Digital Signal Processing: Principles, Algorithms and System Design Digital Signal Processing: Principles, Algorithms and System Design Winser E. Alexander Cranos M. Williams North Carolina State University NC, USA AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEWYORK OXFORD • PARIS • SANDIEGO • SANFRANCISCO • SINGAPORE SYDNEY • TOKYO AcademicPressisanimprintofElsevier AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1800,SanDiego,CA92101-4495,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom Copyright©2017ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein. LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-804547-3 ForinformationonallAcademicPresspublications visitourwebsiteathttps://www.elsevier.com Publisher:ToddGreen AcquisitionEditor:SteveMerken EditorialProjectManager:PeterJardim ProductionProjectManager:MohanaNatarajan Designer:VictoriaPearson TypesetbyVTeX List of Tables Table2.1 Atabularrepresentationofadiscretetimesignal 20 Table2.2 ImpulseresponseofdiscretetimesystemforExample2.12 61 Table2.3 ImpulseresponseofFIRsysteminExample2.23 84 Table2.4 TabulationofasamplesequenceforExample2.35 118 Table2.5 TabulationofaoutputsamplesequenceforExample2.35after interpolationusingasample-and-holdoperation 120 Table2.6 TabulationofasamplesequenceforExample2.41 136 Table2.7 TabulationofaoutputsamplesequenceforExample2.41after decimationusingasample-and-holdoperation 137 Table3.1 TableofvaluesforX (k)forExample3.6 184 3 Table3.2 TableofvaluesforX (k)forExample3.6 184 4 Table3.3 FrequencyresponsevaluesforProblem3.1 197 Table3.4 ValuesoftheDFTforProblem3.3 198 Table3.5 TabulationofthesequenceforProblem3.9 200 Table3.6 TabulationofthesequenceforProblem3.12 201 Table3.7 FFTforsequenceforProblem3.13 202 Table4.1 FiltercoefficientsforahighpassFIRfilter 209 Table4.2 FiltercoefficientsforalowpassFIRfilter 214 Table4.3 Theimpulseresponsesforlowpassandhighpassidealfiltersfor 2M+1coefficientsshiftedbyM samples 222 Table4.4 Theimpulseresponsesforbandpassandbandstopidealfiltersfor 2M+1coefficientsshiftedbyM samples 222 Table4.5 Frequencydomaincharacteristicsforwindowfunctions[8] 223 Table4.6 Summary ofthe requiredorder forthe FIRfilters designedfor Example4.6 238 Table4.7 Frequencytransformationsforanaloglowpassandhighpassfilters [4] 246 Table4.8 Frequencytransformationsforanalogbandpassandbandstop filters[4] 247 Table4.9 Digitalfrequencytransformationsforlowpassandhighpassdigital filters[4] 249 Table4.10 Digitalfrequencytransformationsforbandpassandbandstopdigital filters[4] 249 Table6.1 Examplesoffloatingpointrepresentationofnumbers 352 Table7.1 Comparisonofthenumberofadditionsandmultiplicationsforthe twointerpolationmethods 411 Table7.2 Comparisonofthenumberofadditionsandmultiplicationsforthe twodecimationmethods 417 Table7.3 Tableofcoefficientsforb6 446 Table10.1 Comparisonofcomputationalcomplexityforimplementationsofthe 2-DDFT 559 Table10.2 A2-Dsequenceasinputforthe2-DDCT 560 xiii xiv List of Tables Table10.3 Theextendedsequenceasinputforthe2-DDCT 560 Table10.4 The2-DDCTforthe2-Dsequence 561 List of Figures Fig.1.1 Conceptualblockdiagramofatypicalsystem 5 Fig.1.2 StemplotforsequenceinExample1.1 10 Fig.1.3 StemplotofcosinesequenceforExample1.2 11 Fig.1.4 StemplotofadelayedimpulseforExample1.3 12 Fig.1.5 PlotofsectionofasinusoidalsignalforExample1.4 14 Fig.1.6 PlotoftherealpartofacomplexexponentialinExample1.5 15 Fig.2.1 ExampleofadiscretetimesignalasrepresentedbyTable2.1 21 Fig.2.2 Example of a discrete time signal represented by a functional representation 21 Fig.2.3 Example of a discrete time signal represented by a sequence representation 22 Fig.2.4 Stemplotofasequenceusingunitstepsequences 24 Fig.2.5 Stemplotofsequenceusingtheunitramp 25 Fig.2.6 Stemplotofsequenceusingexponentialsignals 26 Fig.2.7 Stemplotofsequenceusingcomplexexponentialsignals 28 Fig.2.8 Stemplotofanevendiscretetimesignal 29 Fig.2.9 Stemplotofanodddiscretetimesignal 29 Fig.2.10 Stemplotofadiscretetimesignalthatisneitherevennorodd 30 Fig.2.11 StemplotofthediscretetimesignalinFig.2.10afterflippingitleftto righttoformx(−n) 31 Fig.2.12 Stemplotofthecomparisonoftheoriginalevensignalwiththe extractedevensignal 31 Fig.2.13 Stemplotofthecomparisonoftheoriginaloddsignalwiththe extractedoddsignal 32 Fig.2.14 Stemplotofasinusoidalsequence 36 Fig.2.15 Stemplotofasinusoidalsequencewithindependentvariablescaled byafactorofa=0.5 37 Fig.2.16 Stemplotofasinusoidalsequencewithindependentvariablescaled byafactorofa=1.5 38 Fig.2.17 Stemplotofasinusoidalsequence 39 Fig.2.18 Stemplotofasinusoidalsequencewithindependentvariableshifted byafactorofm=6 39 Fig.2.19 Stemplotofasinusoidalsequencewithindependentvariableshifted byafactorofm=−6 40 Fig.2.20 Stemplotofasamplesequence 41 Fig.2.21 Stemplotofthereversedsamplesequence 41 Fig.2.22 OriginaldiscretetimesignalforExample2.7 42 Fig.2.23 Transformationy1(n)=x(n−4)forExample2.7 43 Fig.2.24 Transformationy2(n)=x(3−n)forExample2.7 45 Fig.2.25 Transformationy3(n)=x(3n)forExample2.7 45 Fig.2.26 Transformationy4(n)=x(3n+1)forExample2.7 46 xv xvi List of Figures Fig.2.27 Transformationy5(n)=x(n)u(2−n)forExample2.7 46 Fig.2.28 Transformationy6(n)=x(n−2)δ(n−2)forExample2.7 47 Fig.2.29 Transformationy7(n)= 12x(cid:2)(n(cid:3))+ 12(−1)nx(n)forExample2.7 47 Fig.2.30 Transformationy (n)=x n forExample2.7 48 8 2 Fig.2.31 Modulation 48 Fig.2.32 Addition 48 Fig.2.33 Multiplication 49 Fig.2.34 Delay 49 Fig.2.35 Signalsx (t),x (t),andtheirsamplesonthesameplot 51 1 2 Fig.2.36 Input1forcross-correlationexample 70 Fig.2.37 Input2forcross-correlationexample 71 Fig.2.38 Blockdiagramoftheoverallsystem 71 Fig.2.39 Pole–zeroplotforExample2.25 88 Fig.2.40 Blockdiagramforadiscretetimesystem 89 Fig.2.41 RegionofconvergenceforS1(z)withb=3 95 Fig.2.42 RegionofconvergenceforS2(z)witha=0.5 95 Fig.2.43 RegionofconvergenceforX(z)witha=0.5,b=3.0 96 Fig.2.44 Stemplotofx(n)inExample2.28forn=−25ton=25 100 Fig.2.45 Comparisonofthesample-and-holdandtheideallowpassfilter 117 Fig.2.46 Reconstructionusingasample-and-holdandalowpassfilter 118 Fig.2.47 StemplotofthesamplesequenceforExample2.35 119 Fig.2.48 StemplotoftheoutputsamplesequenceforExample2.35after usingthesample-and-holdoperation 120 Fig.2.49 Stem plot of the input and output sample sequences for Example2.35onthesameplot 121 Fig.2.50 StemplotoftheinputandoutputsamplesequencesforExample2.35 aftercompensatingforthedelayinthesample-and-holdoperator 121 Fig.2.51 Stem plot of the input and filtered output sample sequences for Example 2.35 after compensating for the delays in the sample-and-holdoperatorandthefilter 122 Fig.2.52 Impulseresponseforthelinearpointconnector 122 Fig.2.53 Comparisonofthelinearpointconnectorandtheideallowpassfilter 123 Fig.2.54 Reconstructionusingalinearpointconnectorandalowpassfilter 124 Fig.2.55 SamplesequenceforExample2.36 124 Fig.2.56 Magnitude and phase responses for the sample sequence in Example2.36 125 Fig.2.57 Magnitudeandphaseresponsesforthemodifiedsamplesequence inExample2.36 126 Fig.2.58 SamplesequenceforExample2.36afterinterpolation 127 Fig.2.59 StemplotofsamplesequenceforExample2.37 128 Fig.2.60 Samplesequenceafterpaddingwithzeros 129 Fig.2.61 InterpolatedoutputsequenceforExample2.37 130 Fig.2.62 Abandlimitedsignalwith256samples 130 Fig.2.63 Interpolatedsignalupsampledbyafactorof3 131 Fig.2.64 Samplesequencedecimatedbyafactorof3 133 List of Figures xvii Fig.2.65 Samplesequencedecimatedbyafactorof3usingthedecimate Matlabfunction 133 Fig.2.66 StemplotforinterpolatedsequenceforExample2.40 136 Fig.2.67 StemplotofthesamplesequenceforExample2.41afterfiltering usingtheantialiasinglowpassfilter 137 Fig.2.68 StemplotoftheoutputsamplesequenceforExample2.41after usingthesample-and-holdoperation 138 Fig.2.69 Stem plot of the input and output sample sequences for Example2.41onthesameplot 138 Fig.2.70 StemplotoftheinputandoutputsamplesequencesforExample2.41 aftercompensatingforthedelayinthesample-and-holdoperator 139 Fig.2.71 PlotofSpectrumforProblem2.28 148 Fig.2.72 PlotofspectrumforProblem2.30 148 Fig.3.1 Generaldiscretetimesystemwithinputejωn 161 Fig.3.2 MagnitudespectrumforFIRfilter 163 Fig.3.3 PhasespectrumforFIRfilter 164 Fig.3.4 MagnitudeplotofH(ω)forExample3.2 166 Fig.3.5 PhaseplotofH(ω)forExample3.2 166 Fig.3.6 Pole–zeroplotof H(z)forlowpassfilterwithcutofffrequency ωc =0.6π 167 Fig.3.7 MagnitudeandphaseplotsofH(z)forlowpassfilterwithcutoff frequencyωc =0.6π 168 Fig.3.8 Pole–zeroplotofH(z)forhighpassfilterwithcutofffrequency ωc =0.6π 168 Fig.3.9 MagnitudeandphaseplotsofH(z)forhighpassfilterwithcutoff frequencyωc =0.6π 169 Fig.3.10 Pole–zeroplotofH(z)forbandstopfilterwithcutofffrequenciesat ω1=0.6π andω2=0.75π 170 Fig.3.11 MagnitudeandphaseplotsofH(z)forbandstopfilterwithcutoff frequencyω1=0.6π andω2=0.75π 170 Fig.3.12 Pole–zeroplotofH(z)forbandpassfilterwithcutofffrequenciesat ω1=0.6π andω2=0.75π 171 Fig.3.13 MagnitudeandphaseplotsofH(z)forbandpassfilterwithcutoff frequencyω1=0.6π andω2=0.75π 172 Fig.3.14 Pole–zeroplotofH(z)fordigitalresonatorwithzerosatz = ±1, ω=0.7π 173 Fig.3.15 Frequency response ofH(z)fordigitalresonatorwithzeros at z=±1,ω=0.7π 174 Fig.3.16 Pole–zeroplotofH(z)fordigitalresonatorwithzerosatz = 0, ω=0.7π 174 Fig.3.17 FrequencyresponseofH(z)fordigitalresonatorwithzerosatz=0, ω=0.7π 175 Fig.3.18 Blockdiagramoftheoverallsystem 175 Fig.3.19 Plotof50samplesoftheinputsequenceforExample3.4 177 Fig.3.20 Plotof50samplesoftheoutputsequenceforExample3.4 178 xviii List of Figures Fig.3.21 MagnitudeandphaseplotsforExample3.5 181 Fig.3.22 Circularconvolutionofx (n)andx (n) 183 1 2 Fig.3.23 Linearconvolutionusingconvolutioninthetimedomain 183 Fig.3.24 LinearconvolutionusingtheDFT 184 Fig.3.25 StemplotofatestsequenceforExample3.11 195 Fig.3.26 StemplotsofthemagnitudesoftheDFTandtheDCTforthetest sequenceforExample3.11 196 Fig.4.1 Specificationsforalowpassfilter 206 Fig.4.2 StemplotforthecoefficientsinH(z)forExample4.1 210 Fig.4.3 MagnitudeandphaseplotsforH(z)forExample4.1 212 Fig.4.4 StemplotforthecoefficientsinH(z)forExample4.2 212 Fig.4.5 MagnitudeandphaseplotsforH(z)forExample4.2 214 Fig.4.6 Exampleofanideallowpassfilter(ωc =0.67π) 216 Fig.4.7 ImpulseresponseforthelowpassfilterinExample4.3 218 Fig.4.8 MagnitudeandphaseresponsesforthelowpassfilterinExample4.3 218 Fig.4.9 Exampleofanidealhighpassfilter(ωc =0.391π) 219 Fig.4.10 ImpulseresponseforthehighpassfilterinExample4.4 221 Fig.4.11 Magnitude and phase responses for the high pass filter in Example4.4 222 Fig.4.12 ImpulseresponsesforthetwoFIRfilterdesignsusingtherectangular windowforcomparison 226 Fig.4.13 Magnitudeandphaseresponseofbandstopfilterusingarectangular window 227 Fig.4.14 ImpulseresponsesfortheFIRfilterdesignusingtheHamming window 227 Fig.4.15 MagnitudeandphaseresponseofbandstopfilterusingMatlab’sfir1 functionandaHammingwindow 228 Fig.4.16 MagnituderesponsefortheFIRfilterusingtheHammingwindow 235 Fig.4.17 MagnituderesponsefortheFIRfilterusingtheKaiserwindow 236 Fig.4.18 Magnituderesponseforthedesignusingfirpm 236 Fig.4.19 DesignusingfirlsforExample4.6 237 Fig.4.20 DesignusingfirclsforExample4.6 237 Fig.4.21 Designusingfir2forExample4.6 238 Fig.4.22 Aplotofthemappingofcontinuoustimefrequenciestodiscretetime frequenciesforthebilineartransformation 243 Fig.4.23 MagnitudeplotforExample4.13 255 Fig.4.24 MagnitudeplotforExample4.14 256 Fig.5.1 BlockdiagramforthedirectrealizationofanFIRdiscretetime system 278 Fig.5.2 BlockdiagramforthedirectimplementationofanFIRdigitalfilter 279 Fig.5.3 BlockdiagramforalinearphaseFIRdigitalfilter 281 Fig.5.4 BlockdiagramforalinearphaseFIRdigitalfilter 282 Fig.5.5 PolyphaseFIRimplementationusing2filters 285 Fig.5.6 PolyphaseFIRimplementationusing3filters 287 Fig.5.7 FIRlatticefiltersection 288
Description: