ebook img

Discrete Time Branching Processes in Random Environment PDF

295 Pages·2017·3.773 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Discrete Time Branching Processes in Random Environment

Discrete Time Branching Processes in Random Environment Branching Processes, Branching Random Walks and Branching Particle Fields Set coordinated by Elena Yarovaya Volume 1 Discrete Time Branching Processes in Random Environment Götz Kersting Vladimir Vatutin First published 2017 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2017 The rights of Götz Kersting and Vladimir Vatutin to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2017949423 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-252-6 Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix ListofNotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Chapter1.BranchingProcessesinVaryingEnvironment . . . . . . . 1 1.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2.Extinctionprobabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.Almostsureconvergence . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.Familytrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4.1.ConstructionoftheGeigertree. . . . . . . . . . . . . . . . . . . . . 20 1.4.2.Constructionofthesize-biasedtreeT∗ . . . . . . . . . . . . . . . . 21 1.5.Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Chapter2.BranchingProcessesinRandomEnvironment . . . . . . 25 2.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.Extinctionprobabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.Exponentialgrowthinthesupercriticalcase . . . . . . . . . . . . . . . 30 2.4.Threesubcriticalregimes . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5.Thestrictlycriticalcase . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.6.Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Chapter3.LargeDeviationsforBPREs . . . . . . . . . . . . . . . . . . . 47 3.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.Atailestimateforbranchingprocessesina varyingenvironment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.ProofofTheorem3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4.Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 vi DiscreteTimeBranchingProcessesinRandomEnvironment Chapter4.PropertiesofRandomWalks . . . . . . . . . . . . . . . . . . 61 4.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2.Sparre-Andersenidentities . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.3.Spitzeridentity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4.ApplicationsofSparre-AndersenandSpitzer identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.4.1.Propertiesofladderepochsandladderheights . . . . . . . . . . . . 70 4.4.2.Taildistributionsofladderepochs . . . . . . . . . . . . . . . . . . . 75 4.4.3.Somerenewalfunctions. . . . . . . . . . . . . . . . . . . . . . . . . 76 4.4.4.AsymptoticpropertiesofLnandMn . . . . . . . . . . . . . . . . . 79 4.4.5.Arcsinelaw. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.4.6.Largedeviationsforrandomwalks . . . . . . . . . . . . . . . . . . 84 4.5.Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Chapter5.CriticalBPREs: theAnnealedApproach . . . . . . . . . . . 91 5.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2.Changesofmeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.3.Propertiesoftheprospectiveminima . . . . . . . . . . . . . . . . . . . 99 5.4.Survivalprobability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.5.Limittheoremsforthecriticalcase(annealed approach) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.6.Environmentprovidingsurvival . . . . . . . . . . . . . . . . . . . . . . 122 5.7.ConvergenceoflogZn . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.8.Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Chapter6.CriticalBPREs: theQuenchedApproach . . . . . . . . . . 133 6.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.2.Changesofmeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.3.Probabilityofsurvival . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 6.4.Yaglomlimittheorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.4.1.Thepopulationsizeatnon-randommoments . . . . . . . . . . . . 143 6.4.2.Thepopulationsizeatmomentsnt,0<t<1 . . . . . . . . . . . . 149 6.4.3.Thenumberofparticlesatmomentτ(n)≤nt . . . . . . . . . . . . 150 6.4.4.Thenumberofparticlesatmomentτ(n)>nt . . . . . . . . . . . . 157 6.5.Discretelimitdistributions . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.6.Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Chapter7.WeaklySubcriticalBPREs . . . . . . . . . . . . . . . . . . . . 169 7.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 7.2.TheprobabilitymeasuresP(cid:2)+andP(cid:2)− . . . . . . . . . . . . . . . . . . . 172 7.3.Proofoftheorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 7.3.1.ProofofTheorem7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Contents vii 7.3.2.ProofofTheorem7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 190 7.3.3.ProofofTheorem7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 191 7.4.Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Chapter8.IntermediateSubcriticalBPREs . . . . . . . . . . . . . . . . 197 8.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 8.2.ProofofTheorems8.1to8.3 . . . . . . . . . . . . . . . . . . . . . . . . 201 8.3.Furtherlimitresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 8.4.Conditionedfamilytrees . . . . . . . . . . . . . . . . . . . . . . . . . . 212 8.5.ProofofTheorem8.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 8.6.Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 Chapter9.StronglySubcriticalBPREs . . . . . . . . . . . . . . . . . . . 227 9.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 9.2.SurvivalprobabilityandYaglom-typelimittheorems . . . . . . . . . . 229 9.3.Environmentsprovidingsurvivalanddynamicsofthe populationsize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 9.3.1.PropertiesofthetransitionmatrixP∗ . . . . . . . . . . . . . . . . . 240 9.3.2.ProofofTheorem9.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 243 9.3.3.ProofofTheorem9.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 248 9.4.Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 Chapter10.Multi-typeBPREs . . . . . . . . . . . . . . . . . . . . . . . . . 257 10.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 10.2.SupercriticalMBPREs . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 10.3.Thesurvivalprobabilityofsubcriticaland criticalMBPREs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 10.4.Functionallimittheoreminthecriticalcase . . . . . . . . . . . . . . . 266 10.5.Subcriticalmulti-typecase . . . . . . . . . . . . . . . . . . . . . . . . 266 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 Preface Branching processes constitute a fundamental part in the theory of stochastic processes. Very roughly speaking, the theory of branching processes deals with the issue of exponential growth or decay of random sequences or processes. Its central concept consists of a system or a population made up of particles or individuals whichindependentlyproducedescendants.Thisisanextensivetopicdatingbacktoa publicationofF.GaltonandH.W.Watsonin1874ontheextinctionoffamilynames and afterwards dividing into many subareas. Correspondingly, it is treated in a number of monographs starting in 1963 with T. E. Harris’ seminal The Theory of Branching Processes and supported in the middle of the 1970s by Sevastyanov’s Verzweigungsprozesse, Athreya and Ney’s Branching Processes, Jagers’ Branching Processes with Biological Applications and others. The models considered in these books mainly concern branching processes evolving in a constant environment. Important tools in proving limit theorems for such processes are generating functions,renewaltypeequationsandfunctionallimittheorems. However, these monographs rarely touch the matter of branching processes in a randomenvironment(BPREs).Theseobjectsformnotsomuchasubclassbutrather an extension of the area of branching processes. In such models, two types of stochasticity are incorporated: on the one hand, demographic stochasticity resulting from the reproduction of individuals and, on the other hand, environmental stochasticity stemming from the changes in the conditions of reproduction along time. A central insight is that it is often the latter component that primarily determinesthebehavioroftheseprocesses.Thus,thetheoryofBPREsgainsitsown characteristicappearanceandnovelaspectsappearsuchasaphasetransition.Froma technicalpointofview,thestudyofsuchprocessesrequiresanextensionoftherange of methods to be used in comparison with the methods common in the classical theory of branching processes. Other techniques should be attracted, in particular from the theory of random walks which plays an essential role in proving limit theoremsforBPREs. x DiscreteTimeBranchingProcessesinRandomEnvironment Withthisvolume,wehavetwopurposesinmind.First,wehavetoassertthatthe basicsofthetheoryofBPREsaresomewhatscatteredintheliterature(sincethelate 1960s),fromwhichtheyarenotatalleasilyaccessible.Thus,westartbypresenting them in a unified manner. In order to simplify matters, we confine ourselves from thebeginningtothecasewheretheenvironmentvariesinani.i.d.fashion,themodel going back to the now classical paper written by Smith and Wilkinson in 1969. We alsoputtogetherthatmaterialwhichisrequiredfromthetopicofbranchingprocesses in a varying environment. Overall, the proofs are now substantially simplified and streamlinedbut,atthesametime,someofthetheoremscouldbebettershaped. Second,wewouldliketoadvancesomescientificworkonbranchingprocessesin a random environment conditioned on survival which was conducted since around 2000 by a German-Russian group of scientists consisting of Valery Afanasyev, Christian Böinghoff, Elena Dyakonova, Jochen Geiger, Götz Kersting, Vladimir Vatutin and Vitali Wachtel. This research was generously supported by the German ResearchAssociationDFGandtheRussianFoundationforBasicResearchRFBR.In thisbook,weagaindonotaimtopresentourresultsintheirmostgeneralsetting,yet anampleamountoftechnicalcontextcannotbeavoided. We start the book by describing in Chapter 1 some properties of branching processesinavaryingenvironment(BPVEs).Inparticular,wegivea(short)proofof the theorem describing the necessary and sufficient conditions for the dichotomy in theasymptoticbehaviorofaBPVE:suchaprocessshouldeitherdieoritspopulation size should tend to infinity with time. Besides the construction of family trees, size-biased trees and Geiger’s tree, representing conditioned family trees, are described here in detail. These trees play an important role in studying subcritical BPREs. Chapter 2 leads the reader in to the world of BPREs. It contains classificationofBPREs, describessomepropertiesofsupercriticalBPREsandgives roughestimatesforthegrowthrateofthesurvivalprobabilityforsubcriticalBPREs. ConclusionsofChapter2aresupportedbyChapter3wheretheasymptoticbehavior oftheprobabilitiesoflargedeviationsforalltypesofBPREsisinvestigated. PropertiesofBPREsarecloselyrelatedtothepropertiesoftheso-calledassociated random walk (ARW) constituted by the logarithms of the expected population sizes of particles of different generations. This justifies the appearance of Chapter 4 that includes some basic results on the theory of random walks and a couple of findings concerning properties of random walks conditioned to stay non-negative or negative andprobabilitiesoflargedeviationsfordifferenttypesofrandomwalks. Chapters 5 through 9 deal with various statements describing the asymptotic behavior of the survival probability and Yaglom-type functional conditional limit theoremsforthecriticalandsubcriticalBPREsandanalyzingpropertiesoftheARW Preface xi providing survival of a BPRE for a long time. Here, the theory of random walks conditionedtostaynon-negativeornegativedemonstratesitsbeautyandpower. Thus, it is shown in Chapter 5 (under the annealed approach) that if a critical BPRE survives up to a distant moment n, then the minimum value of the ARW on the interval [0,n] is attained at the beginning of the evolution of the BPRE and the longtime behavior of the population size of such BPREs (conditioned on survival) resembles the behavior of the ordinary supercritical Galton–Watson branching processes. If, however, a critical BPRE is considered under the quenched approach (Chapter 6) then, given the survival of the process for a long time, the evolution of the population size in the past has an oscillating character: the periods when the population size was very big were separated by intervals when the size of the populationwassmall. Chapters 7–9 are devoted to the weakly, intermediately and strongly subcritical BPREs investigated under the annealed approach. To study properties of such processes, it is necessary to make changes in the initial measures based on the properties of the ARWs. The basic conclusion of Chapters 7–8 is: the survival probability of the weakly and intermediately subcritical BPREs up to a distant moment n is proportional to the probability for the corresponding ARW to stay non-negative within the time interval [0,n]. Finally, it is shown in Chapter 9 that properties of strongly subcritical BPREs are, in many respect, similar to the properties of the subcritical Galton–Watson branching processes. In particular, the survivalprobabilityofsuchaprocessuptoadistantmomentnisproportionaltothe expectednumberofparticlesintheprocessatthismoment. We do not pretend that this book includes all interesting and important results established up to now for BPREs. In particular, we do not treat here BPREs with immigration and multitype BPREs. The last direction of the theory of BPREs is a verypromisingfieldofinvestigationthatrequiresstudyofpropertiesofMarkovchains generatedbyproductsofrandommatrices.Toattracttheattentionoffutureresearchers to this field, we give a short survey of some recent results for multitype BPREs in Chapter10.ThebookisconcludedbyanAppendixthatcontainsstatementsofresults usedintheproofsofsometheoremsbutnotfittingthemainlineofthemonograph. GötzKERSTING VladimirVATUTIN August2017 List of Notations P(N0) set of all probability measures f on N0 = {0,1,...},2 f[z],f(s) weights and generating function of the measure f,2 f¯ themeanofthemeasuref,2 f˜ thenormalizedsecondfactorialmoment,2 f∗ size-biasedmeasure,21 fm,n :=fm+1◦···◦fn convolutionsofprobabilitymeasures,3 fm,n :=fm◦···◦fn+1 convolutionsofprobabilitymeasures,107 κ(a,f)(cid:2):= truncatedsecondmoment,102 (f¯)−2 ∞ y2f[y] y=a θ themomentofextinctionofabranchingprocess, 6,28 T∗ size-biasedtree,21 V randomenvironment,25 X :=logF logarithmofexpectedpopulationsize,27 κ(λ):=logE[eλX] cumulantgeneratingfunction,36 γ strictdescendingladderepoch,61 γ(cid:4) weakdescendingladderepoch,61 Γ strictascendingladderepoch,61 Γ(cid:4) weakascendingladderepoch,62 Ln :=min(S0,S1,...,Sn) 38 Mn :=max(S1,...,Sn) 76 τ(n):=min{0≤k ≤n: theleft-mostmomentwhentheminimumvalueof Sk =Ln} therandomwalkontheinterval[0,n]isattained, 70 P probabilitymeasuregiventheenvironment,3,26 E expectationgiventheenvironment,3,26

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.