ebook img

Digital Signal Processing. Principles, Algorithms and System Design PDF

615 Pages·2016·5.57 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Digital Signal Processing. Principles, Algorithms and System Design

Digital Signal Processing: Principles, Algorithms and System Design Digital Signal Processing: Principles, Algorithms and System Design Winser E. Alexander Cranos M. Williams North Carolina State University NC, USA AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEWYORK OXFORD • PARIS • SANDIEGO • SANFRANCISCO • SINGAPORE SYDNEY • TOKYO AcademicPressisanimprintofElsevier AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1800,SanDiego,CA92101-4495,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom Copyright©2017ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein. LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-804547-3 ForinformationonallAcademicPresspublications visitourwebsiteathttps://www.elsevier.com Publisher:ToddGreen AcquisitionEditor:SteveMerken EditorialProjectManager:PeterJardim ProductionProjectManager:MohanaNatarajan Designer:VictoriaPearson TypesetbyVTeX List of Tables Table2.1 Atabularrepresentationofadiscretetimesignal 20 Table2.2 ImpulseresponseofdiscretetimesystemforExample2.12 61 Table2.3 ImpulseresponseofFIRsysteminExample2.23 84 Table2.4 TabulationofasamplesequenceforExample2.35 118 Table2.5 TabulationofaoutputsamplesequenceforExample2.35after interpolationusingasample-and-holdoperation 120 Table2.6 TabulationofasamplesequenceforExample2.41 136 Table2.7 TabulationofaoutputsamplesequenceforExample2.41after decimationusingasample-and-holdoperation 137 Table3.1 TableofvaluesforX (k)forExample3.6 184 3 Table3.2 TableofvaluesforX (k)forExample3.6 184 4 Table3.3 FrequencyresponsevaluesforProblem3.1 197 Table3.4 ValuesoftheDFTforProblem3.3 198 Table3.5 TabulationofthesequenceforProblem3.9 200 Table3.6 TabulationofthesequenceforProblem3.12 201 Table3.7 FFTforsequenceforProblem3.13 202 Table4.1 FiltercoefficientsforahighpassFIRfilter 209 Table4.2 FiltercoefficientsforalowpassFIRfilter 214 Table4.3 Theimpulseresponsesforlowpassandhighpassidealfiltersfor 2M+1coefficientsshiftedbyM samples 222 Table4.4 Theimpulseresponsesforbandpassandbandstopidealfiltersfor 2M+1coefficientsshiftedbyM samples 222 Table4.5 Frequencydomaincharacteristicsforwindowfunctions[8] 223 Table4.6 Summary ofthe requiredorder forthe FIRfilters designedfor Example4.6 238 Table4.7 Frequencytransformationsforanaloglowpassandhighpassfilters [4] 246 Table4.8 Frequencytransformationsforanalogbandpassandbandstop filters[4] 247 Table4.9 Digitalfrequencytransformationsforlowpassandhighpassdigital filters[4] 249 Table4.10 Digitalfrequencytransformationsforbandpassandbandstopdigital filters[4] 249 Table6.1 Examplesoffloatingpointrepresentationofnumbers 352 Table7.1 Comparisonofthenumberofadditionsandmultiplicationsforthe twointerpolationmethods 411 Table7.2 Comparisonofthenumberofadditionsandmultiplicationsforthe twodecimationmethods 417 Table7.3 Tableofcoefficientsforb6 446 Table10.1 Comparisonofcomputationalcomplexityforimplementationsofthe 2-DDFT 559 Table10.2 A2-Dsequenceasinputforthe2-DDCT 560 xiii xiv List of Tables Table10.3 Theextendedsequenceasinputforthe2-DDCT 560 Table10.4 The2-DDCTforthe2-Dsequence 561 List of Figures Fig.1.1 Conceptualblockdiagramofatypicalsystem 5 Fig.1.2 StemplotforsequenceinExample1.1 10 Fig.1.3 StemplotofcosinesequenceforExample1.2 11 Fig.1.4 StemplotofadelayedimpulseforExample1.3 12 Fig.1.5 PlotofsectionofasinusoidalsignalforExample1.4 14 Fig.1.6 PlotoftherealpartofacomplexexponentialinExample1.5 15 Fig.2.1 ExampleofadiscretetimesignalasrepresentedbyTable2.1 21 Fig.2.2 Example of a discrete time signal represented by a functional representation 21 Fig.2.3 Example of a discrete time signal represented by a sequence representation 22 Fig.2.4 Stemplotofasequenceusingunitstepsequences 24 Fig.2.5 Stemplotofsequenceusingtheunitramp 25 Fig.2.6 Stemplotofsequenceusingexponentialsignals 26 Fig.2.7 Stemplotofsequenceusingcomplexexponentialsignals 28 Fig.2.8 Stemplotofanevendiscretetimesignal 29 Fig.2.9 Stemplotofanodddiscretetimesignal 29 Fig.2.10 Stemplotofadiscretetimesignalthatisneitherevennorodd 30 Fig.2.11 StemplotofthediscretetimesignalinFig.2.10afterflippingitleftto righttoformx(−n) 31 Fig.2.12 Stemplotofthecomparisonoftheoriginalevensignalwiththe extractedevensignal 31 Fig.2.13 Stemplotofthecomparisonoftheoriginaloddsignalwiththe extractedoddsignal 32 Fig.2.14 Stemplotofasinusoidalsequence 36 Fig.2.15 Stemplotofasinusoidalsequencewithindependentvariablescaled byafactorofa=0.5 37 Fig.2.16 Stemplotofasinusoidalsequencewithindependentvariablescaled byafactorofa=1.5 38 Fig.2.17 Stemplotofasinusoidalsequence 39 Fig.2.18 Stemplotofasinusoidalsequencewithindependentvariableshifted byafactorofm=6 39 Fig.2.19 Stemplotofasinusoidalsequencewithindependentvariableshifted byafactorofm=−6 40 Fig.2.20 Stemplotofasamplesequence 41 Fig.2.21 Stemplotofthereversedsamplesequence 41 Fig.2.22 OriginaldiscretetimesignalforExample2.7 42 Fig.2.23 Transformationy1(n)=x(n−4)forExample2.7 43 Fig.2.24 Transformationy2(n)=x(3−n)forExample2.7 45 Fig.2.25 Transformationy3(n)=x(3n)forExample2.7 45 Fig.2.26 Transformationy4(n)=x(3n+1)forExample2.7 46 xv xvi List of Figures Fig.2.27 Transformationy5(n)=x(n)u(2−n)forExample2.7 46 Fig.2.28 Transformationy6(n)=x(n−2)δ(n−2)forExample2.7 47 Fig.2.29 Transformationy7(n)= 12x(cid:2)(n(cid:3))+ 12(−1)nx(n)forExample2.7 47 Fig.2.30 Transformationy (n)=x n forExample2.7 48 8 2 Fig.2.31 Modulation 48 Fig.2.32 Addition 48 Fig.2.33 Multiplication 49 Fig.2.34 Delay 49 Fig.2.35 Signalsx (t),x (t),andtheirsamplesonthesameplot 51 1 2 Fig.2.36 Input1forcross-correlationexample 70 Fig.2.37 Input2forcross-correlationexample 71 Fig.2.38 Blockdiagramoftheoverallsystem 71 Fig.2.39 Pole–zeroplotforExample2.25 88 Fig.2.40 Blockdiagramforadiscretetimesystem 89 Fig.2.41 RegionofconvergenceforS1(z)withb=3 95 Fig.2.42 RegionofconvergenceforS2(z)witha=0.5 95 Fig.2.43 RegionofconvergenceforX(z)witha=0.5,b=3.0 96 Fig.2.44 Stemplotofx(n)inExample2.28forn=−25ton=25 100 Fig.2.45 Comparisonofthesample-and-holdandtheideallowpassfilter 117 Fig.2.46 Reconstructionusingasample-and-holdandalowpassfilter 118 Fig.2.47 StemplotofthesamplesequenceforExample2.35 119 Fig.2.48 StemplotoftheoutputsamplesequenceforExample2.35after usingthesample-and-holdoperation 120 Fig.2.49 Stem plot of the input and output sample sequences for Example2.35onthesameplot 121 Fig.2.50 StemplotoftheinputandoutputsamplesequencesforExample2.35 aftercompensatingforthedelayinthesample-and-holdoperator 121 Fig.2.51 Stem plot of the input and filtered output sample sequences for Example 2.35 after compensating for the delays in the sample-and-holdoperatorandthefilter 122 Fig.2.52 Impulseresponseforthelinearpointconnector 122 Fig.2.53 Comparisonofthelinearpointconnectorandtheideallowpassfilter 123 Fig.2.54 Reconstructionusingalinearpointconnectorandalowpassfilter 124 Fig.2.55 SamplesequenceforExample2.36 124 Fig.2.56 Magnitude and phase responses for the sample sequence in Example2.36 125 Fig.2.57 Magnitudeandphaseresponsesforthemodifiedsamplesequence inExample2.36 126 Fig.2.58 SamplesequenceforExample2.36afterinterpolation 127 Fig.2.59 StemplotofsamplesequenceforExample2.37 128 Fig.2.60 Samplesequenceafterpaddingwithzeros 129 Fig.2.61 InterpolatedoutputsequenceforExample2.37 130 Fig.2.62 Abandlimitedsignalwith256samples 130 Fig.2.63 Interpolatedsignalupsampledbyafactorof3 131 Fig.2.64 Samplesequencedecimatedbyafactorof3 133 List of Figures xvii Fig.2.65 Samplesequencedecimatedbyafactorof3usingthedecimate Matlabfunction 133 Fig.2.66 StemplotforinterpolatedsequenceforExample2.40 136 Fig.2.67 StemplotofthesamplesequenceforExample2.41afterfiltering usingtheantialiasinglowpassfilter 137 Fig.2.68 StemplotoftheoutputsamplesequenceforExample2.41after usingthesample-and-holdoperation 138 Fig.2.69 Stem plot of the input and output sample sequences for Example2.41onthesameplot 138 Fig.2.70 StemplotoftheinputandoutputsamplesequencesforExample2.41 aftercompensatingforthedelayinthesample-and-holdoperator 139 Fig.2.71 PlotofSpectrumforProblem2.28 148 Fig.2.72 PlotofspectrumforProblem2.30 148 Fig.3.1 Generaldiscretetimesystemwithinputejωn 161 Fig.3.2 MagnitudespectrumforFIRfilter 163 Fig.3.3 PhasespectrumforFIRfilter 164 Fig.3.4 MagnitudeplotofH(ω)forExample3.2 166 Fig.3.5 PhaseplotofH(ω)forExample3.2 166 Fig.3.6 Pole–zeroplotof H(z)forlowpassfilterwithcutofffrequency ωc =0.6π 167 Fig.3.7 MagnitudeandphaseplotsofH(z)forlowpassfilterwithcutoff frequencyωc =0.6π 168 Fig.3.8 Pole–zeroplotofH(z)forhighpassfilterwithcutofffrequency ωc =0.6π 168 Fig.3.9 MagnitudeandphaseplotsofH(z)forhighpassfilterwithcutoff frequencyωc =0.6π 169 Fig.3.10 Pole–zeroplotofH(z)forbandstopfilterwithcutofffrequenciesat ω1=0.6π andω2=0.75π 170 Fig.3.11 MagnitudeandphaseplotsofH(z)forbandstopfilterwithcutoff frequencyω1=0.6π andω2=0.75π 170 Fig.3.12 Pole–zeroplotofH(z)forbandpassfilterwithcutofffrequenciesat ω1=0.6π andω2=0.75π 171 Fig.3.13 MagnitudeandphaseplotsofH(z)forbandpassfilterwithcutoff frequencyω1=0.6π andω2=0.75π 172 Fig.3.14 Pole–zeroplotofH(z)fordigitalresonatorwithzerosatz = ±1, ω=0.7π 173 Fig.3.15 Frequency response ofH(z)fordigitalresonatorwithzeros at z=±1,ω=0.7π 174 Fig.3.16 Pole–zeroplotofH(z)fordigitalresonatorwithzerosatz = 0, ω=0.7π 174 Fig.3.17 FrequencyresponseofH(z)fordigitalresonatorwithzerosatz=0, ω=0.7π 175 Fig.3.18 Blockdiagramoftheoverallsystem 175 Fig.3.19 Plotof50samplesoftheinputsequenceforExample3.4 177 Fig.3.20 Plotof50samplesoftheoutputsequenceforExample3.4 178 xviii List of Figures Fig.3.21 MagnitudeandphaseplotsforExample3.5 181 Fig.3.22 Circularconvolutionofx (n)andx (n) 183 1 2 Fig.3.23 Linearconvolutionusingconvolutioninthetimedomain 183 Fig.3.24 LinearconvolutionusingtheDFT 184 Fig.3.25 StemplotofatestsequenceforExample3.11 195 Fig.3.26 StemplotsofthemagnitudesoftheDFTandtheDCTforthetest sequenceforExample3.11 196 Fig.4.1 Specificationsforalowpassfilter 206 Fig.4.2 StemplotforthecoefficientsinH(z)forExample4.1 210 Fig.4.3 MagnitudeandphaseplotsforH(z)forExample4.1 212 Fig.4.4 StemplotforthecoefficientsinH(z)forExample4.2 212 Fig.4.5 MagnitudeandphaseplotsforH(z)forExample4.2 214 Fig.4.6 Exampleofanideallowpassfilter(ωc =0.67π) 216 Fig.4.7 ImpulseresponseforthelowpassfilterinExample4.3 218 Fig.4.8 MagnitudeandphaseresponsesforthelowpassfilterinExample4.3 218 Fig.4.9 Exampleofanidealhighpassfilter(ωc =0.391π) 219 Fig.4.10 ImpulseresponseforthehighpassfilterinExample4.4 221 Fig.4.11 Magnitude and phase responses for the high pass filter in Example4.4 222 Fig.4.12 ImpulseresponsesforthetwoFIRfilterdesignsusingtherectangular windowforcomparison 226 Fig.4.13 Magnitudeandphaseresponseofbandstopfilterusingarectangular window 227 Fig.4.14 ImpulseresponsesfortheFIRfilterdesignusingtheHamming window 227 Fig.4.15 MagnitudeandphaseresponseofbandstopfilterusingMatlab’sfir1 functionandaHammingwindow 228 Fig.4.16 MagnituderesponsefortheFIRfilterusingtheHammingwindow 235 Fig.4.17 MagnituderesponsefortheFIRfilterusingtheKaiserwindow 236 Fig.4.18 Magnituderesponseforthedesignusingfirpm 236 Fig.4.19 DesignusingfirlsforExample4.6 237 Fig.4.20 DesignusingfirclsforExample4.6 237 Fig.4.21 Designusingfir2forExample4.6 238 Fig.4.22 Aplotofthemappingofcontinuoustimefrequenciestodiscretetime frequenciesforthebilineartransformation 243 Fig.4.23 MagnitudeplotforExample4.13 255 Fig.4.24 MagnitudeplotforExample4.14 256 Fig.5.1 BlockdiagramforthedirectrealizationofanFIRdiscretetime system 278 Fig.5.2 BlockdiagramforthedirectimplementationofanFIRdigitalfilter 279 Fig.5.3 BlockdiagramforalinearphaseFIRdigitalfilter 281 Fig.5.4 BlockdiagramforalinearphaseFIRdigitalfilter 282 Fig.5.5 PolyphaseFIRimplementationusing2filters 285 Fig.5.6 PolyphaseFIRimplementationusing3filters 287 Fig.5.7 FIRlatticefiltersection 288

Description:
Digital signal processing (DSP) has been applied to a very wide range of applications. This includes voice processing, image processing, digital communications, the transfer of data over the internet, image and data compression, etc. Engineers who develop DSP applications today, and in the future, w
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.