ebook img

Discrete Element Method in the Design of Transport Systems: Verification and Validation of 3D Models PDF

214 Pages·2019·30.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Discrete Element Method in the Design of Transport Systems: Verification and Validation of 3D Models

Daniel Gelnar · Jiri Zegzulka Discrete Element Method in the Design of Transport Systems Verifi cation and Validation of 3D Models Discrete Element Method in the Design of Transport Systems Daniel Gelnar • Jiri Zegzulka Discrete Element Method in the Design of Transport Systems Verification and Validation of 3D Models Daniel Gelnar Jiri Zegzulka Technical University of Ostrava Technical University of Ostrava Ostrava, Czech Republic Ostrava, Czech Republic ISBN 978-3-030-05712-1 ISBN 978-3-030-05713-8 (eBook) https://doi.org/10.1007/978-3-030-05713-8 Library of Congress Control Number: 2018964900 © Springer Nature Switzerland AG 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Preface This book presents an innovative proposal to optimize bucket elevators and related transport processes using discrete element method (DEM). The book contents are based on real and simulated measurements, procedures, and patents acquired when working on the dissertation by Gelnar [1]. Before the book introduces and describes the newly improved design and optimi- zation method based on DEM, it opens with the description of the conventional method applied in the design of machinery using computer-aided design. Because the newly proposed design and optimization method was studied and applied on bucket elevators, bucket elevators are briefly described, including related calcula- tions. The body of the book deals with the optimization of filling and discharge of the bucket elevators using DEM. The reported measurements of physical properties of selected materials serve as input values for the simulation method and basic cali- bration of the model bulk material in the DEM simulation. Next, a 3D simulation model is proposed, which is a digital twin of the validation bucket elevator. The model works with programmed movements, speeds, and geometry to simulate the filling and discharge of the transported material. As the use and accuracy of the simulation results must be validated against real results, the book continues with a validation of the dynamic flow of bulk materials on a newly designed, patented vali- dation bucket elevator, i.e., a laboratory-scale validation bucket elevator. When the simulation outputs are validated for the head section, simulations are made for the boot of the bucket elevator. All the results are used to continuously optimize the laboratory-scale validation bucket elevator and calibration of the bulk material. The simulation method was also verified in real conditions. It was used for the simula- tion and optimization of material filling and discharge of a real bucket elevator used in the transport of abrasive materials. Based on the results, basic structural modifi- cations are proposed to increase the bucket elevator performance. We believe that in the future this innovative design method shall become more accurate and the v vi Preface calculations will be obtained in a faster and more efficient manner. The book also contains short videos – see the link http://bsc.vsb.cz, which shall hopefully enrich the learning experience for students or help in the practice when designing bucket elevators and similar equipment. Ostrava, Czech Republic Daniel Gelnar Jiri Zegzulka Reference 1. Gelnar, D.: Verification and validation of DEM models of bulk materials used with bucket elevators, and of possible real situation solutions in practice, when filling and discharging the buckets. Ostrava: VŠB - Technical University of Ostrava, supervisor of dissertation: Prof. Ing. Jiří Zegzulka, CSc. Report ISBN 978–80–248-3795-6 (2015) Acknowledgment Thanks to Bulk Solids Center Czech Republic (ENET, HGF VŠB-TUO) for creating conditions for interdisciplinary research. This paper was conducted within the framework of the project LO1404: Sustainable development of ENET Centre, the project SP2018/47: Calibration and experimental devices for the research and validation of simulation models and the project Innovative and additive manufacturing technology - new technological solu- tions for 3D printing of metals and composite materials, reg. no. CZ.02.1.01/0.0/0. 0/17_049/0008407 financed by Structural Founds of Europe Union. vii Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Basic Description of DEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Basic Description of Bucket Elevators . . . . . . . . . . . . . . . . . . . . . . . . . 17 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 Bucket Elevator Filling and Discharge . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1 Discharge of Buckets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1.1 Gravity Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.2 Mixed Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1.3 Centrifugal Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 Bucket Filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2.1 Direct Flow of Material Filling . . . . . . . . . . . . . . . . . . . . . . 38 4.2.2 Theoretical Calculation of Direct Flow Filling . . . . . . . . . . 39 4.2.3 Scooping of Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.4 Combined Method of Bucket Filling . . . . . . . . . . . . . . . . . 42 4.2.5 Theoretical Calculation of Scooping . . . . . . . . . . . . . . . . . 42 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 The New Method of Design and Optimization . . . . . . . . . . . . . . . . . . 49 6 Input Parameters for DEM – Bulk Material . . . . . . . . . . . . . . . . . . . . 51 6.1 Selection of Particle Shape for Simulation and Real Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.2 Measurements of Apparent Density and Volumetric Weight . . . . . 55 6.3 M easurements of Internal Friction . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.4 Measurements of External Friction . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.5 Measurements of Repose Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.6 Measurements of Particle Size Distribution . . . . . . . . . . . . . . . . . . 61 6.7 M easurements of Coefficient of Restitution . . . . . . . . . . . . . . . . . . 64 ix x Contents 6.8 Measurements of Sliding Friction . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.9 Measurements of Rolling Friction . . . . . . . . . . . . . . . . . . . . . . . . 68 6.10 Summary of Results for DEM Input Parameters . . . . . . . . . . . . . 72 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7 Input Parameters for DEM – Geometry of the 3D Model and Validation Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.1 Creation of Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . 75 7.2 Design and Creation of the Validation Bucket . . . . . . . . . . . . . . . . 78 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 8 Input Parameters – Kinematic Properties . . . . . . . . . . . . . . . . . . . . . . 89 9 Process Validation and Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 9.1 Direct Measurements and the Validation Bucket Elevator . . . . . . . 95 9.2 E valuation of the Direct Method Using DS-NET Strain Gauge System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 9.3 I ndirect Measurements and the Validation Bucket Elevator . . . . . . 96 9.4 E valuation of the Indirect Method Using PIV Software (Particle Image Velocimetry) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 9.5 V alidation – Preparation of Measurements . . . . . . . . . . . . . . . . . . . 100 9.6 V alidation – Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . 104 10 T he Results for the Optimization of Bucket Filling and Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 10.1 T he Results for Optimization of Bucket Discharge . . . . . . . . . . . 131 10.2 T he Results for Optimization of Bucket Filling . . . . . . . . . . . . . . 137 11 T he Results for Optimization of Filling Bulk Material in the Bucket to Minimize Travel Resistance and Impacts . . . . . . . . 165 12 T he Results for Process Optimization of Bulk Material Filling into the Bucket to Minimize Abrasive and Destructive Impacts of the Bucket Edge on the Transported Mass . . . . . . . . . . . . 171 13 T he Optimization of Bucket Discharge to Maximize the Transported Volume and to Minimize Material Fall Down the Shaft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 14 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Interesting Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Awards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Abbreviations CAD Computer-aided design CCD camera Charge-coupled device – a camera with a light-sensitive chip able to bind electric charge CFD Computational fluid dynamics DEM Discrete element method EDEM Software using the discrete element method to simulate bulk materials FEM Finite element method MBD Multibody dynamics PIV Particle image velocimetry – a method using the pixel difference between two images to determine the speed and travel of particles in time xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.