Diophantine Approximation and Nevanlinna Theory PaulVojta AbstractAswasoriginallyobservedbyC.F.Osgoodandfurtherdevelopedbythe author, there is a formal analogy between Nevanlinna theory in complex analysis andcertainresultsindiophantineapproximation.Thesenotesdescribethisanalogy, after briefly introducing the theory of heights and Weil function in number theory andthemainconceptsofNevanlinnatheory.Parallelconjecturesarethenpresented, inNevanlinnatheory(“Griffiths’conjecture”)andtheauthor’sconjectureonratio- nalpoints.Followingthis,recentworkisdescribed,highlightingworkofCorvaja, Zannier,Evertse,andFerrettioncombiningSchmidt’sSubspaceTheoremwithge- ometricalconstructionstoobtainpartialresultsonthisconjecture.Counterpartsof theseresultsinNevanlinnatheoryarealsogiven(duetoRu).Thesenotesalsode- scribe parallel extensions of the conjectures in Nevanlinna theory and diophantine approximation, to involve finite ramified coverings and algebraic points, respec- tively.Variantsoftheseconjecturesinvolvingtruncatedcountingfunctionsarealso introduced,andtherelationsofthesevariousconjectureswiththeabcconjectureof MasserandOesterle´ arealsodescribed. 0 Introduction BeginningwiththeworkofC.F.Osgood[1981],ithasbeenknownthatthebranch ofcomplexanalysisknownasNevanlinnatheory(alsocalledvaluedistributionthe- ory)hasmanysimilaritieswithRoth’stheoremondiophantineapproximation.This wasextendedbytheauthor[Vojta,1987]toincludeanexplicitdictionaryandtoin- cludegeometricresultsaswell,suchasPicard’stheoremandMordell’sconjecture (Faltings’theorem).ThelatteranalogytiesinwithLang’sconjecturethataprojec- PaulVojta DepartmentofMathematics,UniversityofCalifornia,970EvansHall#3840,Berkeley,CA 94720- 3840e-mail:[email protected] PartiallysupportedbyNSFgrantDMS-0500512 113 114 PaulVojta tive variety should have only finitely many rational points over any given number field(i.e.,isMordellic)ifandonlyifitisKobayashihyperbolic. Thiscircleofideashasdevelopedfurtherinthelast20years:Lang’sconjecture onsharpeningtheerrorterminRoth’stheoremwascarriedovertoaconjecturein Nevanlinnatheorywhichwasprovedinmanycases.Intheotherdirection,Bloch’s conjectures on holomorphic curves in abelian varieties (later proved; see Section 14 for details) led to proofs of the corresponding results in number theory (again, see Section 14). More recently, work in number theory using Schmidt’s Subspace TheoremhasledtocorrespondingresultsinNevanlinnatheory. ThisrelationwithNevanlinnatheoryisinsomesensesimilartothe(mucholder) relationwithfunctionfields,inthatoneoftenlookstofunctionfieldsorNevanlinna theory for ideas that might translate over to the number field case, and that work overfunctionfieldsorinNevanlinnatheoryisofteneasierthanworkinthenumber fieldcase.Ontheotherhand,bothfunctionfieldsandNevanlinnatheoryhavecon- cepts that (so far) have no counterpart in the number field case. This is especially true of derivatives, which exist in both the function field case and in Nevanlinna theory.Inthenumberfieldcase,however,onewouldwantthe“derivativewithre- spectto p,”whichremainsasamajorstumblingblock,although(separate)workof BuiumandofMinhyongKimmayultimatelyprovidesomeanswers.Thesearchfor suchaderivativeisalsoaddressedinthesenotes,usingapotentialapproachusing successiveminima. Itisimportanttonote,however,thattherelationwithNevanlinnatheorydoesnot “gothrough”thefunctionfieldcase.Althoughitispossibletolookatthefunction field case over C and apply Nevanlinna theory to the functions representing the rationalpoints,thisisnottheanalogybeingdescribedhere.Instead,intheanalogy presentedhere,oneholomorphicfunctioncorrespondstoinfinitelymanyrationalor algebraic points (whether over a number field or over a function field). Thus, the analogy with Nevanlinna theory is less concrete, and may be regarded as a more distantanalogythanfunctionfields. Thesenotesdescribesomeoftheworkinthisarea,includingmuchofthenec- essarybackgroundindiophantinegeometry.Specifically,Sections1–3recallbasic definitionsofnumbertheoryandthetheoryofheightsofelementsofnumberfields, culminatinginthestatementofRoth’stheoremandsomeequivalentformulationsof thattheorem.Thispartassumesthatthereaderknowsthebasicsofalgebraicnumber theory and algebraic geometry at the level of Lang [1970] and Hartshorne [1977], respectively.Someproofsareomitted,however;forthosetheinterestedreadermay refertoLang[1983]. Sections4–6brieflyintroduceNevanlinnatheoryandtheanalogybetweenRoth’s theorem and the classical work of Nevanlinna. Again, many proofs are omitted; referencesincludeShabat[1985],Nevanlinna[1970],andGoldbergandOstrovskii [2008]forpureNevanlinnatheory,andVojta[1987]andRu[2001]fortheanalogy. Sections7–15generalizethecontentoftheearliersections,inthemoregeometric contextofvarietiesovertheappropriatefields(numberfields,functionfields,orC). Again,proofsareoftenomitted;mostmaybefoundinthereferencesgivenabove. DiophantineApproximationandNevanlinnaTheory 115 Section 14 in particular introduces the main conjectures being discussed here: Conjecture 14.2 in Nevanlinna theory (“Griffiths’ conjecture”) and its counterpart innumbertheory,theauthor’sConjecture14.6onrationalpointsonvarieties. Sections16and17roundoutthefirstpartofthesenotes,bydiscussingthefunc- tion field case and the subject of the exceptional sets that come up in the study of higherdimensionalvarieties. In both Nevanlinna theory and number theory, these conjectures have been provedonlyinveryspecialcases,mostlyinvolvingsubvarietiesofsemiabelianva- rieties.Thisincludesthecaseofprojectivespaceminusacollectionofhyperplanes in general position (Cartan’s theorem and Schmidt’s Subspace Theorem). Recent workofCorvaja,Zannier,Evertse,Ferretti,andRuhasshown,however,thatusing geometricconstructionsonecanuseSchmidt’sSubspaceTheoremandCartan’sthe- oremtoderiveotherweakspecialcasesoftheconjecturesmentionedabove.Thisis thesubjectofSections18–22. Sections23–27presentgeneralizationsofConjectures14.2and14.6.Conjecture 14.2,inNevanlinnatheory,canbegeneralizedtoinvolvetruncatedcountingfunc- tions(aswasdonebyNevanlinnainthe1-dimensionalcase),andcanalsobeposed in the context of finite ramified coverings. In number theory, Conjecture 14.6 can alsobegeneralizedtoinvolvetruncatedcountingfunctions.Thesimplestnontrivial caseofthisconjecture,involvingthedivisor[0]+[1]+[∞]onP1,isthecelebrated “abc conjecture” of Masser and Oesterle´. Thus, Conjecture 22.5 can be regarded as a generalization of the abc conjecture as well as of Conjecture 14.6. One can also generalize Conjecture 14.6 to treat algebraic points; this corresponds to finite ramifiedcoveringsinNevanlinnatheory.ThisisConjecture24.1,whichcanalsobe posedusingtruncatedcountingfunctions(Conjecture24.3). Sections28and29brieflydiscussthequestionofderivativesinNevanlinnathe- ory, and Nevanlinna’s “Lemma on the Logarithmic Derivative.” A geometric form ofthislemma,duetoR.Kobayashi,M.McQuillan,andP.-M.Wong,isgiven,andit isshownhowthisformleadstoaninequalityinNevanlinnatheory,duetoMcQuil- lan,calledthe“tautologicalinequality.”Thisinequalitythenleadstoaconjecturein numbertheory(Conjecture29.1),whichofcourseshouldthenbecalledthe“tauto- logicalconjecture.”Thisconjectureisdiscussedbriefly;itisofinterestsinceitmay shedsomelightonhowonemighttake“derivatives”innumbertheory. Theabcconjectureinfusesmuchofthistheory,notonlybecauseaNevanlinna- like conjecture with truncated counting functions contains the abc conjecture as a specialcase,butalsobecauseotherconjecturesalsoimplytheabcconjecture,and therefore are “at least as hard” as abc. Specifically, Conjecture 24.1, on algebraic points, implies the abc conjecture, even if known only in dimension 1, and Con- jecture14.6,onrationalpoints,alsoimpliesabcifknowninhighdimensions.This latterimplicationisthesubjectofSection30.Finally,implicationsintheotherdi- rectionareexploredinSection31. 116 PaulVojta 1 NotationandBasicResults:NumberTheory We assume that the reader has an understanding of the fundamental basic facts of number theory (and algebraic geometry), up through the definitions of (Weil) heights. References for these topics include [Lang, 1983] and [Vojta, 1987]. We do,however,recallsomeofthebasicconventionsheresincetheyoftendifferfrom authortoauthor. Throughoutthesenotes,kwillusuallydenoteanumberfield;ifso,thenO will k denote its ring of integers and M its set of places. This latter set is in one-to-one k correspondence with the disjoint union of the set of nonzero prime ideals of O , k thesetofrealembeddingsσ: k(cid:44)→R,andthesetofunorderedcomplexconjugate pairs (σ,σ) of complex embeddings σ: k (cid:44)→C with image not contained in R. SuchelementsofM arecallednon-archimedeanorfiniteplaces,realplaces,and k complexplaces,respectively. Therealandcomplexplacesarecollectivelyreferredtoasarchimedeanorinfi- niteplaces.ThesetoftheseplacesisdenotedS .Itisafiniteset. ∞ Toeachplacev∈M weassociateanorm(cid:107)·(cid:107) ,definedforx∈kby(cid:107)x(cid:107) =0if k v v x=0and (1.1) (Ok:p)ordp(x) ifvcorrespondstop⊆Ok; (cid:107)x(cid:107)v= |σ(x)| ifvcorrespondstoσ: k(cid:44)→R;and |σ(x)|2 ifvisacomplexplace,correspondingtoσ: k(cid:44)→C ifx(cid:54)=0.Hereord (x)meanstheexponentofpinthefactorizationofthefractional p ideal(x).Ifweusetheconventionthatord (0)=∞,then(1.1)isalsovalidwhen p x=0. Wereferto(cid:107)·(cid:107) asanorminsteadofanabsolutevalue,because(cid:107)·(cid:107) doesnot v v satisfythetriangleinequalitywhenvisacomplexplace.However,let 0 ifvisnon-archimedean; (1.2) Nv= 1 ifvisreal;and 2 ifviscomplex. Thenthenormassociatedtoaplacevofksatisfiestheaxioms (1.3.1) (cid:107)x(cid:107) ≥0,withequalityifandonlyifx=0; v (1.3.2) (cid:107)xy(cid:107) =(cid:107)x(cid:107) (cid:107)y(cid:107) forallx,y∈k;and v v v (1.3.3) (cid:107)x1+···+xn(cid:107)v≤nNvmax{(cid:107)x1(cid:107)v,...,(cid:107)xn(cid:107)v}forallx1,...,xn∈k,n∈N. (Inthesenotes,N={0,1,2,...}.) Someauthorstreatcomplexconjugateembeddingsasdistinctplaces.Wedonot dosohere,becausetheygiverisetothesamenorms. Notethat,ifx∈k,thenx liesintheringofintegersifandonlyif(cid:107)x(cid:107) ≤1for v all non-archimedean places v. Indeed, if x(cid:54)=0 then both conditions are equivalent tothefractionalideal(x)beingagenuineideal. DiophantineApproximationandNevanlinnaTheory 117 LetLbeafiniteextensionofanumberfieldk,andletwbeaplaceofL.Ifwis non-archimedean,correspondingtoanonzeroprimeidealq⊆O ,thenp:=q∩O L k is a nonzero prime of O , and gives rise to a non-archimedean place v∈M . If v k k arisesfromwinthisway,thenwesaythatwliesoverv,andwritew|v.Likewise,if wisarchimedean,thenitcorrespondstoanembeddingτ: L(cid:44)→C,anditsrestriction τ(cid:12)(cid:12)k: k(cid:44)→Cgivesrisetoauniquearchimedeanplacev∈Mk,andagainwesaythat wliesovervandwritew|v. Foreachv∈M ,thesetofw∈M lyingoveritisnonemptyandfinite.Ifw|v k L thenwealsosaythatvliesunderw. IfSisasubsetofM ,thenwesayw|SifwliesoversomeplaceinS;otherwise k wewritew(cid:45)S. Ifw|v,thenwehave (1.4) (cid:107)x(cid:107) =(cid:107)x(cid:107)[Lw:kv] forallx∈k, w v whereL andk denotethecompletionsofLandkatwandv,respectively.Wealso w v have (1.5) ∏ (cid:107)y(cid:107) =(cid:107)NLy(cid:107) forallv∈M andally∈L. w k v k w∈ML w|v This is proved by using the isomorphism L⊗kkv ∼= ∏w|vLw; see for example [Neukirch,1999,Ch.II,Cor.8.4]. Let L/K/k be a tower of number fields, and let w(cid:48) and v be places of L and k, respectively.Thenw(cid:48)|vifandonlyifthereisaplacewofK satisfyingw(cid:48)|wand w|v. Thefieldk=Qhasnocomplexplaces,onerealplacecorrespondingtotheinclu- sion Q⊆R, and infinitely many non-archimedean places, corresponding to prime rationalintegers.Thus,wewrite MQ={∞,2,3,5,...}. PlacesofanumberfieldsatisfyaProductFormula (1.6) ∏ (cid:107)x(cid:107) =1 forallx∈k∗. v v∈Mk Thisformulaplaysakeyroleinnumbertheory:itisusedtoshowthatcertainex- pressionsfortheheightarewelldefined,anditalsoimpliesthatif∏v(cid:107)x(cid:107)v<1then x=0. The Product Formula is proved first by showing that it is true when k=Q (by directverification)andthenusing(1.5)topasstoanarbitrarynumberfield. 118 PaulVojta 2 Heights Theheightofanumber,orofapointonavariety,isameasureofthecomplexityof thatnumber.Forexample,100/201and1/2areveryclosetoeachother(usingthe normattheinfiniteplace,atleast),butthelatterisamuch“simpler”numbersince itcanbewrittendownusingfewerdigits. We define the height (also called the Weil height) of an element x∈k by the formula (2.1) H (x)= ∏ max{(cid:107)x(cid:107) ,1}. k v v∈Mk Asanexample,considerthespecialcaseinwhichk=Q.Writex=a/bwitha,b∈Z relatively prime. For all (finite) rational primes p, if pi is the largest power of p dividinga,and pj isthelargestpowerdividingb,then(cid:107)a(cid:107) =p−iand(cid:107)b(cid:107) =p−j, p p and therefore max{(cid:107)x(cid:107) ,1}= pb. Therefore the product of all terms in (2.1) over p allfiniteplacesvisjust|b|.Attheinfiniteplace,wehave(cid:107)x(cid:107) =|a/b|,sothisgives ∞ (2.2) HQ(x)=max{|a|,|b|}. Similarly,ifP∈Pn(k)forsomen∈N,wedefinetheWeilheighth (P)asfol- k lows. Let [x :···:x ] be homogeneous coordinates for P (with the x always as- 0 n i sumedtolieink).Thenwedefine (2.3) H (P)= ∏ max{(cid:107)x (cid:107) ,...,(cid:107)x (cid:107) }. k 0 v n v v∈Mk BytheProductFormula(1.6),thisquantityisindependentofthechoiceofhomo- geneouscoordinates. IfweidentifykwithA1(k)andidentifythelatterwithasubsetofP1(k)viathe standard injection i: A1 (cid:44)→P1, then we note that H (x)=H (i(x)) for all x∈k. k k Similarly,wecanidentifyknwithAn(k),andthestandardembeddingofAnintoPn givesusaheight H (x ,...,x )= ∏ max{(cid:107)x (cid:107) ,...,(cid:107)x (cid:107) ,1}. k 1 n 1 v n v v∈Mk Theheightfunctionsdefinedsofar,allusingcapital‘H,’arecalledmultiplicative heights.Usuallyitismoreconvenienttotaketheirlogarithmsanddefinelogarith- micheights: (2.4) h (x)=logH (x)= ∑ log+(cid:107)x(cid:107) k k v v∈Mk and h ([x :···:x ])=logH ([x :···:x ])= ∑ logmax{(cid:107)x (cid:107) ,...,(cid:107)x (cid:107) }. k 0 n k 0 n 0 v n v v∈Mk DiophantineApproximationandNevanlinnaTheory 119 Here log+(x)=max{logx,0}. The equation (1.5) tells us how heights change when the number field k is ex- tendedtoalargernumberfieldL: (2.5) h (x)=[L:k]h (x) L k and (2.6) h ([x :···:x ])=[L:k]h ([x :···:x ]) L 0 n k 0 n forallx∈kandall[x ,...,x ]∈Pn(k),respectively. 0 n Then,givenx∈Q,wedefine 1 h (x)= h (x) k L [L:k] for any number field L⊇k(x), and similarly given any [x :···:x ]∈Pn(Q), we 0 n define 1 h ([x :···:x ])= h ([x :···:x ]) k 0 n L 0 n [L:k] for any number field L⊇k(x ,...,x ). These expressions are independent of the 0 n choiceofLby(2.5)and(2.6),respectively. FollowingEGA,ifxisapointonPn,thenκ(x)willdenotetheresiduefieldof k thelocalringat x.If x isaclosedpointthen thehomogeneouscoordinatescanbe chosensuchthatk(x ,...,x )=κ(x). 0 n Withthesedefinitions,(2.5)and(2.6)remainvalidwithouttheconditionsx∈k and[x :···:x ]∈Pn(k),respectively. 0 n Itiscommontoassumek=Qandomitthesubscriptk.Theresultingheightsare calledabsoluteheights. It is obvious from (2.1) that h (x)≥0 for all x∈k, and that equality holds if k x=0orifxisarootofunity.Conversely,h (x)=0implies(cid:107)x(cid:107) ≤1forallv;if k v x(cid:54)=0 then the Product Formula implies (cid:107)x(cid:107) =1 for all v. Thus x must be a unit, v andtheknownstructureoftheunitgroupthenleadstothefactthatxmustbearoot ofunity. Therefore,thereareinfinitelymanyelementsofQwithheight0.Ifonebounds thedegreeofsuchelementsoverQ,thenthereareonlyfinitelymany;moregener- ally,wehave: Theorem2.7.(Northcott’s finiteness theorem) For any r ∈Z and any C ∈R, >0 thereareonlyfinitelymanyx∈Qsuchthat[Q(x):Q]≤randh(x)≤C.Moreover, givenanyn∈Nthereareonlyfinitelymanyx∈Pn(Q)suchthat[κ(x):Q]≤rand h(x)≤C. Thefirstassertionisprovedusingthefactthat,foranyx∈Q,ifoneletsk=Q(x), thenH (x)iswithinaconstantfactorofthelargestabsolutevalueofthelargestcoef- k ficientoftheirreduciblepolynomialofxoverQ,whenthatpolynomialismultiplied 120 PaulVojta by a rational number so that its coefficients are relatively prime integers. The sec- ondassertionthenfollowsasaconsequenceofthefirst.Fordetails,see[Lang,1991, Ch.II,Thm.2.2]. Thisresultplaysacentralroleinnumbertheory,since(forexample)provingan upperboundontheheightsofrationalpointsisequivalenttoprovingfiniteness. 3 Roth’sTheorem K.F.Roth[1955]provedakeyandmuch-anticipatedtheoremonhowwellanalge- braicnumbercanbeapproximatedbyrationalnumbers.Ofcourserationalnumbers aredenseinthereals,butifonelimitsthesizeofthedenominatorthenonecanask meaningfulandnontrivialquestions. Theorem3.1.(Roth)Fixα∈Q,ε>0,andC>0.Thenthereareonlyfinitelymany a/b∈Q,whereaandbarerelativelyprimeintegers,suchthat (cid:12)a (cid:12) C (3.1.1) (cid:12) −α(cid:12)≤ . (cid:12)b (cid:12) |b|2+ε Example3.2.AsadiophantineapplicationofRoth’stheorem,considerthediophan- tineequation (3.2.1) x3−2y3=11, x,y∈Z. √ If (x,y) is a solution, then x/y must be close to 32 (assuming |x| or |y| is large, whichwouldimplybotharelarge): (cid:12)(cid:12)(cid:12)x−√32(cid:12)(cid:12)(cid:12)=(cid:12)(cid:12)(cid:12) √11 √ (cid:12)(cid:12)(cid:12)(cid:28) 1 . (cid:12)y (cid:12) (cid:12)y(x2+xy32+y2 34)(cid:12) |y|3 ThusRoth’stheoremimpliesthat(3.2.1)hasonlyfinitelymanysolutions. Moregenerally,if f ∈Z[x,y]ishomogeneousofdegree≥3andhasnorepeated factors, then for any a∈Z f(x,y)=a has only finitely many integral solutions. ThisiscalledtheThueequationandhistoricallywasthedrivingforcebehindthe development of Roth’s theorem (which is sometimes called the Thue-Siegel-Roth theorem,sometimesalsomentioningSchneider,Dyson,andMahler). The inequality (3.1.1) is best possible, in the sense that the 2 in the exponent ontheright-handsidecannotbereplacedbyasmallernumber.Thiscanbeshown usingcontinuedfractions.Ofcourseonecanconjectureasharpererrorterm[Lang andCherry,1990,Intro.toCh.I]. Ifa/bisclosetoα,thenafteradjustingC onecanreplace|b|intheright-hand sideof(3.1.1)withHQ(a/b)(see(2.2)).Moreover,thetheoremhasbeengeneral- ized to allow a finite set of places (possibly non-archimedean) and to work over a numberfield: DiophantineApproximationandNevanlinnaTheory 121 Theorem3.3.Letkbeanumberfield,letSbeafinitesetofplacesofkcontaining all archimedean places, fix α ∈Q for each v∈S, let ε >0, and letC>0. Then v onlyfinitelymanyx∈ksatisfytheinequality C (3.3.1) ∏min{1,(cid:107)x−α (cid:107) }≤ . v v H (x)2+ε v∈S k (Strictlyspeaking,Scanbeanyfinitesetofplacesatthispoint,butrequiringSto contain all archimedean places does not weaken the theorem, and this assumption willbenecessaryinSection5.See,forexample,(5.3).) Taking−logofbothsidesof(3.3.1),dividingby[k:Q],andrephrasingthelogic, theabovetheoremisequivalenttotheassertionthatforallc∈Rtheinequality (cid:13) (cid:13) (3.4) 1 ∑log+(cid:13)(cid:13) 1 (cid:13)(cid:13) ≤(2+ε)h(x)+c [k:Q]v∈S (cid:13)x−αv(cid:13)v holdsforallbutfinitelymanyx∈k. Inwriting(3.3.1),weassumethatonehaschosenanembeddingi : k¯(cid:44)→k over v v kforeachv∈S.Otherwisetheexpression(cid:107)x−α (cid:107) maynotmakesense. v v This is mostly a moot point, however, since we may restrict to α ∈ k for v all v. Clearly this restricted theorem is implied by the theorem without the ad- ditional restriction, but in fact it also implies the original theorem. To see this, suppose k, S, ε, and c are as above, and assume that α ∈ Q are given for all v v∈S. Let L be the Galois closure over k of k(α :v∈S), and let T be the set v of all places of L lying over places in S. We assume that L is a subfield of k¯, (cid:12) so that αv ∈ L for all v ∈ S. Then (iv)(cid:12)L: L → kv induces a place w0 of L over v, and all other places w of L over v are conjugates by elements σ ∈Gal(L/k): w (cid:107)x(cid:107) =(cid:107)σ−1(x)(cid:107) forallx∈L.Lettingα =σ (α )forallw|v,wethenhave w w w0 w w v (cid:107)x−α (cid:107) =(cid:107)σ−1(x−α )(cid:107) =(cid:107)x−α (cid:107)[Lw0:kv]forallx∈kby(1.4),andtherefore w w w w w0 v v (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) w∑|vlog+(cid:13)(cid:13)(cid:13)x−1αw(cid:13)(cid:13)(cid:13)w=w∑|v[Lw0 :kv]log+(cid:13)(cid:13)(cid:13)x−1αv(cid:13)(cid:13)(cid:13)v=[L:k]log+(cid:13)(cid:13)(cid:13)x−1αv(cid:13)(cid:13)(cid:13)v sinceL/kisGalois.Thus (cid:13) (cid:13) (cid:13) (cid:13) 1 ∑log+(cid:13)(cid:13) 1 (cid:13)(cid:13) = 1 ∑ log+(cid:13)(cid:13) 1 (cid:13)(cid:13) [k:Q]v∈S (cid:13)x−αv(cid:13)v [L:Q]w∈T (cid:13)x−αw(cid:13)w for all x∈k. Applying Roth’s theorem over the field L (where now α ∈L for all w w∈T)thengives(3.4)foralmostallx∈k. Finally,wenotethatRoth’stheorem(asnowrephrased)isequivalenttothefol- lowingstatement. Theorem3.5.Let k be a number field, let S⊇S be a finite set of places of k, fix ∞ distinctα ,...,α ∈k,letε >0,andletc∈R.Thentheinequality 1 q 122 PaulVojta (3.5.1) 1 ∑∑q log+(cid:13)(cid:13)(cid:13) 1 (cid:13)(cid:13)(cid:13) ≤(2+ε)h(x)+c [k:Q]v∈Si=1 (cid:13)x−αi(cid:13)v holdsforalmostallx∈k. Indeed, given α ∈k for all v∈S, let α ,...,α be the distinct elements of the v 1 q set{α :v∈S}.Then v 1 ∑log+(cid:13)(cid:13)(cid:13) 1 (cid:13)(cid:13)(cid:13) ≤ 1 ∑∑q log+(cid:13)(cid:13)(cid:13) 1 (cid:13)(cid:13)(cid:13) , [k:Q]v∈S (cid:13)x−αv(cid:13)v [k:Q]v∈Si=1 (cid:13)x−αi(cid:13)v soTheorem3.5impliestheearlierformofRoth’stheorem(asmodified). Conversely, given distinct α ,...,α ∈k, we note that any given x∈k can be 1 q closetoonlyoneoftheα ateachplacev(wherethevalueofimaydependonv). i Therefore,foreachv, ∑q log+(cid:13)(cid:13)(cid:13) 1 (cid:13)(cid:13)(cid:13) ≤log+(cid:13)(cid:13)(cid:13) 1 (cid:13)(cid:13)(cid:13) +cv i=1 (cid:13)x−αi(cid:13)v (cid:13)x−αv(cid:13)v forsomeconstantc independentofxandsomeα ∈{α ,...,α }dependingonx v v 1 q andv.Thus,foreachx∈k,thereisachoiceofα foreachv∈Ssuchthat v 1 ∑∑q log+(cid:13)(cid:13)(cid:13) 1 (cid:13)(cid:13)(cid:13) ≤ 1 ∑log+(cid:13)(cid:13)(cid:13) 1 (cid:13)(cid:13)(cid:13) +c(cid:48), [k:Q]v∈Si=1 (cid:13)x−αi(cid:13)v [k:Q]v∈S (cid:13)x−αv(cid:13)v wherec(cid:48)isindependentofx.Sincethereareonlyfinitelymanychoicesofthesystem {α :v∈S}, finitely many applications of the earlier version of Roth’s theorem v sufficetoimplyTheorem3.5. 4 BasicsofNevanlinnaTheory Nevanlinna theory, developed by R. and F. Nevanlinna in the 1920s, concerns the distributionofvaluesofholomorphicandmeromorphicfunctions,inmuchthesame waythatRoth’stheoremconcernsapproximationofelementsofanumberfield. OnecanthinkofitasageneralizationofatheoremofPicard,whichsaysthata nonconstantholomorphicfunctionfromCtoP1 canomitatmosttwopoints.This, inturn,generalizesLiouville’stheorem. An example relevant to Picard’s theorem is the exponential function ez, which omits the values 0 and ∞. When r is large, the circle |z|=r is mapped to many values close to ∞ (when Rez is large) and many values close to 0 (when Rez is highlynegative). So even though ez omits these two values, it spends a lot of time very close to them. This observation can be made precise, in what is called Nevanlinna’s First MainTheorem.Inordertostatethistheorem,weneedsomedefinitions.
Description: