HELSINKIUNIVERSITYOFTECHNOLOGY DepartmentofElectrical andCommunications Engineering Laboratory ofAcousticsandAudioSignalProcessing HeliNironen Diffuse Reflections in Room Acoustics Modelling Master’s Thesis submitted in partial fulfillment of the requirements for the degree of MasterofScienceinTechnology. Espoo,October12,2004 Supervisor: ProfessorMattiKarjalainen Instructor: D.Sc. (Tech.) TapioLokki HELSINKIUNIVERSITY ABSTRACT OFTHE OFTECHNOLOGY MASTER’S THESIS Author: HeliNironen Nameofthethesis: DiffuseReflectionsinRoomAcousticsModelling Date: October12,2004 Numberofpages: 92 Department: ElectricalandCommunications Engineering Professorship: S-89AcousticsandAudioSignalProcessing Supervisor: Prof. MattiKarjalainen Instructor: D.Sc. (Tech.) TapioLokki Thisthesisisastudyofdiffusereflectionmodellinginroomacoustics. Theaimoftheworkisto getfamiliarwiththemostoftenappliedphysicalprinciples andmodellingmethods. Anobjec- tive is that the studied theory and techniques could be applied in future research work. Room acoustics modelling methods are divided in this thesis into three categories: 1. Ray-based methods, 2. Radiosity, and 3. Wave-based methods. When considering different modelling methods, emphasis is on the ray- and radiosity-based approaches. Somewave-based methods are also presented, but left out of more accurate examination. Although the approach in this work is mainly physically-based, one totally perceptually-based method is also presented. A simple implementation is carried out in order to get familiar with the studied principles and methods in practice. An early response is predicted with a model which combines the image source method and theradiosity-based approach. Theimplemented system isdescribed inde- tail, and the modelling results are analysed. Finally, methods most applicable for estimating acousticalqualityofaroom,methodsmostsuitableforauralisationpurposes,andrequirements ofreal-timedynamicsystemsarediscussed. Keywords: diffuse reflection, scattering, room acoustics modelling, ray-based modelling methods, radiosity, auralisation i TEKNILLINENKORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ Tekijä: HeliNironen Työnnimi: Diffuusitheijastukset huoneakustiikan mallinnuksessa Päivämäärä: 12.10.2004 Sivuja: 92 Osasto: Sähkö-jatietoliikennetekniikka Professuuri: S-89Akustiikka jaäänenkäsittelytekniikka Työnvalvoja: ProfessoriMattiKarjalainen Työnohjaaja: TkTTapioLokki Tässädiplomityössätarkastellaandiffuusienheijastustenmallinnustahuoneakustiikassa. Työs- sä käydään läpi äänen etenemiseen liittyviä käsitteitä, periaatteita ja tunnetuimpia mallinnus- menetelmiä. Tavoitteena on, että opiskeltua teoriapohjaa voitaisiin hyödyntää myöhemmin ai- heeseen liittyvässä tutkimuksessa. Huoneakustiikan mallinnuksessa käytetyt menetelmät jao- tellaantässätyössäkolmeenryhmään. Ensimmäisenryhmänmenetelmissä ääniaaltojen etene- minen mallinnetaan äänisäteiden avulla. Toisen ryhmän muodostavat radiositeettimenetelmät, joissaääntäheijastellaandiffuusistihuoneenseiniinmuodostetunverkonsolmujenvälillä.Kol- mannen ryhmän menetelmät perustuvat aaltoyhtälön ratkaisuun. Työn painopiste on kahteen ensimmäiseen ryhmään kuuluvissa menetelmissä. Vaikka mallinnusmenetelmiä tarkastellaan- kin enimmäkseen fysikaalisiin periaatteisiin tukeutuen, esitellään myös yksi menetelmä, joka mallintaa diffuuseja heijastuksia ihmisen havitsemiseen perustuen. Työssä myös toteutetaan yksinkertainen malli huonevasteen alkuosalle. Tässä sovelletaan kuvalähde- ja radiositeetti- menetelmää. Toteutettu malli esitellään yksityiskohtaisesti ja sillä saatuja tuloksia analysoi- daan. Myös työssä käsiteltyjen menetelmien soveltuvuutta erilaisiin tarkoituksiin kartoitetaan. Teoriapohjan perusteella analysoidaan, mitämenetelmistä voidaan käyttää huoneen akustisten ominaisuuksien arviointiin, mitkämenetelmistäsopivatparhaitenauralisaatioon jaminkälaisia kompromisseja vaativatdynaamiset reaaliaikasysteemit. Avainsanat:diffuusiheijastus, äänensironta,huoneakustiikan mallinnus,sädemenetelmät, ra- diositeettimenetelmä, auralisaatio ii Acknowledgements This Master’s thesis was carried out for the Uni-verse project at the Telecommunications Software and Multimedia Laboratory, Helsinki University of Technology, during the year 2004. Theworkwasinstructed byD.Sc. (Tech.) TapioLokki. IwouldliketothankTapioforhis guidance. Hehas provided mewithmany valuable insights during the course ofthe work. I also thank Tapio for his comments and suggestions on the structure and content of this thesis. Hehaspatiently givenmefeedback onvariousversionsofthethesis. I also want to thank my supervisor Prof. Matti Karjalainen for his helpful comments and supportive discussions. Prof. Lauri Savioja I would like to thank for employing mein the Uni-verseprojectandforproviding mewithaninteresting topicformythesis. I would also like to give special thanks to Sami Kiminki, my co-worker in the Uni-verse project, for numerous helpful discussions, valuable insights, and all the practical help that he offered me during this work. Sampo Vesa and Iikka Olli, who have shared the office withme,Iwouldliketothankforgoodcompanyandforarelaxedworkingenvironment. Furthermore,IwishtothankmyfriendsforallthefunIhaveexperiencedwiththemduring mystudies. SharafHameedIwanttothankforbringinganIndiancontribution tomycircle offriends. Finally, I would like to express my gratitude to my family. I want to thank my parents for theirpatience,encouragement, andallthesupportthatIhavegotduringmyalmostendless studies. Also, I would like to thank my dear sisters Satu and Kati for their contribution. My beloved Teemu I deeply thank for his understanding, support, and love. His positive attitudetowardslifehasencouraged meoverthepastfewyears. Otaniemi,October12,2004, HeliNironen iii Contents Symbols ix Abbreviations x 1 Introduction 1 2 Background 4 2.1 Characteristics ofSoundWaves. . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 VelocityofSound . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 SomeBasicRelations . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3 PlaneWaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.4 SphericalWaves . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.5 EnergyandEnergyDensity . . . . . . . . . . . . . . . . . . . . . 8 2.1.6 Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 ReflectionofSound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 PrincipalLawsofSoundReflection . . . . . . . . . . . . . . . . . 10 2.2.2 Diffraction, Scattering, andDiffuseReflection . . . . . . . . . . . 13 2.2.3 DiffuseSoundField . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.4 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Expressing SurfaceDiffusion . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 Lambert’sLaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2 Theoretically CalculatedScattering Functions . . . . . . . . . . . . 19 iv 2.3.3 Measured ScatteringFunctions . . . . . . . . . . . . . . . . . . . . 25 2.4 MainMethodsofRoomAcoustics Modelling . . . . . . . . . . . . . . . . 27 2.4.1 GeneralIssuesaboutRoomAcoustics Modelling . . . . . . . . . . 27 2.4.2 Ray-BasedModelling Methods . . . . . . . . . . . . . . . . . . . 29 2.4.3 Radiosity Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4.4 Wave-BasedMethods . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 ModellingDiffuseReflections 37 3.1 MethodsBasedonRayTracing . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 CombiningBeamTracingandRadiosity . . . . . . . . . . . . . . . . . . . 40 3.3 Approach BasedontheApproximateConeTracing . . . . . . . . . . . . . 43 3.4 UtilisingSchroeder Diffusersin2D . . . . . . . . . . . . . . . . . . . . . 48 3.5 Perceptually-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . 51 4 ExperimentalPart 56 4.1 Implemented System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.1.1 Modelling ofSpecularReflectionResponse . . . . . . . . . . . . . 57 4.1.2 Modelling ofDiffuseReflectionResponse . . . . . . . . . . . . . . 64 4.1.3 CombiningSpecularandDiffuseReflectionResponses . . . . . . . 69 4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2.1 EffectoftheScattering Coefficient . . . . . . . . . . . . . . . . . . 70 4.2.2 EffectofthePatchSize . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.3 Discussion aboutImplementation . . . . . . . . . . . . . . . . . . 72 5 Discussion 76 5.1 DiffuseReflectionModelling whenPredicting Acoustical QualityofaRoom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2 DiffuseReflectionsinContextofAuralisation . . . . . . . . . . . . . . . . 79 5.3 Real-timeDynamicDiffuseReflectionModelling . . . . . . . . . . . . . . 81 6 ConclusionsandFutureWork 83 v Symbols a Attenuation constant b Numberofzeroesinanallpassfilter c Velocityofsound d Diffusioncoefficient d ActualdepthofthenthwellinaSchroederdiffusor n f Frequency g Numberofgridnodesonasurface h Numberoftriangular beamsemittedfromagridnode i √ 1 − i Symbolofsurfaceelement j Symbolofsurfaceelement k Wavenumber k Specularreflectionscalar s k Diffusereflectionscalar d k Variabledetermining levelofdiffusedreflectioncomponents inaresponse diff l Integervariable l ,l ,l CoefficientsrelatedtoLambert’slawincontextofimplemented system sp pp pl m Formfactorbetweensurfaceelements jandi j i → n Surfacenormal n Integervariable n Totalnumberofnonempty patches p p Soundpressure p Staticvalueofapressure 0 p Initialsoundpressure 0 p Soundpressure ofanincidentwave i p Soundpressure ofareflectedwave r p Soundpressure onpartially diffusing surfacereceiver sc p Soundpressure obtained fortotallydiffusely reflectingsurface dif vi p Soundpressure obtained fortotally specularly reflectingsurface spec r Distancevariable r Distancebetweenasoundsourceandasurfacepatch sp r Distancebetweentwosurfacepatches pp r Distancefromasurfacepatchtoalistener pl r Distancebetweensurfaceelements jandi j i → r,r Locationvectorsofwallelements 0 r Locationvectorofareceiver r r Locationvectorofasource 0 r Locationvectorofapointonasurface s s Scattering coefficient s RelativedepthofthenthwellinaSchroederdiffusor n t Time v Valueofparticle velocity v Particlevelocity v Particlevelocity ofanincidentwave i v Particlevelocity ofareflectedwave r v Componentofparticlevelocity, radialone rad v Componentofparticlevelocity, paralleltox-axis x v Componentofparticlevelocity, normaltoawall n w Energydensity w Energydensity, directcontribution fromsomesoundsourcetoareceiver d w Kineticenergydensity kin w Potentialenergy density pot x,y,z Locationvariables x Locationvariableinarotatedcoordinate system 0 x Inputsignalincontextofallpassfilter y Outputsignalincontextofallpassfilter x ,y ,z Locationvariables ofareceiver r r r x ,y ,z Locationvariables ofasource 0 0 0 x ,y ,z Locationvariables ofapointonasurface s s s z Acousticimpedance ofacapataclosedendofapipe d A Areaofanemittingsurface es A Areaofareceiving surface rs D A Areaofanelementinasurfacewhichisemittingsound es A Cross-sectional areaofabeam i A Areaofasurface, visiblefromareceiver vis vii B Irradiation strength B Irradiation strength, directcontribution fromasoundsourcetoareceiver d E Energy E Initialenergy atasoundsource 0 E Energyarrivingtoalistener l E Energyarrivingtoasinglepatch p ENV Envelope ofanallpassfilter G Green’sfunction I Intensity I Intensity ofanincident wave 0 I Incident soundintensity atasurface elementi i I Intensity, contribution fromasinglesurfaceelement jtoasurfaceelementi j I Directcontribution fromsomesoundsourceatasurfaceelementi 0 i → dI Intensity ofenergyre-radiated betweensurface elements I Surfaceintensity ∗ I Intensity atareceiver R K Constant L Straightlineconnecting twosurfaceelements L Straightlineconnecting asurfaceelementandareceiver 0 M Non-negative oddprimenumber N Integervariable P Pointinsidearoom P Powerofabeamemanating fromanimagesource i P Powerofabeamemanating fromasource s Q Volumevelocity R Reflectionfactor R Energyreflectionfactor e RG Exteriorregion,external toasurface e RG Regioninasurface s RG Interior region,internal toasurface i R Specularreflection s R Diffusereflection d D R Anareaofasurfacereceiver S Areaofasurface dS,dS’ Surfaceareaelements D S Areaofsurface element T Periodoftime viii V Pressurewave,travelling inpositivex-direction W Pressurewave,travelling innegativex-direction X Randomnumber Z Wallimpedance Z Impedanceatanentrance ofnthpipeincontextofSchroederdiffusor n a Absorptioncoefficient b Surfaceadmittance, outwardpointing surfacenormal b Surfaceadmittance, inwardpointingsurface normal 0 c Phaseangleofreflectionfactor g Splittingcoefficient k Adiabaticexponent l Designwavelength ofaSchroederdiffusor 0 µ Optimumdecayrateofanallpass filter. w Angularfrequency y Coefficientofanallpassfilter. r Gasdensity r Staticvalueofagasdensity 0 s Reflectioncoefficient s Energyreflectioncoefficientatsurfaceelementj j q Angleofanincident wave 0 q Angleofareflectedwave q Angleofsoundraywhichilluminatessurface elementi i q Angleofsoundraywhichirradiatesfromsurfaceelement j j q Angleofsoundraywhichirradiatesfromsurfaceelementtoreceiver r q Angleofanincident wave,fromsourcetopatch sp q Angleofreflectedwave,frompatchtolistener pl q Angleofreflectedwave,frompatchtoanother patch pp V AnglebetweenLandsurfacenormalatsurface elementdS V AnglebetweenLandsurfacenormalatsurface elementdS’ 0 V AnglebetweenL andsurfacenormalatsurfaceelementdS 00 0 z Specificacoustic impedance W Solidanglepresented byasurfacetoareceiving point DW Asolidanglethatithbeamencloses inbeamtracing i Q Temperature ix
Description: