ebook img

Discrete cosine and sine transforms: general properties, fast algorithms and integer approximations PDF

353 Pages·2007·1.75 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Discrete cosine and sine transforms: general properties, fast algorithms and integer approximations

Prelims-P373624.tex 7/8/2006 13:3 Pageix Preface Since the book, Discrete Cosine Transform by K. R. Rao and P.Yip (Academic Press, Boston) was published in 1990, the discrete cosine transform (DCT) has increasingly attractedtheattentionofscientific,engineeringandresearchcommunities.TheDCTisused inmanyapplicationsandindatacompressioninparticular.Thisisduetothefactthatthe DCThasexcellentenergy-packingcapabilityandalsoapproachesthestatisticallyoptimal Karhunen–Loévetransform(KLT)indecorrrelatingasignal.Thedevelopmentofvarious fastalgorithmsfortheefficientimplementationoftheDCTinvolvingrealarithmeticonly, further contributed to its popularity. In the last several years there have been significant advancesanddevelopmentsinboththeoryandapplicationsrelatingtotransformprocessing ofsignals. Inparticular, digitalprocessingmotivatedtheinvestigationofotherformsof DCTs for their integer approximations. International standards organizations (ISO/IEC andITU-T)haveadoptedtheuseofvariousformsoftheintegerDCT.Atthesametime, the investigation of other forms of discrete sine transforms (DSTs) has made a similar impact.Thereisthereforeaneedtoextendthecoveragetoincludethesetechniques.This bookisaimedatdoingjustthat. Theauthorshaveretainedmuchofthebasictheoryoftransformsandtransformprocessing, since the basic mathematics remains valid and valuable. The theory and fast algorithms oftheDCTs,aswellasthosefortheDSTs,aredealtwithingreatdetail.Thereisalsoan appendixcoveringsomeofthefundamentalmathematicalaspectsunderlyingthetheory oftransforms.ItisnoexaggerationtosaythatapplicationsusingDCTarenumerousand itiswiththisinmindthattheauthorshavedecidednottoincludeapplicationsexplicitly. Readers of this book will either have practical problems requiring the use of DCT, or want to examine the more general theory and techniques for future applications. There isnopracticalwayofcomprehensivelydealingwithallpossibleapplications. However, it must be emphasized that implementation of the various transforms is considered an integralpartofourpresentation.Itistheauthors’hopethatreaderswillnotonlygainsome understandingofthevarioustransforms,butalsotakethisknowledgetoapplytowhatever processingproblemstheymayencounter. ThebookDiscreteCosineandSineTransforms:Generalproperties,Fastalgorithmsand IntegerApproximationsisaimedatboththenoviceandtheexpert.Theferventhopesand aspirationsoftheauthorsarethatthelatestdevelopmentsinthegeneralDCT/DSTfield ix Prelims-P373624.tex 7/8/2006 13:3 Pagex x Preface furtherleadintoadditionalapplicationsandalsoprovidetheincentiveandinspirationto further modify/customize these transforms with the overall motivation to improve their efficiencieswhileretainingthesimplicityinimplementations. V.Britanak P.C.Yip K.R.Rao February2006 Prelims-P373624.tex 7/8/2006 13:3 Pagexi Acknowledgments Manymanyhoursandeffortshavebeenspentbehindthecomputerinpreparingandtyping electronicformofthemanuscript,inanalyticalderivationofvariousmatrixfactorizations, drawingthefiguresofsignalflowgraphsandverifyingbycomputerprograms.Thisbook istheresultoflong-termassociationofthethreeauthors,V.Britanak,P.YipandK.R.Rao. Special thanks go to their respective families for their support, perseverance and under- standing.Weappreciatealsothecontinuedencouragementandmanyhelpfulsuggestions ofourcolleaguesandfriendsinthedepartmentsoftheinstituteanduniversities.Especially, theleadingauthorwishestothankhislove,Gulinka,forherpatience,understandingand encouragementduringtheyearsofpreparationofthisbook.Finally,itisalsoappropriate toacknowledgeherethefinancialsupportprovidedbySlovakScientificAgencyVEGA, ProjectNo.2/4149/24. TheauthorshavebeenhonoredtohaveworkedwithAcademicPressInc.ElsevierScience onthisproject.Theencouragement,supportandunderstandingforthedelayedcompletion of the book provided by the publishing editorial staff at Materials Science Department, andinparticular,ChristopherGreenwellandDr.JonathanAgbenyega,havebeengreatly appreciated. xi Prelims-P373624.tex 7/8/2006 13:3 Pagexiii List of Acronyms 1-D One-Dimensional 2-D Two-dimensional 3-D Three-dimensional BinDCT BinaryarithmeticDCT BinDST BinaryarithmeticDST CMT C-MatrixTransform CPU CentralProcessorUnit DCT DiscreteCosineTransform DFT DiscreteFourierTransform DHT DiscreteHartleyTransform DLU DLUmatrixfactorizationorDLUcomputationalstructure DPCM DifferentialPulseCodeModulation DST DiscreteSineTransform DTT DiscreteTrigonometricTransform DUL DULmatrixfactorizationorDULcomputationalstructure DWT DiscreteWTransform EOT Even/OddTransform FCT FourierCosineTransform FFCT FastFourierCosineTransform FFT FastFourierTransform FRDCT FractionalDiscreteCosineTransform FRDFT FractionalDiscreteFourierTransform FRDST FractionalDiscreteSineTransform FST FourierSineTransform GCMT GeneralizedC-MatrixTransform GCT GeneralizedChenTransform GDFT GeneralizedDiscreteFourierTransform GDHT GeneralizedDiscreteHartleyTransform HA HalfsampleAntisymmetric HS HalfsampleSymmetric ICT IntegerCosineTransform IEC InternationalElectrotechnicalCommission IEEE InstituteofElectricalandElectronicsEngineers IntDCT IntegerDCT xiii Prelims-P373624.tex 7/8/2006 13:3 Pagexiv xiv ListofAcronyms INTDCT IntegerDCT IntDST IntegerDST ISO InternationalOrganizationforStandardization IST IntegerSineTransform ITU-T InternationalTelecommunicationStandardizationSector JPEG2000 JointPhotographicExpertsGroup KLT Karhunen–LoéveTransform LDCT LosslessDCT LDST LosslessDST LDU LDU matrixfactorization LU LU matrixfactorization LUL LULmatrixfactorizationorLULcomputationalstructure MDCT ModifiedDiscreteCosineTransform MDL Multi-Dimensionalcomputationalstructure MDST ModifiedDiscreteSineTransform MLT ModulatedLappedTransform MPEG MovingPictureExpertsGroup MSE MeanSquareError PCA PrincipalComponentAnalysis PLUS PLUSmatrixfactorization POS PointsOfSymmetry QR QRmatrixfactorization RDCT ReversibleDCT RDST ReversibleDST SCT SymmetricCosineTransform SignDCT SignedDCT SMT S-MatrixTransform SOPOT SumOfPowersOfTwo SST SymmetricSineTransform SVD SingularValueDecomposition ULD ULDmatrixfactorizationorULDcomputationalstructure ULU ULUmatrixfactorizationorULUcomputationalstructure VLSI VeryLarge-ScaleIntegration WA WholesampleAntisymmetric WHT Walsh–HadamardTransform WS WholesampleSymmetric Ch01-P373624.tex 7/8/2006 12:52 Page1 CHAPTER1 Discrete Cosine and Sine Transforms 1.1 Introduction Since the publication of original book [1] more than 15 years ago many new con- tributions/extensions/modifications/updates/improvements to the origin, theoretical and practical aspects of the discrete cosine transforms (DCTs) and discrete sine transforms (DSTs) have been developed.Although the original book [1] has focused almost exclu- sivelyonthefastalgorithmsandapplicationsoftheDCToftypeII(DCT-II)whichhas becometheheartofmanyestablishedinternationalimage/videocodingstandards[2],since thenotherformsoftheDCTandDSThavebeeninvestigatedindetail.Thecompletesetof DCTsandDSTs,calledthediscretetrigonometrictransforms,hasfoundanumberofdigital signalprocessingapplications.Amongthem,forexample,theDCT/DSToftypeIV(DCT- IV/DST-IV)andDCT-II/DST-IIareusedfortheefficientimplementationoflappedorthog- onaltransforms[6]andperfectreconstructioncosine/sinemodulatedfilterbanks(known asmodifieddiscretecosine/sinetransforms(MDCTs/MDSTs)orequivalentlymodulated lappedtransforms(MLTs)[6])forhigh-qualitytransform/subbandaudiocoding. ThecompletesetofDCTsandDSTsconstitutingtheentireclassofdiscretesinusoidaluni- tarytransformsispresentedincludingtheirdefinitions,generalmathematicalproperties, relationstotheKarhunen–Loèvetransform(KLT),withtheemphasisonfastalgorithms andintegerapproximationsfortheirefficientimplementationsintheintegerdomain.The DCTs and DSTs are real-valued transforms that map integer-valued signals to floating- pointcoefficients.OneoftheimportantissuesfortheapplicabilityofDCTsandDSTsis the existence of fast algorithms that allow their efficient computation.Although the fast algorithmsreducethecomputationalcomplexitysignificantly,theystillneedfloating-point operations.Toeliminatethefloating-pointoperations,methodsofintegerapproximations havebeenproposedtoconstructandflexiblygenerateafamilyofintegertransformswith arbitraryaccuracyandperformance.Theintegertransformscurrentlyrepresentthemod- erntransformtechnologiesforlosslesstransform-basedcoding.TheintegerDCTs/DSTs withlow-costandlow-poweredimplementationcanreplacethecorrespondingreal-valued transformsinwirelessandsatellitecommunicationsystemsaswellasportablecomputing applications. 1 Ch01-P373624.tex 7/8/2006 12:52 Page2 2 DiscreteCosineandSineTransforms ThebookcoversvariouslatestdevelopmentsinDCTsandDSTsinaunifiedway,anditis essentiallyadetailedexcursiononorthogonal/orthonormalDCTandDSTmatrices,their matrixfactorizationsandintegerapproximations. Itishopedthatthebookwillserveas anexcellentreferenceindevelopingintegerDCTsandDSTsaswellasaninspirationfor furtheradvancedresearch. 1.2 Organizationofthebook The book is organized in terms of chapters starting with this introductory chapter; each chapterhasitsownlistofgeneralreferencesandappendices. Chapter2coversdefinitionsandgeneralpropertiesofclassicalintegraltransforms,Fourier cosinetransformandFouriersinetransform.Thegeneralpropertiesofthesecontinuous transforms such as inversion, linearity, shift in time/frequency, differentiation in time/ frequency, asymptotic behavior, integration in time/frequency and convolution in time togetherwithexamplesofintegraltransformsforselectedcontinuousfunctionsarepre- sentedinSections2.2–2.5.AlltheDCTsandDSTsarenotsimplydiscretizedversionsof the corresponding integral continuous transforms rather, the discretized cosine and sine functionsformthebasisfunctionsforanentirefamilyofDCTsandDSTs,andareactually eigenfunctions(oreigenvectors)ofcertaintridiagonalmatrixforms.Thisissueisaddressed inSections2.6and2.7.DCTsandDSTspossessnicemathematicalpropertiessuchasuni- tarity,linearity,scalingandshiftintime,and,inparticular,convolutionpropertieswhich arediscussedindetailinSections2.8and2.9. KLT an optimal transform from a statistical viewpoint is defined in Chapter 3 (Section 3.2)alongwiththedemonstrationoftheasymptoticequivalenceofDCT-IandDCT-IIto KLTinSection3.3.Section3.4addressestheasymptoticequivalenceofdifferenttypesof correlationmatricesandtheirorthonormalrepresentationsleadingtoageneralprocedure for generating certain discrete unitary transforms for a given class of signal correlation matrices. For the DCT and DST to be viable, feasible and practical, the fast algorithms for their efficient implementation in terms of reduced memory, implementation complexity and recursivity are essential. The fast algorithms for both one- and two-dimensional (1-D, 2-D,respectively)DCTs/DSTsarethemainthrustinChapter4.InSection4.2,thedefini- tions,propertiesofandrelationsbetweenDCTsandDSTsarefirstpresented,followedby presentationoftheexplicitformsoforthonormalDCTandDSTmatricesforN=2,4and 8 in Section 4.3. The fast 1-D rotation-based algorithms for the computation of DCTs andDSTsbasedonthe(recursive)sparsematrixfactorizationsofthecorrespondingDCT and DST matrices and represented by the generalized signal flow graphs are discussed in Section 4.4. The matrix factorizations reveal various interrelations between different versionsoftheDCTandDST.Theseselectedfastalgorithmsareveryconvenientincon- structingintegerapproximationsofDCTsandDSTs.Section4.5analyzesexisting2-Dfast DCT/DSTalgorithmsandsuggestsasimplemethodforgenerating2-DdirectDCT/DST algorithmsfromthecorresponding1-Dones. AsintegerversionsoftheDCT/DSThaveattractedtheattentionofresearchersresulting insubstantialsimplificationintheirimplementationwhilestillmaintainingperformance Ch01-P373624.tex 7/8/2006 12:52 Page3 DiscreteCosineandSineTransforms 3 nearlyequaltotheirearlierversions,itisonlylogicalthatthisarenabefocusedinmuch detail and depth in Chapter 5. Section 5.2 presents the basic material from linear alge- bra,theoryofmatricesandmatrixcomputationswhichisfundamentalforunderstanding the approximation methods. In order to evaluate the approximation error between the approximatedandoriginaltransformmatrixandtomeasuretheperformanceofresulting approximatedtransformusedindatacompression,sometheoreticalcriteriaaredefinedin Section5.3.Finally,variousdevelopedmethodsanddesignapproachestointegerapprox- imation of the DCT and DST are detailed in Section 5.4. More recent developments in designinglosslessDCTs,invertibleintegerDCTsandreversibleDCTsincludingthelatest developmentsarediscussedinSections5.5and5.6. Allchaptersendwithasummary,problems/exercisesandreferences.Problems/exercises reflectthecontentsofthecorrespondingchaptersandareintendedforthereaderintermsof refresh/review/reinforcetheircontents.Extensivedefinitions,principles,properties,signal flowgraphs,derivations,proofsandexamplesareprovidedthroughoutthebookforproper understandingofthestrengthsandshortcomingsofthespectrumofcosine/sinetransforms andtheirapplicationindiversedisciplines. 1.3 Appendices AppendicesA.1 throughA.3 review the important basic concepts of linear algebra such asvectorspaces(AppendixA.1),matrixeigenvalueproblem(AppendixA.2)andmatrix decompositions (AppendixA.3) in the form of definitions and theorems with exercises/ problemsattheend.Deterministicaswellasrandomsignals,theirclassificationandrepre- sentationsarediscussedinAppendixA.4.AnumberofexamplesarelistedinAppendices toillustratetheuseofbasicconceptsinpracticalapplications. 1.4 References To retain the connectivity among the chapters of the book as much as possible, each chapter in the book includes its own list of references related to the discussed sub- ject. Therefore, some references may appear in the lists of references of chapters more thanonce. 1.5 Additionalreferences Anextensivelistofadditionalreferenceshavebeenappendedtothischapter.Noclaimfor completenessofthislistismade.Additionalreferences,althoughnotcitedinsubsequent chapters,reflectthevariousrecent/latestdevelopmentsintheefficientimplementationsof DCTsandDSTs,mainly1-D,2-D,3-Dandingeneral,multi-dimensionalfastDCT/DST algorithmsforthetimeperiodfrom1989/1990uptonow.Theysupplementthecompre- hensivelistofreferencesrelatedtoDCTsandDSTsintheoriginalbooks[1,2].Thus,this bookandbooks[1,2]covercompletelythetheoreticaldevelopments,algorithmichistory ofDCTsandDSTsincludingtherecentactiveresearchtopics. Ch01-P373624.tex 7/8/2006 12:52 Page4 4 DiscreteCosineandSineTransforms For clarity, the additional references are classified into the following categories with guidelines: • OtherbooksdiscussingDCTs,DSTsandKLT[3–9] TherecentpublishedbooksdiscussboththetheoreticalandpracticalaspectsofDCTs andDSTsincludingtheKLT. • Fast1-Dradix-2DCT/DSTalgorithms[10–67] Thiscategoryisfurthersubdividedintothreeparts:fastalgorithmsforcomputation of DCT-I, -II, -III, -IV and corresponding DST-I, -II, -III, -IV [10–32], fast DCT algorithmsonly[33–59]andfastDSTalgorithmsonly[60–67]. • Fastdirect2-DDCT/DSTalgorithms[68–87] This category includes the direct 2-D radix-2 DCT/DST algorithms, and direct even/prime-length2-Dalgorithmsbasedoncyclicconvolutionsandcircularorskew- circularcorrelations.Since2-DDCT/DSTkernelsareseparable,the2-DDCT/DST computation can simply be realized by the so-called row–column method which sequentiallyusesanyfast1-DDCT/DSTalgorithmonrowsandcolumnsoftheinput datamatrix.Ingeneral,many1-DDCT/DSTalgorithmscanbeextendedtothedirect 2-Dcaseusinga2-Ddecompositionprocess. • Fastdirect3-Dandmulti-dimensionalDCT/DSTalgorithms[88–97] Thehigher-dimensionalDCT/DSTalgorithmscanbeobtainedbythesimilarmethods asthoseof2-DDCT/DSTones. • Fast even/odd/composite-length, prime-factor, radix-q and mixed-radix DCT/ DSTalgorithms[98–126] ThelimitationcommontomostfastDCT/DSTalgorithmsisthatN mustbeapower of2(radix-2DCT/DSTalgorithms).Inpractice,varioussequencelengthsotherthan apowerof2mayoccur.Todealwithsuchsequencelengths,newfasteven/odd-length (N isaneven/oddinteger),composite-length(N=p·q,wherepandqarerelatively primes), prime-factor, radix-q (N=qn, whereq isanoddinteger)andmixed-radix (N=2n·q, where q=3,5,6,7,9, ...) DCT/DST algorithms have been proposed. Even/odd-lengthandprime-factorDCT/DSTalgorithmscanbedirectlymappedinto thecorrespondingeven/odd-lengthandprime-factorcomplex-valuedorreal-valued FFTmodules,ortheyarebasedonshortercyclic/skew-cyclicconvolutionsandskew- circular correlations. The algorithms for sequence lengths other than 2n need quite differentmethodsfortheirderivation,andgenerallytheyhaveahighercomputational complexityandhavemorecomplexstructure. • FastpruningDCTalgorithms[127–134] ThestandardDCT(radix-2)algorithmsinherentlyassumethatthelengthsofinput and output data sequences are equal. However, in many applications such as data compression, the most important information about the signal is kept by the low- frequency DCT coefficients. Therefore, from N coefficients (N being the length of datasequence)onlyN (N <N)lowest-frequencycoefficientsneedtobecomputed. 1 1 Suchamethodwhereonlyasubsetoftheoutputcoefficientsisutilizedtoaccelerate the computation is referred to as “pruning”. Therefore the algorithms, called fast pruningDCTalgorithms,havebeendevelopedjustforthispurpose.Ingeneral,thefast DCTalgorithmtobeprunedmustbedefinedbyasimplestructuredrecursivematrix factorizationofthetransformmatrixandrepresentedbytheregularsignalflowgraph. Ch01-P373624.tex 7/8/2006 12:52 Page5 DiscreteCosineandSineTransforms 5 • DCT/DSTcomputationbyrecursivefilterstructures[135–149] AclassofalgorithmsforarbitrarylengthforwardandinverseDCT/DSTcomputations are recursive algorithms where DCT/DST kernels are converted to regular regres- sive structures based on sinusoidal recursive formulae, or recurrence formulae for Chebyshevpolynomials(ofthesecondandthirdkind),orClenshaw’srecurrencefor- mula.Althoughtheserecursivealgorithmsarenotefficientintermsofcomputational complexity,regressivestructuresprovidesimpleandefficientschemesfortheparallel VLSIimplementationofthevariablelengthDCTs/DSTs. • FractionalDCTsandDSTs[150–152] Recently,thefractionalDCTs(FRDCTs)andfractionalDSTs(FRDSTs)forDCT-II, symmetric cosine and symmetric sine transforms have been introduced. The defi- nitions of FRDCTs and FRDSTs are based on eigen decompositions (eigenvalues andeigenvectors)ofthecorrespondingDCTandDSTmatrices;orsimplybyother words, FRDCTs and FRDSTs are defined through the “fractional” real powers of DCTandDSTmatrices.ItisthesameideaasthatofthefractionaldiscreteFourier transform(FRDFT).TheinvestigationofFRDCTandFRDST,theirgeneralproper- tiesarerecentlyanactiveandinterestingresearchtopic.Openproblemsinvolvethe rigorousdefinitionsofFRDCTsandFRDSTsforotherformsofDCTandDST,study oftheirgeneralproperties,matrixrepresentationsand,inparticular,fastalgorithms fortheirpracticalimplementations[152]. • FastquantumalgorithmsforDCTsandDSTs[153] Quantumcomputinghasrecentlybecomeanexcitingareaofemergingdigitalsignal processing applications. A classical computer does not allow to calculate N-point DCTsorDSTs,whereN=2n,inlessthanlineartime.Thistriviallowerboundisno longervalidforaquantumcomputer.Infact,itispossibletorealizeN-pointDCTs and DSTs with as little as O(log 2N) operations on a quantum computer, whereas 2 the all known fast DCT/DST algorithms realized on a classical computer require O(Nlog N)operations.BasedonexistingefficientquantumcircuitsfortheDFT,the 2 (extremely)fastquantumDCT/DSTalgorithmscanbederivedandimplementedon anumberofquantumcomputingtechnologies. Webelievethattheadditionalreferences,althoughnotusedinthebook,willbeavaluable andusefulsourceforthereaderinher/hisfurtherstudyoradvancedresearchorinsolving specificproblemsintheareaofDCT/DSTapplications. References [1] K. R. Rao and P.Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications, AcademicPress,BostonMA,1990. [2] K.R.RaoandJ.J.Hwang,TechniquesandStandardsforDigitalImage/Video/AudioCoding, Prentice-Hall,UpperSaddleRiver,NJ,1996. OtherbooksdiscussingDCTs,DSTsandKLT [3] A.K.Jain,FundamentalsofDigitalImageProcessing,Prentice-Hall,EnglewoodCliffs,NJ, 1989.

Description:
The Discrete Cosine Transform (DCT) is used in many applications by the scientific, engineering and research communities and in data compression in particular. Fast algorithms and applications of the DCT Type II (DCT-II) have become the heart of many established international image/video coding stan
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.