time. This observation motivates our study here. αβλ2Nφ+4α2λ2(1+φ)2 ∈ Throughout the section, we deal with communication the algorithm evolution starting from initial conditions topologies described by connected graphs. Our results xi(0),vi(0) Rd with N vi(0) = 0 makes xi(t) build on the discussion of Section 4, particularly the x⋆ exponenti∈ally fast as ti=1 , for alldi with a ra→te identificationofLyapunovfunctions forstability. ofnoless than 1ǫ(minP1,→δ )∞/λ¯E >0. ∈V 4 {2 } Westartbyintroducingsomeusefulconventions.Atany given time t R , let xˆj be the last known state of PROOF. We start by transferring the equilibrium ≥0 agent j t∈ransmitted to its in-neighbors. If ti point to the origin using (11a) and then apply the R den∈oteVs the times at which agent i commu{nicka}te⊂s changeofvariables(11b)to write (18)as ≥0 with its in-neighbors, then one has xˆi = xi(tik) for t ∈ w˙1 =0d, (21a) [tik,tik+1). Consider the next implementation of the al- w˙2:N =αβ(R⊤LR⊗Id)(z2:N +z˜2:N), (21b) gorithm(3)withdiscrete-time communication, z˙ = α(r⊤ I )h, (21c) N 1 − ⊗ d v˙i =αβ a (xˆi xˆj), (18a) z˙ = α(R⊤ I )h (21d) j=1 ij − 2:N − ⊗ d x˙i = αXfi(xi) β N a (xˆi xˆj) vi. (18b) −β(R⊤LR⊗Id)(z2:N +˜z2:N)−w2:N, ij − ∇ − j=1 − − where z˜ (t) = z (t ) z (t), for t [t ,t ), X 2:N 2:N k 2:N k k+1 − ∈ Clearly,the evolutionof (18)depends onthe sequences and h is given by (13). To study the stability of (21b)- of communication times for each agent. Here, we con- (21d),considertheLyapunovfunction(16)withφsatis- sider three scenarios. Section 5.1 studies periodic com- fying(19).ItsLiederivativecanbeboundedby(details municationschemeswhereallagentscommunicatesyn- similartotheproofofTheorem6areomittedforbrevity) chronously at ∆ intervals of time, i.e., ti = t = ∆k k k δ(1 ǫ) δǫ for all i .We provide a characterizationof the peri- V˙ − (z⊤z +z⊤ z ) (z⊤z +z⊤ z ) ods that∈guVarantee the asymptotic convergence of (18) ≤− 2 1 1 2:N 2:N − 2 1 1 2:N 2:N totheoptimizer.Ingeneral,periodicschemesmightre- (1−ǫ)w⊤ w ǫw⊤ w φαβλ (1 ǫ)z⊤ z sult in a wasteful use of the communication resources − 2 2:N 2:N−4 2:N 2:N− 2 − 2:N 2:N becauseoftheneedtoaccountforworst-casesituations 1 1 + φαβλ2 ˜z⊤ z˜ + α2(φ+1)2z˜⊤ ˜z indetermining appropriateperiods.This motivates our 4ǫλ N 2:N 2:N ǫ 2:N 2:N 2 study in Section 5.2 of event-triggered communication 1 1 schemes that tie the communication times to the net- ≤−φαβλ2(1−ǫ)z⊤2:Nz2:N − 2ǫmin{δ,2}p⊤p work state for greater efficiency. We discuss two event- 1 triggeredcommunicationimplementations,acentralized − 2(1−ǫ)min{δ,1} p⊤p−ζ−2z˜⊤2:N˜z2:N , (22) synchronousoneandadistributedasynchronousone.In both cases, we pay special attention to ruling out the (cid:0) (cid:1) where p = (z,w ) and ǫ and ζ are given in the the- 2:N presence of Zeno behavior (the existence of an infinite orem’sstatement.Observethatateachcommunication numberofupdates ina finite intervaloftime). time t , ˜z (t ) = 0, then, it grows until next com- k 2:N k k k 5.1 Periodic Communication municationattimetk+1whenitbecomeszeroagain.Our proofproceedsbyshowingthatift <t +τ,whereτ The following result provides an upper bound on the k+1 k isgivenin(20),thenwe havethe guaranteethat sizeofadmissiblestepsizesfortheexecutionof (18)over ˜z (t) <ζ p(t) , t [t ,t ), (23) connectedgraphswithperiodiccommunicationschemes. 2:N k k+1 k k k k ∈ Theorem 10 (Convergence of (18) with periodic com- (note that, from (22), this guarantee ensures that V˙ is munication): Let beaconnectedgraph.Assumethelo- G negativedefiniteforallt 0).Tothisend,westudythe cal cost function fi, i ,is mi-stronglyconvex, differ- ≥ entiable, and its gradi∈enVt is Mi-Lipschitz on Rd. Given dynamicsofq =k˜z2:Nk/kpkandfindalowerboundon the time that it takes for q to evolve from zero (recall α,β >0,consideranimplementationof (18)withagents ˜z (t )=0)to ζ.Notice that communicating over synchronously every ∆ seconds 2:N k . s0ta<rtǫin<g1atatn0d=δ >0,0i.esGu.,cthikth=attk = ∆k for all i ∈ V. Let q˙ = z˜⊤2:Nz˜2:N k˜z2:Nkp⊤p˙ (1+q)kp˙k (1+q) ˜z p − p 3 ≤ p ≤ × 2:N 1 2 1 k kk k k k k k φ= M + δ 1>0, (19) (αM+βλ √1+α2) p + w +βλ √1+α2 ˜z 2m 2mα2 − N k k k 2:Nk N k 2:Nk p k k whereM andm aregiven in Theorem 1, anddefine (αM +1)(1+q)+βλ 1+α2(1+q)2. N ≤ p 7 Here,weusedinthefirstinequalityd/dt(˜z )= z˙ uation of the triggering condition (23) requires knowl- 2:N 2:N − and z˙ p˙ and in the second one the evolution edge of the global optimizer. Our forthcoming discus- 2:N k k ≤ k k ofp˙ givenin(21b)-(21d), R⊤LR L =λ and sion shows how one can circumvent this problem. We N k k≤k k firstconsiderthedesignofcentralizedtriggersrequiring βR⊤LR global network knowledge and then discuss triggering (cid:13)"−αβR⊤LR#(cid:13)=βλN 1+α2. schemesthatonlyrelyoninter-neighborinteraction. (cid:13)(cid:13) (cid:13)(cid:13) p 5.2.1 Centralized Synchronous Implementation (cid:13) (cid:13) UsingtheCo(cid:13)mparisonLem(cid:13)ma(cf.[Khalil,2002,Lemma Here,wepresentacentralizedevent-triggeredschemeto 3.4]),weconcludethatq(t,q ) ψ(t,ψ ),whereψ(t,ψ ) determine the sequence of synchronous communication 0 0 0 isthesolutionofψ˙ =(αM+1)≤(1+ψ)+βλ √1+α2(1+ times in (18). Our discussionbuilds upon the examina- N ψ)2 satisfyingψ(0,ψ )=ψ .Then, tionoftheLiederivativeoftheLyapunovfunctionused 0 0 in the proof of Theorem 10 and the observations made q(t,0) ψ(t,0) aboveregardingthe lackof knowledgeof the globalop- ≤ (αM +1+βλ √1+α2)(eαMt+t 1) timizer. From (24), we see that an event-triggered law N = − . shouldnot employ p, but ratherrely on ˜z and z , 2:N 2:N βλN√1+α2eαMt+t+αM +1+βλN√1+α2 to be independent of x⋆. With this in mind, the exami- − nationofthe upper bound(22)onV˙ revealsthat,if The time τ for ψ(τ,0)=ζ is given by (20). Then, for {tk+1 − tk}k∈Z≥0 < τ, we have (23), and as a result k˜z2:N(t)k2 =kΠ(x(tk)−x(t))k2 from(22)wehaveV˙ < 1ǫmin δ,1 p⊤p.Thus,z 0, κ z2:N(t) 2 =κ Πx(t) 2, (25) −2 { 2} → ≤ k k k k ast ,whichisequivalenttoxi x⋆ ast ,ex- pone→nti∞allyfastwiththe rategiven→inthe stat→em∞ent.✷ whereκ isshorthandnotationfor ǫδλ +2φαβλ2ǫ2(1 ǫ) Remark11 (Dependenceof thecommunication period κ=2 2 2 − , (26) onthedesignparameters):Thevalueofτ inTheorem10 αβφλ2N +2λ2α2(1+φ)2 depends on the graph topology, the parameters of the localcostfunctions,thedesignparametersαandβ,and (here0<ǫ<1andφis givenby (19)), thenwehave the variables ǫ and δ. One can use this dependency to maximizethevalueofτ.Notethattheargumentofln(.) 1 V˙ φαβλ (1 ǫ)2z ⊤z (1 ǫ)w ⊤w (27) in (20) is a monotonically increasing function of ζ > 0. 2 2:N 2:N 2:N 2:N ≤− − −2 − Therefore,thesmallerthevalueofβ,thelargerthevalue 1 1 of τ. However, the dependency of τ on the rest of the δz1⊤z1 min δ,2φαβλ2(1 ǫ)2,(1 ǫ) p⊤p. − 2 ≤−2 { − − } parameterslistedaboveismorecomplex.Forgivenlocal cost functions, fixed network topology and fixed values Then, we can reproduce the proof of Theorem 10 and of α, β, the maximum value of ζ is when φ+1 is at its concludetheexponentialconvergencetotheoptimalso- minimumandǫλ min 1 ǫ,δ is atits maximum. 2 lution. Accordingly, the sequence of synchronous com- { − } • 5.2 Event-Triggered Communication munication times {tk}k∈Z≥0 ⊂ R≥0 for (18) should be determinedby(25).However,foratrulyimplementable This section studies the design of event-triggered com- law,oneshouldruleoutZenobehavior,i.e.,thesequence municationschemesfortheexecutionof(18).Incontrast of times does not have any finite accumulation point. toperiodicschemes,event-triggeredimplementationstie However,observing(25),onecanseethatZenobehavior the determination of the communication times to the willariseatleastneartheagreementsurfaceΠx=0 . currentnetworkstate,resultinginamoreefficientuseof dN Thenextresultdetails howweaddressthis problem. theresources.TheproofofTheorem10revealsthatthe Theorem 12 (Convergence of (18) with Zeno-free cen- satisfactionof condition(23)guaranteesthe monotonic tralizedevent-triggeredcommunication): Let beacon- evolution of the Lyapunov function, which in turn en- G suresthe correctasymptotic behaviorof the algorithm. nected graph. Assume the local cost function fi, i , Onecouldthereforespecifywhencommunicationshould is mi-strongly convex, differentiable, and its grad∈ieVnt occur by determining the times when this condition is is Mi-Lipschitz on Rd. Consider an implementation not satisfied. There is, however, a serious drawback to of (18)withagentscommunicatingover synchronously this approach: the evaluation of the condition (23) re- at{tk}k∈Z≥0 ⊂R≥0,startingat t0 =0,G quires the knowledge of the globalminimizer x⋆, which t =argmax t [t +τ, ) isofcoursenotavailable.To seethis,note that k+1 { ∈ k ∞ | Π(x(t ) x(t)) 2 κ Πx(t) 2 , (28) ˜z2:N = Π(x(tk) x) , (24a) k k − k ≤ k k } k k k − k p = x x¯ 2+ Π(v v¯) 2, (24b) where τ and κ < 1 are defined in (20) and (26), respec- k k k − k k − k tively. Then, for any given α,β > 0 and each i , where we have upsed (1) and (8) (recall Π=Π I ). the algorithm evolution starting from initial condi∈tioVns From(10),v¯i= α fi(x⋆)fori ,andthustNhe⊗evdal- xi(0),vi(0) Rd with N vi(0) = 0 makes xi(t) − ∇ ∈V ∈ i=1 d → P 8 x⋆ exponentially fast as t with a rate no less than Given α>0,let β,φ>0 satisfy φ+1>4M and 14(min{δ,2φαβλ2(1−ǫ)2,(→1−∞ǫ),12ǫ})/λ¯E >0. γ′=α2(φ+1)m+9βλˆ φα 4α2(Mm+(φ+1)2)>0. (30) PROOF. We first show κ < 1. This is an important 2 2 − propertyguaranteeingthat,ifagentsstartinagreement Then, for each i , the evolution starting from ini- at a point other than the optimizer x⋆, then the con- tial conditions xi(∈0),Vvi(0) Rd with N vi(0) = 0 dition(25)iseventuallyviolated,enforcinginformation ∈ i=1 d updates.Noticethat(a)4ǫ2(1−ǫ)λ22 <λ2N and(b)ǫδ < makes kxi(t)−x⋆k ≤ φ4αηβλλ¯FFkǫk2 as tP→ ∞ exponen- α2(1+φ)2 imply that the numerator in (26) is smaller tially fast with a rate no less than η/λ¯ . (Here, η = F thanitsdenominator,andhenceκ<1.(a)followsfrom min 7 ,1γ′ , and λ and λ¯ are the minimum and noting that the maximum of 4ǫ2(1 ǫ) for ǫ (0,1) is max{im16um9 ei}genvaluesFofFinF(7)).Moreover, theinter- − ∈ 16/27 < 1 and the fact that λ λ . We prove (b) 2 N executiontimes of iare lower boundedby reasoning by contradiction. Assum≤e δ > α2(1+φ)2 or equivalently α(1+φ) √δ < 0. Using (19) and multi- τi = 1 ln 1+ αMiǫi , (31) plyingboth sidesofth−e inequalityby 2mα, weobtain αMi 2 di (αMi+2βdi +1)θ out out (cid:16) (cid:17) α2M2+δ 2αm√δ=(√δ αm)2+α2(M2 m2)<0, whereθ = λ¯F x(0)p x¯ 2+ v(0) v¯ 2+φαβλ¯F ǫ 2. − − − λF k − k k − k 4ηλF k k which, since M m, is a contradiction. Having estab- p lished the consis≥tency of (25), consider now the can- PROOF. Given an initial condition, let [0,T) be the didate Lyapunov function V in (16) and let t be the maximal interval on which there is no accumulation k last time at which a communication among all neigh- pointin{tk}k∈Z¯ =∪Ni=1∪k∈Z¯i⊆Z≥0tik.NotethatT >0, boring agentsoccurred.Fromthe proofof Theorem10, since the number ofagents is finite and, for eachi , we know that the time derivativeof V is negative,V˙ < ǫi >0andx˜i(0)=xˆi(0) xi(0)=0.Thedynamics(∈18V), −21ǫmin{δ,21}p⊤p as long as t < tk + τ. After this under the event-triggere−d communication scheme (29), time, (27) shows that as long as (25) is satisfied, V˙ is has a unique solution in the time interval [0,T). Next, negative,andexponentialconvergencefollows. ✷ we use Lyapunov analysis to show that the trajectory isboundedduring[0,T).ConsiderthefunctionV given in(14),whoseLie derivativealong (21b)-(21d)is Interestingly,giventhat(25)doesnotusethefullstateof the networkbutinsteadreliesonthe disagreement,one 1 7 V˙ = α2(φ+1)y⊤h w⊤ w can interpret it as an output feedback event-triggered −9 − 16 2:N 2:N controller.Guaranteeingtheexistenceoflowerbounded 3 2α 2α inter-executiontimes forsuchcontrollersis ingenerala −k4w2:N + 3 (R⊤⊗Id)h+ 3 (φ+1)z2:N)k2 difficultproblem,seee.g.,[DonkersandHeemels,2012]. 4 4 Augmenting(25)withtheconditiont t +τ results + α2 (R⊤ I )h 2+ α2(1+φ)2z⊤ z k+1 ≥ k 9 k ⊗ d k 9 2:N 2:N in Zeno-free executions by lower bounding the inter- φαβ φαβ event times by τ. The knowledge of this value also al- z⊤ (R⊤LR I )z + s, lows the designer to compute bounds on the maximum − 2 2:N ⊗ d 2:N 2 energyspent bythe networkoncommunication. wheres= z⊤ (R⊤LR I )z 2z⊤ (R⊤LR I )˜z , 5.2.2 DistributedAsynchronous Implementation − 2:N ⊗ d 2:N− 2:N ⊗ d 2:N and z˜ = ˆz z . Using the assumptions on 2:N 2:N 2:N Wepresentadistributedevent-triggeredschemeforde- the local cost funct−ions and following steps similar to terminingthesequenceofcommunicationtimesin(18). those taken in the proof of Theorem 1 to lower bound At each agent, the execution of the communication y⊤h and upper bound (R⊤ I )h along with using schemedependsonlyonlocalvariablesandthetriggered λ z⊤ z z⊤ (R⊤LRk I )⊗z d ,konecanshowthat statesreceivedfromitsneighbors.Thisnaturallyresults 2 2:N 2:N ≤ 2:N ⊗ d 2:N inasynchronouscommunication.Wealsoshowthatthe φαβ V˙ η p 2+ s, resultingexecutionsarefree fromZenobehavior. ≤− k k 2 Theorem 13 (Convergence of (18) with Zeno-free dis- tributedevent-triggeredcommunication): LetGbeacon- where p = (z,w2:N). Next, we show s ≤ 21kǫk2 for t ∈ nected graph. Assume fi, i , is mi-strongly convex, [0,T). Using RR⊤ = Π , LΠ = Π L = L, z = differentiable, and its gradie∈ntVis Mi-Lipschitz on Rd. (R⊤ I )y = (R⊤ I )Nx, andNz˜ N= (R⊤ I2):Ny˜ = Forǫ RN ,consideranimplementation of (18)where ⊗ d ⊗ d 2:N ⊗ d agent∈i >0 communicates with its neighbors in at (R⊤⊗Id)x˜,wegets=−x⊤Lx−2x⊤Lx˜.Then, times {tik∈}kV∈Z¯i⊆Z≥0 ⊂R≥0,startingat ti0 =0, G s=−(xˆ−x˜)⊤L(xˆ−x˜)−2(xˆ−x˜)⊤Lx˜ ti =argmax t [ti, ) (29) =x˜⊤Lx˜ xˆ⊤Lxˆ. k+1 { ∈ k ∞ | − N 4dioutkxˆi(t)−xi(t)k2 ≤ j=1aijkxˆi(t)−xˆj(t)k2+(ǫi)2}. GivenL=Dout AandDout+A 0,we have − ≥ X 9 x˜⊤Lx˜ ≤2x˜⊤(Dout⊗Id)x˜ =2 Ni=1dioutkx˜ik2. kxˆi−xi(t)k≤ci(eαMi(t−tik)−1)/(αMi), t≥tik. X Therefore,we canwrite (recallx˜i =xˆi xi) Then, the time it takes kxˆi−xik to reach ǫi/(2 diout) − is lower bounded by τi > 0 given by (31). To show 1 N N p s= 4di xˆi xi 2 a xˆi xˆj 2 , T = , we proceed by contradiction. Suppose that 2Xi=1(cid:0) outk − k −Xj=1 ijk − k (cid:1) aTcc<um∞∞ul.aTtihonenp,otihnetasteqTu.eBnceecaoufseevweenthsa{vteka}kfi∈nZ¯itehansuman- which,with(29),yieldss 1 ǫ 2 for t [0,T).Then, ber of agents, this means that there must be an agent ≤2k k ∈ V˙ η p 2+ φαβ ǫ 2, t [0,T), ait∈T,Vimfoprlywinhgicthha{ttika}gke∈nZt¯iihtraasnsamnitasccinufimnuitlaeltyioonftpenoinint ≤− k k 4 k k ∈ the time interval [T ∆,T) for any ∆ (0,T]. How- − ∈ Recall from the proof of Theorem 1 that λ p 2 ever, this is in contradiction with the fact that inter- V(p) λ¯ p 2. Then, using the ComparisonFkLekmm≤a eventtimesarelowerboundedbyτi >0on[0,T).Hav- ≤ Fk k ing established T = , note that this fact implies that (cf.[Khalil, 2002,Lemma3.4]),wededuce that ∞ under the event-triggeredcommunication law (29), the kp(t)k≤λ1 kV(0)ke−λ¯ηFt+φαβ4λη¯λFkǫk2(1−e−λ¯ηFt) amlgoorer,itfhromm(1(83)2)d,oweesndoedtuecxehitbhiattZ,efonroebaechhaivior.,Founrethhears- ≤λλ¯FFFkp(0)ke−λ¯ηFt+φαβ4λη¯λFFkǫFk2(1−e−λ¯ηFt), (32) ktixail(lyt)f−asxt⋆wki≤thkapr(at)tke≤noφw4αηoβλrλ¯FsFektǫhka2naηs/tλ¯→F.∞∈,Vexponen✷- fort [0,T).Notice thatregardlessofvalue ofT, Regardingthe role of the designparametersand condi- ∈ λ¯ φαβλ¯ tion(30),weomitforspacereasonsobservationssimilar p(t) F p(0) + F ǫ 2, (33) tothe onesmadeinRemark2.The lowerboundonthe k k≤ λ k k 4ηλ k k F F inter-eventtimesallowsthedesignertocomputebounds onthemaximumenergyspentbyeachagentoncommu- for t [0,T). Notice that the right-hand side corre- nication during any given time interval. Since the total ∈ spondstoθ.Thiscanbeseenbynotingthat,from(11b), number of agents is finite and each agent’s inter-event we have z = x x¯ and w = w = v v¯ 2:N times are lowerbounded, it follows that the total num- k k k − k k k k k k − k (recall Ni=1vi(0)=0 resultsinw1 =0 forall t≥0). berofevents inanyfinite time intervalis finite. Ingen- Our final objective is to show that T = . To achieve eral,anexplicit expressionlowerbounding the network this,wePfirtestablisalowerboundonthei∞nter-execution inter-eventtimes is notavailable.Itis alsoworthnotic- times of any agent. To do this, we determine a lower ing that the farther away the agents start from the fi- boundonthetimeittakesi tohave xˆi xi evolve nalconvergencepoint(largerθ in(31)),the smallerthe ∈V k − k guaranteed lower bound between inter-event times be- from0 toǫi/(2 di ).Using (10)and(18b),wehave out comes.Asbefore,τiin(31)dependsonthegraphtopol- d xˆi xi =p (xˆi−xi)⊤x˙i x˙i opgayr,atmheetperasraαmaentedrsβo,fatnhdeltohcealvcaorsitabfulencǫtii.oOn,ntehecadnesuigsne dtk − k − xˆi xi ≤k k k − k thisdependencytomaximizethevalueofτi inasimilar N = α( fi(xi) fi(x⋆)) β a (xˆi xˆj) fashion as discussed in Remark 11. For quadratic local ij k− ∇ −∇ − j=1 − costfunctions of the form fi(x) = 1(x⊤x+x⊤ai+bi), (vi+α fi(x⋆) X i the claim of Theorem 13 hol2ds for any α,β > 0. − ∇ k ∈ V N Finally, we point out that the discrete-time communi- αMi xi x⋆ +β a xˆi xˆj + vi v¯i , ij cationstrategiesintroducedaboveenjoysimilarprivacy ≤ k − k j=1 k − k k − k preservation properties as the ones stated in Proposi- X whichleadsto tion5,butwe omitthe details hereforbrevity. d xˆi xi αMi xˆi xi +αMi xˆi x⋆ + 6 Simulations dtk − k≤ k − k k − k N Here,weillustratetheperformanceofthealgorithm(3) β a ( xˆi x⋆ + xˆj x⋆ )+ vi v¯i . ij and its implementation with discrete-time communica- j=1 k − k k − k k − k tion (18). We consider a network of 10 agents, with X From (33), we have x(t) x¯ θ and v(t) v¯ stronglyconvexlocalcostfunctions onR givenby θ. This implies vi(tk) v¯−i k ≤θ, xˆi xk⋆ −θ, kan≤d f1(x)=0.5e−0.5x+0.4e0.3x, f2(x)=(x 4)2, Nj=1aij(kxˆi −kx⋆k+k−xˆj −kx≤⋆k) ≤k 2d−ioutθ,kfo≤r all i ∈ f3(x)=0.5x2ln(1+x2)+x2, f4(x)=x2−+e0.1x, VP. Therefore,fromthe inequality above, ddtkxˆi−xik ≤ f5(x)=ln(e−0.1x+e0.3x)+0.1x2, f6(x)=x2/ln(2+x2), αMikxˆi −xik+ci, where ci = (αMi +2βdiout +1)θ. f7(x)=0.2e−0.2x+0.4e0.4x, f8(x)=x4+2x2+2, UsingtheComparisonLemma(cf.[Khalil,2002,Lemma 3.4])andthe factthat xˆi xi(ti) =0,we deduce f9(x)=x2/ x2+1+0.1x2, f10(x)=(x+2)2. k − k k p 10

See more

The list of books you might like

book image

$100m Offers

Alex Hormozi
·205 Pages
·2021
·3.18 MB

book image

Mind Management, Not Time Management

David Kadavy
·2020
·0.58 MB

book image

Atomic Habits James Clear

JAMES CLEAR
·6.4 MB

book image

The Sweetest Oblivion (Made Book 1)

Danielle Lori
·360 Pages
·2018
·1.72 MB

book image

La Maternitat d’Elna

Assumpta Montellà
·2005
·0.693 MB

book image

Ecco! Grammatica italiana

Manella Claudio.
·121 Pages
·96.249 MB

book image

Continuum mechanics : elasticity, plasticity, viscoelasticity

Dill, Ellis Harold
·368 Pages
·2007
·6.412 MB

book image

Regionale plastische und rekonstruktive Chirurgie im Kindesalter

W. Kley (auth.), Professor Dr. med. Walter Kley, Privatdozent Dr. med. Claus Naumann (eds.)
·359 Pages
·1983
·12.99 MB

book image

Ameiva erythrocephala

Kerr, Angela M
·2006
·2.9 MB

book image

Business Cycles with Revolutions

29 Pages
·2013
·0.3 MB

book image

Tafseer-e-Siddiqi (Volume 1)

Allama Muhammad Abdul Qadir Siddiqi
·240 Pages
·2005
·6.59 MB

book image

Ca atalogu ue 48: P Portra aits

84 Pages
·2014
·4.37 MB

book image

Greek Government Gazette: Part 4, 2006 no. 129

The Government of the Hellenic Republic
·2006
·2.7 MB

book image

Greek Government Gazette: Part 3, 2006 no. 361

The Government of the Hellenic Republic
·2006
·0.11 MB

book image

Marquem, irmãos, marquem!

Mark Twain
·2016
·0.39 MB

book image

Caferiler Kimlerdir?

Muhammed İbn’il-Mehdiyy’il Huseyniyy’üş Şîrâzî
·12 Pages
·1969
·5.96 MB