ebook img

Discovering Mathematics: A Problem-Solving Approach to Mathematical Analysis with MATHEMATICA® and Maple™ PDF

260 Pages·2011·3.17 MB·English
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Discovering Mathematics: A Problem-Solving Approach to Mathematical Analysis with MATHEMATICA® and Maple™

DiscoveringMathematics (cid:2) Jiˇrí Gregor Jaroslav Tišer Discovering Mathematics A Problem-Solving Approach to Mathematical Analysis ® with MATHEMATICA and Maple™ JirˇíGregor JaroslavTišer DepartmentofMathematics DepartmentofMathematics CzechTechnicalUniversity CzechTechnicalUniversity Techniká2 Techniká2 16627Praha6 16627Praha6 CzechRepublic CzechRepublic gregorj@math.feld.cvut.cz tiser@math.feld.cvut.cz Maple™isatrademarkofWaterlooMapleInc.,615KumpfDrive,Waterloo,Ontario,CanadaN2V1K8, http://www.maplesoft.com ‘Mathematica’andthe‘Mathematica’logoareregisteredtrademarksofWolframResearch,Inc(“WRI”, www.wolfram.com)andareusedhereinwithWRI’spermission.WRIdidnotparticipateinthecreation ofthisworkbeyondtheinclusionoftheaccompanyingsoftware,anditoffersnoendorsementbeyond theinclusionoftheaccompanyingsoftware Additionalmaterialtothisbookcanbedownloadedfromhttp://extras.springer.com Password:[978-0-85729-054-0] ISBN978-0-85729-054-0 e-ISBN978-0-85729-064-9 DOI10.1007/978-0-85729-064-9 SpringerLondonDordrechtHeidelbergNewYork BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressControlNumber:2010938724 MathematicsSubjectClassification(2000): 00A07,00A35,00A05 ©Springer-VerlagLondonLimited2011 Apartfromanyfairdealingforthepurposesofresearchorprivatestudy,orcriticismorreview,asper- mittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced, storedortransmitted,inanyformorbyanymeans,withthepriorpermissioninwritingofthepublish- ers,orinthecaseofreprographicreproductioninaccordancewiththetermsoflicensesissuedbythe CopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethosetermsshouldbesentto thepublishers. Theuseofregisterednames,trademarks,etc.,inthispublicationdoesnotimply,evenintheabsenceofa specificstatement,thatsuchnamesareexemptfromtherelevantlawsandregulationsandthereforefree forgeneraluse. Thepublishermakesnorepresentation,expressorimplied,withregardtotheaccuracyoftheinformation containedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrorsoromissions thatmaybemade. Coverdesign:deblik Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) v ‘...mathematicshastwofaces;... Mathematics presentedintheEuclideanwayappearsasasys- tematic, deductive science; but mathematics in themakingappearsasanexperimental,inductive science.Bothaspectsareasoldasthescienceof mathematicsitself.’ G.Polya ‘Aproblem?Ifyoucansolveit,itisanexercise; otherwiseit’saresearchtopic.’ R.Bellman Prologue Thebestwaytolearnthingsisbydoingthem.Butwhymathematics? Mathematics wasalwaysoneofthe less populartopics inschool, mathematics is not easytostudy,mathematicsteachersaredemandingandanswerstotheirquestionsare oftenencouteredwithobjections,problemstheyposearedifficulttosolve,etc. Isthereawaytooverridenegativesentimentstowardsmathematics? Successisagoodstimulus.Wehavetoknowhowtosolveproblemssuccessfullyand thentheymaybecomefascinatingandrewarding.Somepeoplewanttostartwithdiffi- cultproblemsandfollowsomesuggestedpathtoasolution,othersmaywanttogradu- allydeveloptheirabilityonlesscomplicatedproblems. Anabilitytosolveproblemswillcertainlybeusefulineverydaylife. Aninterconnected netofmathematical problemsfromvarioussourcesandwithvari- ous levels of difficulty is presented together with supporting material (hints, plans of solution, definitions and theorems, answers and references) and any student, teacher, engineerorinterestedpersonmaysharpenhisskillinhisownway. Anynewpieceofknowledgecanbebuiltonlyonearlieracquiredknowledge. ThewayofapplyingCalculusinthiscollectionrequiressomebasicknowledge(afirst yearuniversitycourseissufficient).Toshowinterestingproblemswhichareusuallynot includedinCalculuscourses,theorderingoftopicsisrathernon-standard.Threemain partsareincluded:Concepts,Tools,Applications. Doweneedmathematicswhen‘allproblemscanbesolvedbycomputers’? Thiscommonstatementisknowntobemisleading.Butcomputerswithpowerfulsoft- ware can be a valuable tool when we want to get rid of routine calculation, to verify conjectures on examples or visualize results. We have chosen MATHEMATICA and Mapleasthesoftwaretoolandsomehintsaregivenonwhereandhowitcanbeused. Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 PartI Concepts 1 Mappings,CompositeandInverse-Functions . . . . . . . . . . . . . . . 11 2 InfiniteSequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 PartII Tools 4 FiniteSums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6 CollocationandLeastSquaresMethods . . . . . . . . . . . . . . . . . . . 113 PartIII Applications 7 MaximalandMinimalValues . . . . . . . . . . . . . . . . . . . . . . . . . 131 8 ArcsandCurves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 9 CenterofMassandMoments . . . . . . . . . . . . . . . . . . . . . . . . . 163 10 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 PartIV Appendix 11 AnswerstoProblems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 vii Part I Concepts Introduction WhyMathematics? Thesolutionofcomplexproblemsinengineering,ineconomicsandevenineverydaylife isoftenverydifficultandacceptingresultswhichhavenotbeenverifiedtosufficientextent maysometimesberatherrisky.Wecannothopefora‘generalsolvingmethod’,neverthe- lesssomekindofstrategiesorstructuredanticipations—‘theartofproblemsolving’—can bedescribed.Experiments,techniquesoftrial-and-error,methodsbasedonsimplification, analogy and abstraction are recognized as indispensable parts of this art. In science and technologysuchtoolsareoftensuccessfullyreplacedbymathematicalmodelsoftheprob- lemunderinvestigation.Roughlyspeaking,amathematicalmodelisacollectionofcon- ceptswithwell-definedpropertiesandinterrelationssuchthatthebehaviorofthecollection isapttoimitatethebehaviortheobjectunderinvestigation.Suchamathematicalstructure isa‘language’inwhichtheproblemhastobeexpressed.Suchexpressionisthemathe- maticalformulationiftheproblem. Theloadingcapacityofacraneorabridgecanbecalculatedbysolvingcertaindiffer- entialoralgebraicequation,asystemoflinearequationsandinequalitiesisusedinsolving optimization problems, a weather forecast can be obtained as a solution of a system of partialdifferenceequations,theRubiccubecanbesolvedusingsomeknowledgeofgroup theory,somemethodsofcodingcanbedescribedbyapplyingnumbertheory,andmany moreexamplescanbegiven. TwoStages Somestandardproblemshavestandardmathematicalmodels.Forinstance,dynamicalpro- cessesareusuallydescribedbyordinarydifferentialequationsinvarioussettings.Tosolve geometrical problems, various coordinate systems and methods of analytic or algebraic geometrycanbeused.Ontheotherhand,someproblemsleadusintoratherunexpected partsofmathematics,or—asshowninthehistoryofmathematics—theymayleadtobuild- ingnewbranchesofmathematics.Analysisofgamesleadtoprobabilitytheory,problems J.Gregor,J.Tišer,DiscoveringMathematics, 1 DOI10.1007/978-0-85729-064-9_1,©Springer-VerlagLondonLimited2011 2 Introduction likethefamous‘SevenbridgesofKönigsberg’leadstographtheory.Wehavetoconclude thatwhentryingtoestablishamathematicalmodelwecannotberestrictedtoapredefined areaofmathematics.Amathematicalmodelcanberatherdifficulttofind,oftenbecause specialistsspeakingdifferent‘languages’oftheirseparatebranchesofsciencemustunder- standeachother,findacommonlanguageandformulatetheultimategoal. Inamathematicalmodelingapproachtoproblemsolving,weneedtodiscusstwodis- tinctactivities.Firstofallasuitablemathematicalmodelandamathematicalformulation hastobefoundandsecondly,wemustbeabletosolvetheemergingmathematicalprob- lem. Solvingsomecomplicatedschemeoftrainsmovingatdifferentspeedsinoppositedi- rections,withstopsandrestrictions,weassumethatinterrelationsbetweenspeed,distance andtimeareknown.Themainproblemistoestablishasystemofequationsgoverningall therelevantquantities.Theirsolutionmightberathersimple,althoughsomesupplemen- tary steps ofverification, exclusion ofsomevirtualsolutions andotherconcluding steps might still cause difficulties. Assuming that we have a mathematical formulation of our problem,wehavetomakesurethatitssolutionexists(inmanycasesthisisfarfromobvi- ous)orperhapsthatithasmanysolutions.Thenwecantrytofinditssolution(s).Software packageslikeMATHEMATICA®1,Maple®2orotherscanbeofsubstantialhelp.Interpre- tationoftheresultanditsverificationisthefinalpartofthesolution. ProblemSolving Theonlywaytolearntheartofproblemsolvingisbydoingit.Mathematicalreasoning containsallthenecessaryconstituentsofgeneralproblemsolvingandthisisthemainrea- sonforstudyingmathematics.Acommondifficultyisthatmathematicaltextbooksoften contain(ready-made)definitionsandtheoremswithoutmotivationorjustification.Butwe havetoknowwhytheintroducedresultsarethemostadequateandusefulconcepts,and whyotherpossiblewaysarewrongormisleading.Alsoexercisesoften,bytheirlocation or context, have predefined steps of solution. These features do not support the skills of problemsolvingandamoregeneralapproachisdesirable.Aprerequisiteofsuchanap- proachisabasicknowledgeofmathematics(e.g.calculus,geometryandalgebra).Onsuch abasiswemaytrytolookbehindthecurtainsofmathematics:tolearnhowandwhyvari- ousmathematicalconceptsaredefined,toacquirebasicskillsinusingmathematicaltools anddevices,andfinallytoapplysuchknowledgetosolveproblemswhichoftenhavetheir originsoutsidemathematics. 1Mathematica® is a registered trademark of Wolfram Research, Inc., 100 Trade Center Drive, Champaign,IL61820-7237,USA,http://www.wolfram.com 2Maple® isatrademarkofWaterlooMapleInc.,615KumpfDrive,Waterloo,Ontario,Canada N2V1K8,http://www.maplesoft.com Introduction 3 HowToSolveIt Probablyoneofthebestdescriptionoftheprocessofproblemsolvingwithanemphasis on mathematics has been given by G. Polya in his book ‘How to solve it’. The author describesthefollowingfourbasicstagesofproblemsolvingindetail: 1. Understandingtheproblem. 2. Devisingaplan. 3. Carryingouttheplan. 4. Lookingback. Inallthesestagestheauthorrecommendstoanswersomequestionsandcarryoutsmall tasks.Inashortenedrewordingsomeofthemcanbeformulatedasfollows: DoIunderstandwhatiswanted,whatisknownandwhattheconditionsare? Aretheconditionssufficient,insufficientorredundant? DoIknowthesolutionofasimilar,relatedoranalogoussimplerproblem? CanIuseitsresultoritsmethod?CanIdesignsuccessivestepstowardsasolution?If not,canIformulateandsolveasimplerrelatedproblemandusetheresult? CanIcarryoutthedesignedstepstowardsasolution? CanIchecktheresultofeachofthesteps? DidIuseallthegivendataanddidIsatisfyalltheconditions? Arethereothersolutions? Cantheobtainedresultbeusedinsolvingotherrelatedproblems? Toillustratethisapproachletustrytosolvethefollowingtask: Findthepointwhichisthenearesttongivenones. Almostallthewordsinthisformulationareambiguousandwecannotevenstartthink- ingofhowtosolveit.Wehavetoanalyzeitsformulation.Themostsuspiciouspartseems tobethewording‘thenearest’.Itmightbeconnectedtodistances;onepossibleinterpreta- tioncouldbe:thepointforwhichthesumofdistancesfromthengivenonesisthesmallest. Butareallthegivenpointsmutuallydistinct?Ifnot,shouldthedistancefromtheunknown point to two coinciding ones be counted twice? Further, what is meant by ‘point’? Are theypointsinthegeometricalsense,oraretheyelementsofsomeabstractspace?Howare theydefinedinthelattercase?Lastbutnotleast:howisthedistancebetweentwopoints measured(ordefined)? Toresolvetheseambiguitieswemaywanttoreformulatethequestion.Werecallthatthe conceptofdistancehasbeenabstractlydefined.Asetsuchthatanytwoofitselements,say AandB,haveadefineddistanceρ(A,B)iscommonlycalledmetricspaceandelements ofsuchasetcanbecalledpoints.Thereforetheabovetaskcanbereformulatedasfollows: Given n mutually disti(cid:2)nct elements of a metric space, find an element x of this space such that the quantity ni=1ρ(x,xi) (i.e. the sum of the distances from x to the given x ’s) is the smallest possible. In such an abstract formulation the problem seems to be i unsolvable.Lookingbackatourstartingpointwemayfeelthatoriginallythepointsare in fact points in common ‘space’, i.e. in three-dimensional space, in which the distance meanstheEuclideandistance.Hence,forthedistanceρ(A,B)wehave ρ2(A,B)=(x −x )2+(y −y )2+(z −z )2 A B A B A B

Description:
Discovering Mathematics: A Problem-Solving Approach to Analysis with Mathematica and Maple provides a constructive approach to mathematical discovery through innovative use of software technology. Interactive Mathematica and Maple notebooks are integral to this books’ utility as a practical tool f
See more

The list of books you might like

book image

The Strength In Our Scars

Bianca Sparacino
·2018
·0.17 MB

book image

Corrupt (Devil's Night #1)

Penelope Douglas
·518 Pages
·2015
·0.74 MB

book image

The Mountain Is You

Brianna Wiest
·2020
·0.34 MB

book image

Cuentos completos

Andrés Caicedo
·2014
·1.0075 MB

book image

By Dr. Basheer Ahmad Mohyidin

764 Pages
·2009
·2.56 MB

book image

300

Antoni Tortajada
·2014
·0.364 MB

book image

2006-2007 Bulletin AMENDMENT I

Holmes Community College
·2006
·1.1 MB

book image

Electromagnetic Band Gap Structures in Antenna Engineering

Fan Yang, Yahya Rahmat-Samii
·282 Pages
·2008
·4.597 MB

book image

Insect Stories by Vernon L Kellogg

57 Pages
·2021
·0.43 MB

book image

The Eurocommunication study

104 Pages
·2003
·0.58 MB

book image

Watch the Sky by James H Schmitz

16 Pages
·2021
·0.13 MB

book image

Introducción a la psicología

Linda L. Davidoff; Jorge Alejandro Pérez Jaimes
·840 Pages
·1994
·54.155 MB

book image

Point-based graphics

Markus Gross, Hanspeter Pfister
·553 Pages
·2007
·18.321 MB