ebook img

Disorder and Strain-Induced Complexity in Functional Materials PDF

315 Pages·2012·9.729 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Disorder and Strain-Induced Complexity in Functional Materials

SpringerSeriesin materials science 148 • SpringerSeriesin materials science • Editors: R.Hull C.Jagadish R.M.Osgood,Jr. J.Parisi Z.Wang The Springer Series in Materials Science covers the complete spectrum of materials physics, includingfundamentalprinciples,physicalproperties,materialstheoryanddesign.Recognizing theincreasingimportanceofmaterialsscienceinfuturedevicetechnologies,thebooktitlesinthis seriesreflectthestate-of-the-artinunderstandingandcontrollingthestructureandproperties ofallimportantclassesofmaterials. PleaseviewavailabletitlesinSpringerSeriesinMaterialsScience onserieshomepagehttp://www.springer.com/series/856 T. Kakeshita T. Fukuda A. Saxena • A. Planes Editors Disorder and Strain-Induced Complexity in Functional Materials With 177 Figures 123 Editors ProfessorTomoyukiKakeshita ProfessorTakashiFukuda OsakaUniversity,GraduateSchoolofEngineering,DivisionofMaterialsandManufacturing Yamada-oka,Suita2-1,565-0871Osaka,Japan E-mail:[email protected],[email protected] Dr.AvadhSaxena Professor AntoniPlanes Los Alamos National Laboratory UniversitatdeBarcelona Theoretical Division, T-4, MS B262 Departamentd’EstructuraiConstituents Los Alamos, NM 87545, USA delaMate`ria E-mail:[email protected] FacultatdeFíí sica Diagonal647,08028Barcelona,Spain E-mail:[email protected] SeriesEditors: ProfessorRobertHull ProfessorJu¨rgenParisi UniversityofVirginia Universita¨tOldenburg,FachbereichPhysik Dept.ofMaterialsScienceandEngineering Abt.Energie-undHalbleiterforschung ThorntonHall Carl-von-Ossietzky-Straße9–11 Charlottesville,VA22903-2442,USA 26129Oldenburg,Germany ProfessorChennupatiJagadish Dr.ZhimingWang AustralianNationalUniversity UniversityofArkansas ResearchSchoolofPhysicsandEngineering DepartmentofPhysics J4-22,CarverBuilding 835W.DicknsonSt. CanberraACT0200,Australia Fayetteville,AR72701,USA ProfessorR.M.Osgood,Jr. MicroelectronicsScienceLaboratory DepartmentofElectricalEngineering ColumbiaUniversity SeeleyW.MuddBuilding NewYork,NY10027,USA SpringerSeriesinMaterialsScience ISSN0933-033X ISBN978-3-642-20942-0 e-ISBN978-3-642-20943-7 DOI10.1007/978-3-642-20943-7 SpringerHeidelbergDordrechtLondonNewYork Library of Congress Control Number: 2011936130 ©Springer-VerlagBerlinHeidelberg2012 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublicationor partsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,inits currentversion,andpermissionforusemustalwaysbeobtainedfromSpringer .Violationsareliable to prosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsand regulationsandthereforefreeforgeneraluse. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface There is a paradigm shift in our understanding of the properties and behaviour of complex functional materials with multiple ordered phases and competing interactions. One novel aspect is that the underlying lattice provides an elastic template on which charge, spin, dipolar and other degrees of freedom couple to provideanumberofemergentfunctionalities.Theroleofdisorderinthepresence oflong-rangedipolarandelasticforcesistoleadtonanoscaleinhomogeneity,which isresponsiblefortheobservedbehaviouraswellasfrustrationinthematerial–thus astrongsensitivitytoexternalperturbationsandpossiblyglassyresponseincertain regimesaswellasanomalousavalanchephenomena. This book brings together an emerging consensus on our understanding of the complexfunctionalmaterialsincludingferroics,perovskites,multiferroicsand magnetoelastics. The common theme is the existence of many competing ground states and frustration as a collusion of spin, charge, orbital and lattice degrees of freedominthepresenceofdisorderand(bothdipolarandelastic)long-rangeforces. Animportantconsequenceofthecomplexunitcellandthecompetinginteractions is that the emergent materials properties are very sensitive to external fields, thus rendering these materials with highly desirable, technologically important applicationsenabledbycross-response. The idea for this book was born at the workshop Jim Krumhansl Symposium: Complex Materials at the Cross-Roads held at Osaka, Japan, during November 9–13, 2008. This workshop was a sequel to a previous workshop on Interplay of Magnetism and Structure in Functional Materials held at Benasque, Spain, duringFebruary9–13,2004.The Benasque workshopformedthe basis of a book (Magnetism and Structure in Functional Materials, Springer, 2005), which was dedicatedtoJimKrumhansl,aretiredprofessorfromCornellUniversitywhopassed awayinMay2004.Muchoftheresearchreportedinthisaswellasintheprevious book was inspired by Prof. Krumhansl’s overarching vision identifying common themesbetweensolid-statephysics,materialsscienceandbiology. The topics covered in the present book are interdisciplinary in nature written by researchers from physics, materials science and engineering backgrounds. v vi Preface Therefore, the book is addressed to both the experts and researchers getting into the field of functional materials with disorder and glassy behaviour including graduate students. It contributes to the fields of physics, materials science and nanotechnology.Ingeneral,thebookrepresentsadevelopingsubject. The carefully chosen 15 chapters written by internationally recognizedexperts in their respective fields cover general introduction to ferroics and multiferroics, principlesof emergentcomplexityin materials science with a particular emphasis on magnetic shape memory alloys, glassy phenomena including strain glass and martensites,softelectronicmatter,hysteresisandavalanches,high-resolutionstruc- tural and magnetic visualization techniques, neutron scattering and shuffle-based transitions,defectsinferroelectricsandotherferroicmaterials,precursorphenom- ena, magnetostrucutralcoupling and magnetocaloricproperties, Heusler materials and magnetic martensites as well as first principles and mesoscopic modelling. Beyondillustratingsome commonthreads(suchas metastability,nonlinearityand disorder)betweenbiologicalandmaterialsfunctionality,thebookconcludeswitha chapterthatlaysoutclearlythefutureresearchdirections. Each chapter reviews the current state of the topic and provides sufficient background material for a graduate student or a new researcher to get started in thisexcitingfield. Atthe same time, each chapterprovidesopenquestionsforthe expertstoponderandadvancethefieldfurther. Overall,thebookprovidesanemergentparadigmshapedbythemanyadvances madeoverthepastdecadeinsynthesis,characterization,modellingandfundamental understandingas well as technologicalapplications of a variety of complex func- tionalmaterials. We gratefully acknowledge financial support from the Global COE Program “Center of Excellence (COE) for Advanced Structural and Functional Materials Design” at the University of Osaka (Suita campus), Japan. We thank Ms. Yuko Kurodaforhercarefulassistanceineditingthebook. Osaka,Japan TomoyukiKakeshita Osaka,Japan TakashiFukuda LosAlamos,USA AvadhSaxena Barcelona,Spain AntoniPlanes Contents 1 Domain Boundary Engineering in Ferroic andMultiferroicMaterials:ASimpleIntroduction.................... 1 EkhardK.H.SaljeandJasonC.Lashley 1.1 Introduction........................................................... 1 1.2 MultiferroicDomainBoundaries.................................... 2 1.3 HighlyConductingInterfaces ....................................... 7 1.4 TheDynamicsofDomainMovementandFerroicSwitching...... 9 1.5 Conclusions........................................................... 15 References.................................................................... 16 2 PhaseDiagramsofConventionalandInverseFunctional Magnetic Heusler Alloys: New Theoretical and ExperimentalInvestigations............................................... 19 P.Entel,M.E.Gruner,A.Hucht,A.Dannenberg,M.Siewert, H.C.Herper,T.Kakeshita,T.Fukuda,V.V.Sokolovskiy,and V.D.Buchelnikov 2.1 IntroductionandComputational..................................... 20 2.2 CrystalStructuresofHalf-andFull-Heusleralloys ................ 21 2.3 PhaseDiagramsofNi2Mn1CXZ1(cid:2)X(ZDGa,In,Sn,Sb) Heusleralloys ........................................................ 25 2.4 PhaseDiagramsofNi2CxMn1(cid:2)xZ.ZDGa;In;Sn;Sb/ Heusleralloys ........................................................ 30 2.5 PhaseDiagramsofCo2Ni1(cid:2)XZ1CX.ZDGa;Zn/ Heusleralloys ........................................................ 33 2.6 ConclusionsandFutureAspectsofMagnetic Heusleralloys ........................................................ 41 References.................................................................... 43 vii viii Contents 3 Ni–Mn–XHeuslerMaterials .............................................. 49 RyosukeKainumaandRieY.Umetsu 3.1 Introduction........................................................... 49 3.2 Atomic Ordering and Magnetic Properties inNi2Mn.GaxAl1(cid:2)x/Alloys......................................... 50 3.2.1 AtomicOrdering............................................ 51 3.2.2 MagneticProperties ........................................ 52 3.3 MagneticPropertiesinOff-Stoichiometric Ni2Mn1CyIn1(cid:2)y Alloys .............................................. 55 3.4 MartensiticTransformationandMagneticProperties inNiMnInAlloy...................................................... 58 3.5 ConcludingRemarks................................................. 62 References.................................................................... 63 4 Magnetic Interactions Governing the Inverse MagnetocaloricEffect in Martensitic Ni–Mn-Based Shape-memoryAlloys...................................................... 67 S.Aksoy,M.Acet,T.Krenke,E.F.Wassermann,M.Gruner, P.Entel,L.Man˜osa,A.Planes,andP.P.Deen 4.1 Introduction........................................................... 68 4.2 TheInverseMagnetocaloricEffectAroundaStructural TransitionsinaFerromagneticSystem.............................. 68 4.2.1 ConventionalandInverseMagnetocaloric EffectsinNi50Mn34In16 .................................... 70 4.2.2 Magnetic Coupling in Ni–Mn-Based MartensiticHeuslerAlloys................................. 71 4.2.3 Magnetic Exchange Constants in Ni–Mn-BasedMartensiticHeuslerAlloys ................ 74 4.3 Conclusion............................................................ 75 References.................................................................... 76 5 MagneticField-InducedStraininFerromagneticShape MemoryAlloysFe-31.2Pd,Fe Pt,andNi MnGa....................... 79 3 2 TakashiFukudaandTomoyukiKakeshita 5.1 Introduction........................................................... 79 5.2 MartensiticTransformationinFe-31.2Pd,Fe3Pt, andNi2MnGa......................................................... 81 5.3 MagneticField-InducedStraininFe-31.2Pd,Fe3Pt, andNi2MnGa......................................................... 82 5.4 ConditionforRearrangementofMartensiteVariants byMagneticField.................................................... 86 5.5 OriginofMartensiticTransformationinFe3Pt ..................... 90 5.6 Summary.............................................................. 93 References.................................................................... 93 Contents ix 6 Soft Electronic Matter: Inhomogeneneous Phases inStronglyCorrelatedCondensedMatter............................... 95 PeterB.Littlewood 6.1 Introduction........................................................... 95 6.2 AMicroscopicView ................................................. 96 6.3 Example1:La2NiO4 ................................................. 99 6.4 Example2:ColossalMagnetoresistanceinManganites............ 100 6.4.1 TheBasics:DoubleExchangeandJahn–Teller........... 100 6.4.2 CompetingandCooperatingPhasesinManganites....... 103 6.4.3 Ginzburg–LandauTheoryforManganites ................ 105 6.5 Example3:SuperconductivityandMagnetisminCeCoIn ........ 108 5 6.6 ConcludingRemarks................................................. 110 References.................................................................... 110 7 DefectsinFerroelectrics ................................................... 113 WenwuCao 7.1 Introduction........................................................... 113 7.2 VacanciesinPerovskiteFerroelectricMaterials.................... 115 7.3 DopingofAliovalentDefects........................................ 117 7.4 DefectsandDielectricProperties.................................... 119 7.5 GrainBoundaryandPositiveTemperatureCoefficientResistor... 122 7.6 DomainWallsasaTypeofMobileDefects......................... 125 7.7 SizeEffectsandSurfaceinFerroelectricMaterials ................ 129 7.8 Summary.............................................................. 131 References.................................................................... 132 8 High-ResolutionVisualizationTechniques:StructuralAspects....... 135 D.SchryversandS.VanAert 8.1 EarlierResultsonTweedPatternsinNi–Al ........................ 136 8.2 MatrixDeformationandDepletionfromPrecipitationinNi–Ti... 137 8.3 MinimalStrainatAustenite–MartensiteInterface ................ 140 8.4 InternalStrainControlinNi–TiMicro-Wires ...................... 142 8.5 StrainEffectsinMetallicNano-beams.............................. 142 8.6 FutureProspects...................................................... 144 References.................................................................... 148 9 High-ResolutionVisualizingTechniques:MagneticAspects .......... 151 YasukazuMurakami 9.1 Introduction........................................................... 151 9.2 MagneticImagingbyTEM.......................................... 152 9.2.1 LorentzMicroscopy........................................ 153 9.2.2 ElectronHolography ....................................... 154 9.2.3 InstrumentationforMagneticDomainObservations..... 156 9.3 Study of Magnetic Microstructure in Colossal MagnetoresistiveManganite......................................... 157 9.3.1 FerromagneticDomainNucleationandGrowth .......... 158 x Contents 9.3.2 Determinationof Magnetic Parameters ofaNanoscaleRegion...................................... 162 9.4 MagneticImagingofFerromagneticShape-MemoryAlloys...... 164 9.4.1 ImpactofAPBsontheLocalMagnetization Distribution ................................................. 165 9.4.2 MagneticPatternFormationTriggeredby PremartensiticLatticeAnomaly ........................... 169 9.5 ConcludingRemarks................................................. 172 References.................................................................... 173 10 UnderstandingGlassyPhenomenainMaterials........................ 177 DavidSherrington 10.1 Introduction........................................................... 177 10.2 SpinGlasses:ABriefReview ....................................... 178 10.3 Martensites ........................................................... 181 10.4 Relaxors............................................................... 188 10.5 Models,SimulationsandAnalysis .................................. 193 10.6 Conclusion............................................................ 195 References.................................................................... 197 11 StrainGlassandStrainGlassTransition................................ 201 XiaobingRen 11.1 Disorder–OrderandDisorder–GlassTransitionin Nature:AnticipationofaStrainGlassTransitionand StrainGlass........................................................... 201 11.2 PhaseDiagramofStrainGlass:CrossoverfromLRO toGlassDuetoPointDefects........................................ 204 11.3 SignaturesofStrainGlassandAnalogywithOtherGlasses....... 207 11.4 NovelPropertiesofStrainGlass..................................... 211 11.5 OriginofStrainGlassandTheoreticalModeling/Simulations..... 214 11.6 StrainGlassasaSolutiontoSeveralLong-Standing PuzzlesAboutMartensite............................................ 219 11.7 Summary.............................................................. 223 References.................................................................... 223 12 PrecursorNanoscaleTexturesinFerroelasticMartensites ............ 227 PolLloveras,TeresaCasta´n,AntoniPlanes,andAvadhSaxena 12.1 Introduction........................................................... 227 12.2 StructuralPrecursorTexturesinCubicFerroelastics............... 230 12.2.1 TweedTextures............................................. 230 12.2.2 Effect of Elastic Anisotropy on the MorphologyofStructuralPrecursorNanostructures ..... 232 12.3 PhenomenologicalModeling ........................................ 235

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.