ebook img

Diffractive W and Z Production at the Fermilab Tevatron PDF

0.27 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Diffractive W and Z Production at the Fermilab Tevatron

Diffractive W and Z Production at the Fermilab Tevatron T. Aaltonen,22 B. A´lvarez Gonz´alezv,10 S. Amerio,42 D. Amidei,33 A. Anastassov,37 A. Annovi,18 J. Antos,13 M.G. Albrow,16 G. Apollinari,16 J.A. Appel,16 A. Apresyan,47 T. Arisawa,56 A. Artikov,14 J. Asaadi,52 W. Ashmanskas,16 B. Auerbach,59 A. Aurisano,52 F. Azfar,41 W. Badgett,16 A. Barbaro-Galtieri,27 V.E. Barnes,47 B.A. Barnett,24 P. Barriaee,45 P. Bartos,13 M. Baucecc,42 G. Bauer,31 F. Bedeschi,45 D. Beecher,29 S. Behari,24 G. Bellettinidd,45 J. Bellinger,58 D. Benjamin,15 A. Beretvas,16 A. Bhatti,49 M. Binkley∗,16 D. Bisellocc,42 I. Bizjakii,29 K.R. Bland,5 C. Blocker,7 B. Blumenfeld,24 A. Bocci,15 A. Bodek,48 D. Bortoletto,47 J. Boudreau,46 1 A. Boveia,12 B. Braua,16 L. Brigliadoribb,6 A. Brisuda,13 C. Bromberg,34 E. Brucken,22 M. Bucciantoniodd,45 1 J. Budagov,14 H.S. Budd,48 S. Budd,23 K. Burkett,16 G. Busettocc,42 P. Bussey,20 A. Buzatu,32 S. Cabrerax,15 0 C. Calancha,30 S. Camarda,4 M. Campanelli,34 M. Campbell,33 F. Canelli12,16 A. Canepa,44 B. Carls,23 2 D. Carlsmith,58 R. Carosi,45 S. Carrillok,17 S. Carron,16 B. Casal,10 M. Casarsa,16 A. Castrobb,6 P. Catastini,16 n D. Cauz,53 V. Cavaliereee,45 M. Cavalli-Sforza,4 A. Cerrif,27 L. Cerritoq,29 Y.C. Chen,1 M. Chertok,8 G. Chiarelli,45 a J G. Chlachidze,16 F. Chlebana,16 K. Cho,26 D. Chokheli,14 J.P. Chou,21 W.H. Chung,58 Y.S. Chung,48 3 C.I. Ciobanu,43 M.A. Ciocciee,45 A. Clark,19 D. Clark,7 G. Compostellacc,42 M.E. Convery,16 J. Conway,8 M.Corbo,43 M. Cordelli,18 C.A. Cox,8 D.J. Cox,8 F. Cresciolidd,45 C. Cuenca Almenar,59 J. Cuevasv,10 ] x R. Culbertson,16 D. Dagenhart,16 N. d’Ascenzot,43 M. Datta,16 P. de Barbaro,48 S. De Cecco,50 G. De Lorenzo,4 e M. Dell’Orsodd,45 C. Deluca,4 L. Demortier,49 J. Dengc,15 M. Deninno,6 F. Devoto,22 M. d’Erricocc,42 p- A. Di Cantodd,45 B. Di Ruzza,45 J.R. Dittmann,5 M. D’Onofrio,28 S. Donatidd,45 P. Dong,16 T. Dorigo,42 e K. Ebina,56 A. Elagin,52 A. Eppig,33 R. Erbacher,8 D. Errede,23 S. Errede,23 N. Ershaidataa,43 R. Eusebi,52 h H.C. Fang,27 S. Farrington,41 M. Feindt,25 J.P. Fernandez,30 C. Ferrazzaff,45 R. Field,17 G. Flanaganr,47 [ R. Forrest,8 M.J. Frank,5 M. Franklin,21 J.C. Freeman,16 I. Furic,17 M. Gallinaro,49 J. Galyardt,11 J.E. Garcia,19 2 A.F. Garfinkel,47 P. Garosiee,45 H. Gerberich,23 E. Gerchtein,16 S. Giagugg,50 V. Giakoumopoulou,3 P. Giannetti,45 v K. Gibson,46 C.M. Ginsburg,16 N. Giokaris,3 P. Giromini,18 M. Giunta,45 G. Giurgiu,24 V. Glagolev,14 8 D. Glenzinski,16 M. Gold,36 D. Goldin,52 N. Goldschmidt,17 A. Golossanov,16 G. Gomez,10 G. Gomez-Ceballos,31 4 0 M. Goncharov,31 O. Gonz´alez,30 I. Gorelov,36 A.T. Goshaw,15 K. Goulianos,49 A. Gresele,42 S. Grinstein,4 5 C. Grosso-Pilcher,12 R.C. Group,16 J. Guimaraes da Costa,21 Z. Gunay-Unalan,34 C. Haber,27 S.R. Hahn,16 7. E. Halkiadakis,51 A. Hamaguchi,40 J.Y. Han,48 F. Happacher,18 K. Hara,54 D. Hare,51 M. Hare,55 R.F. Harr,57 0 K. Hatakeyama,5 C. Hays,41 M. Heck,25 J. Heinrich,44 M. Herndon,58 S. Hewamanage,5 D. Hidas,51 A. Hocker,16 0 W. Hopkinsg,16 D. Horn,25 S. Hou,1 R.E. Hughes,38 M. Hurwitz,12 U. Husemann,59 N. Hussain,32 M. Hussein,34 1 J. Huston,34 G. Introzzi,45 M. Iorigg,50 A. Ivanovo,8 E. James,16 D. Jang,11 B. Jayatilaka,15 E.J. Jeon,26 M.K. Jha,6 : v S. Jindariani,16 W. Johnson,8 M. Jones,47 K.K. Joo,26 S.Y. Jun,11 T.R. Junk,16 T. Kamon,52 P.E. Karchin,57 i X Y. Katon,40 W. Ketchum,12 J. Keung,44 V. Khotilovich,52 B. Kilminster,16 D.H. Kim,26 H.S. Kim,26 H.W. Kim,26 r J.E. Kim,26 M.J. Kim,18 S.B. Kim,26 S.H. Kim,54 Y.K. Kim,12 N. Kimura,56 S. Klimenko,17 K. Kondo,56 a D.J. Kong,26 J. Konigsberg,17 A. Korytov,17 A.V. Kotwal,15 M. Kreps,25 J. Kroll,44 D. Krop,12 N. Krumnackl,5 M. Kruse,15 V. Krutelyovd,52 T. Kuhr,25 M. Kurata,54 S. Kwang,12 A.T. Laasanen,47 S. Lami,45 S. Lammel,16 M. Lancaster,29 R.L. Lander,8 K. Lannonu,38 A. Lath,51 G. Latinoee,45 I. Lazzizzera,42 T. LeCompte,2 E. Lee,52 H.S. Lee,12 J.S. Lee,26 S.W. Leew,52 S. Leodd,45 S. Leone,45 J.D. Lewis,16 C.-J. Lin,27 J. Linacre,41 M. Lindgren,16 E. Lipeles,44 A. Lister,19 D.O. Litvintsev,16 C. Liu,46 Q. Liu,47 T. Liu,16 S. Lockwitz,59 N.S. Lockyer,44 A. Loginov,59 D. Lucchesicc,42 J. Lueck,25 P. Lujan,27 P. Lukens,16 G. Lungu,49 J. Lys,27 R. Lysak,13 R. Madrak,16 K. Maeshima,16 K. Makhoul,31 P. Maksimovic,24 S. Malik,49 G. Mancab,28 A. Manousakis-Katsikakis,3 F. Margaroli,47 C. Marino,25 M. Mart´ınez,4 R. Mart´ınez-Ballar´ın,30 P. Mastrandrea,50 M. Mathis,24 M.E. Mattson,57 P. Mazzanti,6 K.S. McFarland,48 P. McIntyre,52 R. McNultyi,28 A. Mehta,28 P. Mehtala,22 A. Menzione,45 C. Mesropian,49 T. Miao,16 D. Mietlicki,33 A. Mitra,1 G. Mitselmakher,17 H. Miyake,54 S. Moed,21 N. Moggi,6 M.N. Mondragonk,16 C.S. Moon,26 R. Moore,16 M.J. Morello,16 J. Morlock,25 P. Movilla Fernandez,16 A.Mukherjee,16 Th.Muller,25 P.Murat,16 M.Mussinibb,6 J.Nachtmanm,16 Y. Nagai,54 J.Naganoma,56 I.Nakano,39 A. Napier,55 J. Nett,58 C. Neuz,44 M.S. Neubauer,23 J. Nielsene,27 L. Nodulman,2 O. Norniella,23 E. Nurse,29 L. Oakes,41 S.H. Oh,15 Y.D. Oh,26 I. Oksuzian,17 T. Okusawa,40 R. Orava,22 L. Ortolan,4 S. Pagan Grisocc,42 C. Pagliarone,53 E. Palenciaf,10 V. Papadimitriou,16 A.A. Paramonov,2 J. Patrick,16 G. Paulettahh,53 M. Paulini,11 2 C. Paus,31 D.E. Pellett,8 A. Penzo,53 T.J. Phillips,15 G. Piacentino,45 E. Pianori,44 J. Pilot,38 K. Pitts,23 C. Plager,9 L. Pondrom,58 K. Potamianos,47 O. Poukhov∗,14 F. Prokoshiny,14 A. Pronko,16 F. Ptohosh,18 E. Pueschel,11 G. Punzidd,45 J. Pursley,58 A. Rahaman,46 V. Ramakrishnan,58 N. Ranjan,47 I. Redondo,30 P. Renton,41 M. Rescigno,50 F. Rimondibb,6 L. Ristori45,16 A. Robson,20 T. Rodrigo,10 T. Rodriguez,44 E. Rogers,23 S. Rolli,55 R. Roser,16 M. Rossi,53 F. Ruffiniee,45 A. Ruiz,10 J. Russ,11 V. Rusu,16 A. Safonov,52 W.K. Sakumoto,48 L. Santihh,53 L. Sartori,45 K. Sato,54 V. Savelievt,43 A. Savoy-Navarro,43 P. Schlabach,16 A. Schmidt,25 E.E. Schmidt,16 M.P. Schmidt∗,59 M. Schmitt,37 T. Schwarz,8 L. Scodellaro,10 A. Scribanoee,45 F. Scuri,45 A. Sedov,47 S. Seidel,36 Y. Seiya,40 A. Semenov,14 F. Sforzadd,45 A. Sfyrla,23 S.Z. Shalhout,8 T. Shears,28 P.F. Shepard,46 M. Shimojimas,54 S. Shiraishi,12 M. Shochet,12 I. Shreyber,35 A. Simonenko,14 P. Sinervo,32 A. Sissakian∗,14 K. Sliwa,55 J.R. Smith,8 F.D. Snider,16 A. Soha,16 S. Somalwar,51 V. Sorin,4 P. Squillacioti,16 M. Stanitzki,59 R. St. Denis,20 B. Stelzer,32 O. Stelzer-Chilton,32 D. Stentz,37 J. Strologas,36 G.L. Strycker,33 Y. Sudo,54 A. Sukhanov,17 I. Suslov,14 K. Takemasa,54 Y. Takeuchi,54 J. Tang,12 M. Tecchio,33 P.K. Teng,1 J. Thomg,16 J. Thome,11 G.A. Thompson,23 E. Thomson,44 P. Ttito-Guzm´an,30 S. Tkaczyk,16 D. Toback,52 S. Tokar,13 K. Tollefson,34 T. Tomura,54 D. Tonelli,16 S. Torre,18 D. Torretta,16 P. Totarohh,53 M. Trovatoff,45 Y. Tu,44 N. Turiniee,45 F. Ukegawa,54 S. Uozumi,26 A. Varganov,33 E. Vatagaff,45 F. Va´zquezk,17 G. Velev,16 C. Vellidis,3 M. Vidal,30 I. Vila,10 R. Vilar,10 M. Vogel,36 G. Volpidd,45 P. Wagner,44 R.L. Wagner,16 T. Wakisaka,40 R. Wallny,9 S.M. Wang,1 A. Warburton,32 D. Waters,29 M. Weinberger,52 W.C. Wester III,16 B. Whitehouse,55 D. Whitesonc,44 A.B. Wicklund,2 E. Wicklund,16 S. Wilbur,12 F. Wick,25 H.H. Williams,44 J.S. Wilson,38 P. Wilson,16 B.L. Winer,38 P. Wittichg,16 S. Wolbers,16 H. Wolfe,38 T. Wright,33 X. Wu,19 Z. Wu,5 K. Yamamoto,40 J. Yamaoka,15 U.K. Yangp,12 Y.C. Yang,26 W.-M. Yao,27 G.P. Yeh,16 K. Yim,16 J. Yoh,16 K. Yorita,56 T. Yoshidaj,40 G.B. Yu,15 I. Yu,26 S.S. Yu,16 J.C. Yun,16 A. Zanetti,53 Y. Zeng,15 and S. Zucchellibb6 (CDF Collaboration†) 1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China 2Argonne National Laboratory, Argonne, Illinois 60439, USA 3University of Athens, 157 71 Athens, Greece 4Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain 5Baylor University, Waco, Texas 76798, USA 6Istituto Nazionale di Fisica Nucleare Bologna, bbUniversity of Bologna, I-40127 Bologna, Italy 7Brandeis University, Waltham, Massachusetts 02254, USA 8University of California, Davis, Davis, California 95616, USA 9University of California, Los Angeles, Los Angeles, California 90024, USA 10Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain 11Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 12Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA 13Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia 14Joint Institute for Nuclear Research, RU-141980 Dubna, Russia 15Duke University, Durham, North Carolina 27708, USA 16Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA 17University of Florida, Gainesville, Florida 32611, USA 18Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy 19University of Geneva, CH-1211 Geneva 4, Switzerland 20Glasgow University, Glasgow G12 8QQ, United Kingdom 21Harvard University, Cambridge, Massachusetts 02138, USA 22Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland 23University of Illinois, Urbana, Illinois 61801, USA 24The Johns Hopkins University, Baltimore, Maryland 21218, USA 25Institut fu¨r Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany 26Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea 27Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 28University of Liverpool, Liverpool L69 7ZE, United Kingdom 29University College London, London WC1E 6BT, United Kingdom 30Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain 31Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 3 32Institute of Particle Physics: McGill University, Montr´eal, Qu´ebec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3 33University of Michigan, Ann Arbor, Michigan 48109, USA 34Michigan State University, East Lansing, Michigan 48824, USA 35Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia 36University of New Mexico, Albuquerque, New Mexico 87131, USA 37Northwestern University, Evanston, Illinois 60208, USA 38The Ohio State University, Columbus, Ohio 43210, USA 39Okayama University, Okayama 700-8530, Japan 40Osaka City University, Osaka 588, Japan 41University of Oxford, Oxford OX1 3RH, United Kingdom 42Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, ccUniversity of Padova, I-35131 Padova, Italy 43LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France 44University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA 45Istituto Nazionale di Fisica Nucleare Pisa, ddUniversity of Pisa, eeUniversity of Siena and ffScuola Normale Superiore, I-56127 Pisa, Italy 46University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA 47Purdue University, West Lafayette, Indiana 47907, USA 48University of Rochester, Rochester, New York 14627, USA 49The Rockefeller University, New York, New York 10065, USA 50Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, ggSapienza Universita` di Roma, I-00185 Roma, Italy 51Rutgers University, Piscataway, New Jersey 08855, USA 52Texas A&M University, College Station, Texas 77843, USA 53Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, hhUniversity of Trieste/Udine, I-33100 Udine, Italy 54University of Tsukuba, Tsukuba, Ibaraki 305, Japan 55Tufts University, Medford, Massachusetts 02155, USA 56Waseda University, Tokyo 169, Japan 57Wayne State University, Detroit, Michigan 48201, USA 58University of Wisconsin, Madison, Wisconsin 53706, USA 59Yale University, New Haven, Connecticut 06520, USA (Dated: January 4, 2011) We report on a measurement of the fraction of events with a W or Z boson which are produced diffractively in p¯p collisions at √s = 1.96 TeV, using data from 0.6 fb−1 of integrated luminosity collectedwiththeCDFIIdetectorequippedwithaRoman-potspectrometerthatdetectsthep¯from p¯+p p¯+[X+W/Z]. Wefindthat(1.00 0.11)% ofWsand(0.88 0.22)% ofZs areproduced → ± ± diffractively in a region of antiproton or proton fractional momentum loss ξ of 0.03<ξ<0.10 and 4-momentum transferred squared t of 1 < t < 0 (GeV/c)2, where we account for the events in − which the proton scatters diffractively while the antiproton dissociates, p¯+p [X +W/Z]+p, → by doubling the measured proton dissociation fraction. We also report on searches for W and Z productionindoublePomeronexchange,p+p¯ p+[X+W/Z]+p¯,andonexclusiveZ production, → p¯+p p¯+Z+p. No signal is seen above background for these processes, and comparisons are → madewith expectations. PACSnumbers: 14.70.Fm,14.70.Hp,12.40.Nn,11.55.Jy Keywords: diffraction ∗Deceased Fukui Prefecture, Japan 910-0017, kUniversidad Iberoamericana, †With visitors from aUniversity of Massachusetts Amherst, Mexico D.F., Mexico, lIowa State University, Ames, IA 50011, Amherst, Massachusetts 01003, bIstituto Nazionale di Fisica Nu- mUniversity of Iowa, Iowa City, IA 52242, nKinki University, cleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy, Higashi-Osaka City, Japan 577-8502, oKansas State University, cUniversity of California Irvine, Irvine, CA 92697, dUniversity of Manhattan,KS66506,pUniversityofManchester,ManchesterM13 California Santa Barbara, Santa Barbara, CA 93106 eUniversity 9PL, England, qQueen Mary, University of London, London, E1 of California Santa Cruz, Santa Cruz, CA 95064, fCERN,CH- 4NS, England, rMuons, Inc., Batavia, IL 60510, sNagasaki In- 1211Geneva, Switzerland, gCornellUniversity,Ithaca, NY14853, stitute of Applied Science, Nagasaki, Japan, tNational Research hUniversityofCyprus,NicosiaCY-1678,Cyprus,iUniversityCol- Nuclear University, Moscow, Russia, uUniversity of Notre Dame, lege Dublin, Dublin 4, Ireland, jUniversity of Fukui, Fukui City, 4 I. INTRODUCTION pidity gap produced in a diffractive interaction will not be filled by the products of additional parton-parton in- teractions in the same p¯p collision. In addition, there Approximately one quarter of the inelastic p¯p colli- are experimental problems associated with the defini- sionsattheTevatronarediffractiveinteractions,inwhich tion of the gap size, ∆η, e.g., penetration of the gap a strongly-interacting color singlet quark/gluon combi- by low transverse momentum (p ) particles originating nation with the quantum numbers of the vacuum (the T Pomeron, IP) is presumed to be exchanged [1]-[3]. As at the interaction point (IP) from the diffractively dis- sociated (anti)proton. To ameliorate this problem, CDF no radiation is expected from such an exchange, a pseu- dorapidity region devoid of particles, called a rapidity allowed up to two particles in the nominal gap region gap [4], is produced. Diffractive processes are classi- and introduced the term “gap acceptance” for the frac- tion of events selected by this criterion. The gap sur- fied by the topology of the final state as single diffrac- vivalandgapacceptanceprobabilitiesbothrequiremodel tion(SD), double Pomeronexchange(DPE),anddouble dependent Monte Carlo simulations followed by a de- diffraction dissociation. In SD, the p¯(p) remains intact tector simulation. At √s = 1.8 TeV, CDF observed escaping the collision with momentum close to that of a diffractive W signal with a probability 1.1 10−4 of the original beam momentum and separated by a rapid- × being caused by a fluctuation from nondiffractive (ND) itygapfromtheproductsoftheIP-p(p¯)collision,usually referred to as a forward gap; in DPE both the p¯and the events andmeasuredthe fractionof diffractiveW events to be [1.15 0.51(stat.) 0.20(syst.)]% [9]. D0 stud- p escape, resulting in two forward rapidity gaps; and in ± ± ied both diffractive W and Z production in Run I and double diffraction dissociation a central gap is formed foundadiffractivefraction,uncorrectedforgapsurvival, while both the p and p¯dissociate. A special case of ra- piditygapeventsisexclusiveproductionwhereaparticle of 0.89+−00..1197 % for Ws and 1.44+−00..6512 % for Zs [12]. state iscentrallyproduced,suchasadijet systemora Z How(cid:0)ever, the(cid:1)gap survival estim(cid:0) ated by(cid:1)D0 using Monte Carlo simulations was (21 4)%, which would yield W boson. ± and Z fractions approximately four times larger than Diffraction has traditionally been described using those of CDF. An observation of an anomalously high Regge theory (see Refs. [1]-[3]). In hard diffraction, such diffractive W/Z production rate could be evidence for as jet or W production, in addition to the colorless ex- beyond-standard-modeltheories,suchasthatofRef.[13] change there is a hard scale which allows one to ex- inwhichthePomeroncouplesstronglytotheelectroweak ploreboththemechanismfordiffractionandthepartonic sector through a pair of sextet quarks. The Run I CDF structure of the Pomeron. Whereas diffractive dijets can and D0 measurements using rapidity gaps rely on model be produced via quarks or gluons, to leading order a dependent corrections for the gap acceptance and back- diffractive W is produced via a quark in the Pomeron. ground,making their interpretationdifficult. The analy- Production by gluons is suppressed by a factor of α , s sis presented here using the RPS makes no gap require- and can be distinguished from quark production by an ments and consequently is model-independent. additional associated jet, as shown in Fig. 1. Combining crosssectionmeasurementsofdiffractivedijetproduction and diffractive W production can be used to determine the quark/gluon content of the Pomeron [5]. In Teva- II. DETECTOR tron Run I, CDF measured the fraction of events with dijets [5]-[8], W bosons [9], b quarks [10], or J/ψs [11] The CDF II detector is a multi-purpose detector de- which are produced diffractively, and found in all cases scribedindetailinRef.[14]. Itconsistsofacentraldetec- a fractionof approximately1% (including both IP-p¯and torandaforwarddetectorsystemdesignedfordiffractive IP-p production). physics studies (see Fig. 2). IntheRunImeasurements,withtheexceptionof [7,8] Thecentraldetectorcomprisesaprecisiontrackingsys- which used a Roman-pot spectrometer (RPS), both the tem (η . 2), central and plug calorimeters (η < 1.1 CDF and D0 collaborations used the rapidity gap sig- and 1|.1|< η < 3.6, respectively), with electro|m|agnetic nature for identifying diffractive events and extracting followed by| h|adronic sections, and muon spectrometers the diffractive fraction. The interpretation of the re- outside the central calorimeters (η . 1.0). The track- sults obtained by this method is complicated by the is- ing system is coaxial with the bea|m|pipe and consists of sue of gap survival probability, the likelihood that a ra- silicon strip detectors surrounded by the Central Outer Tracker (COT), a cylindrical wire drift chamber inside a 1.4 T solenoidal magnetic field. Proportional strip and wire chambers embedded inside the electromagnetic NotreDame, IN 46556, vUniversidadde Oviedo, E-33007Oviedo, calorimeterprovideanaccuratepositionmeasurementof Spain,wTexasTechUniversity,Lubbock,TX79609,xIFIC(CSIC- the source of electromagnetic showers. Wire chambers UniversitatdeValencia),56071Valencia,Spain,yUniversidadTec- and scintillator counters outside the calorimeters make nica Federico Santa Maria, 110v Valparaiso, Chile, zUniversity of up the muon detectors. Virginia, Charlottesville, VA 22906, aaYarmouk University, Irbid 211-63, Jordan, iiOn leave from J. Stefan Institute, Ljubljana, The forward detectors (see Ref. [15]) consist of the Slovenia, CherenkovLuminosityCounters(CLC)(3.7< η <4.7), | | 5 p¯ p¯ p¯ p¯ IP IP g q q W,Z W,Z p p X X FIG. 1: DiffractiveW production: (left) through quarks,and (right) through gluons. CDF II (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) 2m (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) DIPOLEs QUADs (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) QUADs DIPOLEs (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) p (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) p (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) 57m to CDF (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)TRACKING SYSTEM (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)CCAL (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)PCAL MPCAL CLC BSC RPS FIG. 2: Plan view of theCDF II detector (not to scale); theproton beam points to the+zˆ(positive η) direction [4]. which record charged particles coming from the IP and are used primarily for monitoring the luminosity; two 1 1 2 MiniPlug calorimeters (MPCAL) covering the pseudo- V/c) 0.9 rapidity region 3.5 < η < 5.1; beam shower counters e | | G 0.8 (BSC) within 5.4 < |η| < 7.4 surrounding the beam -t ( 0.7 pipe in several locations to detect charged particles and photons through conversion to e+e− pairs in a 1 radia- 0.6 tion length Pb plate placed in front of the first counter; 0.5 the RPS, consisting of three Roman-pot (RP) detec- 0.4 tors approximately 56 m from the nominal IP and 20 m 0.3 from a string of Tevatron dipole magnets, used to de- tect and measure the momentum of diffracted antipro- 0.2 tons with fractional momentum loss ξ in the region of 0.1 0.03.ξ .0.10. 10-1 0 0 0.02 0.04 0.06 0.08 0.1 Each RPS detector consists of a trigger scintillation ξ counter and clad scintillating fibers for tracking, cover- ing 20 mm in the x direction to measure the distance FIG. 3: RPS acceptance as a function of ξ and t obtained from the beam in the plane of the Tevatron ring, and from simulation using the transport parameters between the 20 mm in the y direction perpendicular to the plane nominal interaction point and the Roman pots. of the Tevatron. The fibers in both x and y in each RP were arranged in two layers, spaced by 1/3 of a fiber width to give three times better position resolution than a single layer [6, 7]. For RPS detector arrange- a large signal measured in the trigger counters as well mentandtrackreconstructiondetails seeAppendix C in as hits in almost all of the fibers. One example of a Ref. [6]. The resolutions in ξ and t (the 4-momentum splashprocess is a diffractivep¯whichis outside the RPS transferredsquared)fortracksrecordedinthe RPSwere acceptance showeringin materialnear the RPS stations. δξ = 0.001 and δt = 0.07 (GeV/c)2. The RPS accep- Another example is beam halo induced interactions in tance is concentrated in the region of 0.03 . ξ . 0.10 nearby material. and 1<t<0 (GeV/c)2, as shown in Fig. 3. The RPS − was installed for use in the Tevatron Run Ic (1995–96) Thekinematics ofthe diffractiveantiprotonarerecon- andwasoperatedin RunII from2002to February2006. structed from the track position and angle in the RPS, AlargefractionofeventsinwhichallthreeRPStrigger andthebeampositionandangleattheIPusingamodel counters were hit are due to background which we refer of the Tevatron beam optics between the Roman pots to as splash events. These events are characterized by and the IP. 6 III. W/Z EVENT SELECTION uncertainty is based on that in σinel, which is common in all data sets. The weighted average over all datasets is f = (25.6 1.2)%. Taking into account bunch- Theeventselectionbeginsbyrequiringacentral(η < h 1−inti ± | | to-bunch variation in luminosity, because our W/Z was 1.1) high-p electron or muon consistent with events T more likely to be produced by a bunch with higher lu- with a W or Z decaying leptonically. The trigger- ing e(µ) is required to have a reconstructed Ee(pµ) > minosity, we find that the single-interaction probabil- T T ity becomes systematically lower. A correction factor of 20 GeV (GeV/c); for Z candidates, the second lepton 0.97 0.01isappliedto f toaccountforthiseffect. is subjected to looser identification (ID) requirements, ± h 1−inti and electrons are also accepted if detected in the plug calorimeter within 1.2< η < 2.8. Our data set with | | IV. DIFFRACTIVE EVENT SELECTION theforwarddetectorsfullyoperationalcorrespondstoan integratedluminosity of 0.6 fb−1 for both the electron and muon samples. ∼ Diffractiveeventsarefirstselectedbyrequiringthatall three of the RPS trigger counters have energy deposited The W candidate selection criteria require an e or withinaspecifiedrun-dependentrange. Althoughamin- µ which passes tight ID requirements [16] and has Ee(pµ) > 25 GeV (GeV/c), missing transverse en- imum energy is required in order to select events where erTgy T[17] (corrected for event vertex z-position, pµ of theRPSdetectorsarehit,wealsorequireareconstructed T RPS track. The upper bound on the energy imposed muons that traverse the detector, and mismeasured in order to remove background splash events is another hadronic jets) of E > 25 GeV, and W transverse T 6 important selection requirement. As splash events are mass, MTW = q2(plTpνT −−→plT ·−→pνT)/c, in the region caused by secondaries from an interaction in material 40 < MW < 120 GeV/c2. The Z ee selection cri- near the RPS, rather than by a diffractive antiproton teria incTlude the same requirements→on the first elec- within the RPS acceptance, these events tend to have tron plus a central e with looser ID requirements, per- large energy deposited in the RPS trigger counters, as taining mainly to COT track quality and allowed range well as a large fraction of RPS tracking fibers hit. Next, of ratio of energies deposited in the hadronic and elec- a reconstructed RPS track is also required. In this step, tromagnetic calorimeters, or an e in the plug calorime- we accept events where the ξ and t reconstructed from ter with Ee > 25 GeV. Similarly, the Z µµ selec- the track are within the range of 0.03 < ξ < 0.10 and tion criteriaT include the same requirements→on the first t <1 (GeV/c)2. | | µ plus a loose-ID µ with pµ > 25 GeV/c. For both Inaneventwithmultiplep¯pinteractions,thediffracted T the Z ee and Z µµ channels, we also require antiproton may originate from a different interaction 66<M→<116 GeV/c→2. than the one producing the W or Z. This overlap back- Z ground is dominated by events in which a ND W/Z is The events are required to have a primary interaction superimposed on an inclusive SD interaction with the p¯ vertexwithin60cm(inz)ofthenominalIP.Eventswith detectedintheRPS.Themaintoolforremovingoverlap multiple vertices are not explicitly rejected in the event backgrounds is the value of ξ reconstructed using the selection;instead,thefractionofeventsexpectedtohave p¯ calorimeters, a single interaction is calculated. The number of events passingthe W andZ candidateselectionrequirementsis 308 915 W eν, 259 465 W µν, 31 197 Z ee, and 15 603 Z →µµ. → → ξcal =Ntowers ETi e−ηi, (1) → p¯ √s The probability Pn of a beam crossing producing n Xi=1 inelastic interactions in addition to the hard interac- tion that produces the W/Z is obtained from Poisson where ηi is the η–value of the center of a tower and the tshtaetimsteicasn: nPunm=bern¯noef−inn¯t/enr!a,cwtiohnerse, wn¯h=ichLd·eσpienneld/sfeocffrnossthies sthuamnisaccaarlroireidmoevteerr-adlelpcaenlodreimntettehrretoshwoelrdscwhiothseEnTtogrreeajetcetr instantaneous luminosity , the inelastic cross section noise (see Ref. [15]). σinel, and the effective beaLm crossing frequency (disre- The ξpc¯al values were calibrated by comparing diffrac- gardingthetransitionregionsofemptybeambunches)of tivedijetdata,collectedconcurrentlywiththediffractive fcross =1.7MHz. Forthevalueofσ at√s=1.96TeV W/Z data, with Monte Carlo generated events. Cali- eff inel weuse59.3 2.3mb,obtainedbyextrapolationfromthe brated ξpc¯al values were found to be in good agreement CDF measu±rements of the elastic and total cross sec- with values measuredby the RPS. The resolutionin ξcal p¯ tions at √s = 1.8 TeV [18, 19]. The fraction of W and isdominatedbythatofthe energymeasurementbyMP- Z events from a single interaction is determined inde- CAL, which is 30% resulting in a root mean square ∼ pendently for each one of three datasets comprising our deviation ∆logξ = 0.1. In a diffractive Z event with eventsample,collectedatdifferentaverageinstantaneous no additional interactions, ξcal ξRPS and should fall p¯ ≈ luminosities. This fraction is f = (47.4 1.3)% for within the RPS acceptance region of 0.03 < ξ < 0.10 1−int ± the Aug’02–Dec’03 dataset, (25.1 1.2)% for Dec’04– or 1.5 < logξ < 1.0. In an event with multiple in- Jul’05, and (20.1 1.0)% for Sept’0±5–Feb’06, where the tera−ctions, ξcal wou−ld be larger due to energy from the ± p¯ 7 additional interaction. Therefore, we expect all diffrac- V. RESULTS tiveZinteractionswithnoadditionalinteractiontohave ξpc¯al < 0.10 and we can remove most of the overlap A. W mass from diffractive events background with this requirement. Some events with ξcal < 0.10 may still have multiple interactions. We use p¯ In nondiffractive W production, the neutrino trans- t(hbeefodrisetrtihbeutrieoqnuiorfemξpc¯eanltfroofmatRhPeSnotnradcikff)ratcotievsetiZmasatemtphlee vtreirnsoe leonnegrigtyudEinTνalismionmfeernrteudmfropmν isthuenk6EnTowbnu.tHthoewenveeur-, overlap background at small ξpc¯al. One does not expect in diffractive W production thezmissing pνz yields a dif- to find perfect agreement between the ND and SD dis- ference between the ξcal, calculated from the energy de- tributions at ξcal > 0.1 since the SD candidates in that p¯ p¯ posited in the calorimeters using Eq. (1), and the ξRPS regionalwayscontainatleastoneotherinteraction,while p¯ determined from the RPS track. This difference allows a fraction of the ND events may be due to a single in- one to determine pν, and thereby the full W kinematics teraction. Bynormalizingthe NDtothe SDdistribution z through Eqs. (2–5): in the region of 1.0 < logξ < 0.4 we obtain a rea- − − sonableestimate ofthe overlapbackgroundinthe region ξpc¯aFli<gu0re.14wsihthoiwnsththeeadssisigtrniebdutcioonnsserovfaξtpc¯ivalefuonrcWertaainndtyZ. ξRPS−ξpc¯al =alltowersE√6 Tise−ην, (2) candidate events with a RPS track. For Zs, the distri- Xi=1 bution for ND events is also shown, normalized to the distribution from events with a RPS track in the region of −1.0 < log10ξpc¯al < −0.4. The excess of RPS events pνz =E6 T/tanh2tan−1(e−ην)i, (3) over ND ones for log ξcal < 1.0 (ξcal <0.10)contains 10 p¯ − p¯ the SD signal. In determining the fraction of Z events which are diffractive in Sec. VB, we require ξcal < 0.10 p¯ (number of events NξZ<0.10) and subtract a background Mw2 =2(cid:20)EeqE6 T2 +pνz2−pexpνx−peypνy −pezpνz(cid:21), (4) determined from the number of events expected in the normalized ND distribution with ξcal <0.10 (NZ ). p¯ bgnd In diffractive W events, since the neutrino is not di- rectly detected by the CDF II detector, ETν is not in- pwz =pez+pνz, Ew =Ee+qE6 T2 +pνz2. (5) cluded in the E of calorimeter towers used to de- T termine ξpc¯al thPrough Eq. (1). Requiring ξpc¯al < ξpR¯PS Usingthefull W kinematicsresultsinaGaussianMW distributionpermittingamoreaccuratedeterminationof removes events with multiple interactions in a similar way as the requirement on ξcal < 0.10. In addition, MW from a given number of events. For the diffractive p¯ sampleof352eventslistedinTable I,thismethodyields knowing the kinematics of the diffracted antiproton al- the mass distribution shownin Fig. 5 fromwhich we ob- lowsustoreconstructthelongitudinalmomentumofthe tain Mdiff =(80.9 0.7) GeV/c2, in agreementwith the neutrino and thereby the W mass, MW, as described world aWverage of M±PDG =(80.398 0.025) GeV/c2 [20]. in Sec. VA. Requiring MW to be within the range W ± 50<M <120 GeV/c2 removes almost all the remain- W ing multiple-interaction or misreconstructed events. The ξcal distribution for diffractive W candidates is B. Diffractive W/Z fraction p¯ shown in Fig. 4, and the number of W and Z events passing the diffractive event selection criteria is listed in The RPS acceptance is calculated using: Table I. N A = , (6) TABLE I: W and Z events passing successive selection re- RPS N Ai (ξ ,t )−1 i=1 RPS i i quirements. P where the sum is over N diffractive W events with a W eν W µν W l(e/µ)ν RPS track and Ai (ξ,t) is the acceptance for an event RPS-trigger-counters →6663 →5657 → 12 320 RPS at (ξ ,t ) shown in Fig. 3. For our diffractive W event i i RPS-track 5124 4201 9325 samples, we measure A =[88 12(stat.)]% (Aug’02– 50<MW <120 192 160 352 Dec’03) and A = [R7P5S 5(sta±t.)]% (Dec’04–Feb’06) Z →ee Z →µµ Z →ll for events withiRnPS0.03 < ξ±< 0.10 and t < 1 (GeV/c)2. RPS-trigger-counters 650 341 991 | | RPS-track 494 253 747 These values are consistent with those determined with ξcal <0.10 24 12 36 better statistical precision from the data of our exclu- sivedijetproductionpaper[15],whicharemainly dueto variationsinbeamangle dispersionatthe collisionpoint and RPS alignment over the period of data taking. As 8 FIG.4: ξcal forW andZ eventswithaRPStrack. Thedottedhistogram isthedistributionofNDZ eventsnormalized tothe p¯ data Z-distribution in the region 1.0<log ξcal < 0.4. − 10 p¯ − energy. This efficiency, ǫ , varies with dataset RPStrig withintherange68% 80%,astheselectionrequirements 2)c W→ e/µ ν 〈M f i t 〉=80.9 ± 0.7 GeV/c2 were chosen independ−ently for different running periods V/ 30 L=0.6 fb-1 W to account for ageing of the counters. The average RPS e G track reconstruction efficiency is [15] 2 25 ( s / t n 20 ǫ =[87 1(stat.) 6(syst.)]%, (9) e RPStrk ± ± v e f 15 where the systematic uncertainty was chosen to bring o r consistency over all data sets. e b 10 m u n 5 1. Double Pomeron exchange 0 Double Pomeron exchange events are the sub-sample 0 20 40 60 80 100 120 140 160 Mdiff (GeV/c2) of the W/Z SD events in which both the p¯and p remain W intact. As for the SD events, defined by the requirement of ξcal 6 0.1, a DPE interaction should have in addi- FIG. 5: Reconstructed MWdiff with a Gaussian fit. tionp¯ξcal 6 0.1, where ξcal = all−towers(Ei/√s)e+ηi. p p i=1 T In this region of ξcal there areP45 W and two Z events p the dijet data were taken concurrently with the diffrac- in our candidate W/Z data. Monte Carlo studies show tiveW/Z data,weusetheacceptancesofthedijetpaper that these are consistent with the expected numbers of with an increased systematic uncertainty to account for SD events in which the gap on the proton side is due differences in the ξ and t distributions expected between to multiplicity fluctuations, without any DPE contribu- W/Z and dijet production. The values being used are: tion. Using fits of Monte Carlo templates to the data conductedaccordingtoRef. [21],profilelikelihoodlimits were set at the 95% confidence level of 1.5% and 7.8% ARPS =[83 5(syst.)]% (Aug’02–Dec’03), (7) on the fraction of diffractive W and Z events produced ± by DPE, respectively. These limits are consistent with the expectation of no observable signal due to the re- A =[78 5(syst.)]% (Dec’04–Feb’06). (8) RPS ± duced collision s-value from 0.1s (√s 600 GeV) in SD The requirement on RPS trigger counter energy was to (0.1)2s (√s 200 GeV) in DPE. ∼ ∼ made to removesplashevents due to beam-relatedback- ground and events with diffractive antiprotons outside the RPS acceptance. However, it also removes some 2. Search for exclusive Z production diffractive signal events. The efficiency for this selec- tion requirement to retain good diffractive events is de- We have examined whether any of the Z candidate terminedasthefractionofalleventswithareconstructed eventsintheDPEeventsampleareproducedexclusively RPStrackwhichpasstherequirementontriggercounter through the process p¯+p p¯+Z+p. In the Standard → 9 Model, this processis predicted to proceedby photopro- Figure6showsM versusM (M )forW (dilepton) X W ll duction, where a virtual photon radiated from the p¯(p) events with a RPS track. Note that M depends on the X fluctuates into a qq¯loopwhichscatterselasticallyonthe calorimeter thresholds: increasing the thresholds could p(p¯)bytwo-gluonexchangeformingaZ. SinceWscan- cause more events to move onto the M = M (M ) X W ll not be produced exclusively, because there must be at line, but these events would not be truly exclusive. The leastanotherchargedparticleinthe event,weuseWsas diffractiveW sampleactsasacontrolsampleforthistype a control sample. of background. Calorimeter noise could also move truly A limit on exclusive Z production has recently been exclusiveeventsofftheM =M (M )line. Welooked X W ll published by the CDF collaboration. At a 95% confi- at “empty crossings” collected using a beam-crossing dence level, the exclusive Z productioncrosssectionwas triggerandselecting eventswith no reconstructedtracks foundtobeσZ <0.96pb,afactorof (10−3)ofpredic- excl O or hits in the Cherenkov luminosity counters. The en- tions based on the Standard Model (see Ref. [22]-[23]). ergyandmomentumofthe“noise”inthecalorimeterfor The search method relied on strict excusivity require- these eventswasaddedto the candidate exclusiveevents ments to ensure that nothing is present in the detector andthedifferenceinreconstructedM determined. The except for the two leptons from Z l+ll−. X → largestmeandeviationfoundinthedifferentrunningpe- The present search is based on our data sample of riods was 0.5 GeV, which is represented by the width of 0.6 fb−1 integrated luminosity, which is a 30% sub- ∼ theMX =MW (Mll)lineinFig.6. Nocandidatesforex- sample of the events used in the above search. How- clusiveproductionareobservedwithinthisband,neither ever, we use a different method which is more transpar- in the controlsample of the W events (left) nor in the Z ent to the background introduced by detector noise that event sample (right). This result is compatible with the can spoil the exclusivity requirement, and expand our upper bound on exclusive Z production set in Ref. [22], event selection beyond the Z-mass window to include as expected. all ee(µµ) pairs with an electron (muon) E (p ) > 25 T T GeV(GeV/c). The method consists of comparingthe to- tal energy in the calorimeter to the dilepton mass. At 3. Diffractive fractions first, we determine the dilepton mass M from the e or ll µ momentumusing calorimeter(e) or track(µ) informa- ThediffractivefractionsR andR for0.03<ξ<0.10 tion. For Ws, we evaluate M using Eq. (4). Then, we W Z W and t <1 (GeV/c)2 are obtained after RPS acceptance determinethe systemmassM fromcalorimetertowers, X | | M = (ΣE)2 (Σp~)2, with the caveat that we sub- and background corrections. The corrections include di- X − vision by the product of the RPS acceptance, A , stitutetphemuontrackinformationforthecorresponding RPS the efficiency of the selection requirement on RPS trig- calorimetertower,andinthecaseofW eventsincludethe ger counter energy, ǫ , the RPS tracking efficiency, ν momentum. Thus,ifnothingispresentinthecalorime- RPStrig ǫ ,andthefractionofNDeventswhichareexpected ter besides the dilepton pair (or the W), the event will RPStrk to have a single interaction, N1−int = N f . satisfy the condition MX =Mll (or MX =MW). ND ND · h 1−inti To account for SD events in which the proton, instead of the antiproton, remains intact we multiply NW or SD NZ NZ NZ by a factor of two. 500 SD ≡ ξ<0.10− bgnd ) (a) (b) 2c / V (GeX400 RW(RZ)= ARPS·ǫR2P·StNriSgWD·ǫ(RNPSZSDtr)k·NN1−Dint (10) M 300 The resulting diffractive fractions are: 200 R =[1.00 0.05(stat.) 0.10(syst.)]%, W ± ± 100 RZ =[0.88 0.21(stat.) 0.08(syst.)]%, ± ± wherethesystematicuncertaintiesareobtainedfromthe 0 contributionsof the RPSacceptance andthe triggerand 0 100 200 0 100 200 2 2 tracking efficiencies. M (GeV/c ) M (GeV/c ) W ll FIG. 6: System mass MX vs MW (left) for W events with a VI. CONCLUSIONS RPStrackandξcal <ξRPS,andmassM (right)fordilepton ll events with a RPS track and lepton pT > 25 GeV/c. Ex- We have measured the fraction of events with a W clusive W/Z candidates are expected to fall on the MX = or Z boson which are produced diffractively in p¯p col- MW (Mll) line. lisions at √s = 1.96 TeV using data from 0.6 fb−1 of 10 integrated luminosity collected with the CDF II detec- tions. This work was supportedby the U.S. Department tor incorporating a Roman-pot spectrometer to detect of Energy and National Science Foundation; the Italian diffracted antiprotons. Within a region of antiproton or Istituto Nazionale di Fisica Nucleare; the Ministry of proton fractional momentum loss ξ of 0.03 < ξ < 0.10 Education, Culture, Sports, Science and Technology of and 4-momentum transferred squared t of 1 < t < Japan; the Natural Sciences and Engineering Research 0 (GeV/c)2, we find that (1.00 0.11)% o−f Ws and Council of Canada; the National Science Council of the ± (0.88 0.22)%ofZsareproduceddiffractively,wherethe Republic of China; the Swiss National Science Founda- ± events in which the proton scatters diffractively and the tion; the A.P.SloanFoundation;the Bundesministerium antiproton dissociates are accounted for by doubling the fu¨r Bildung und Forschung, Germany; the World Class measuredprotondissociationfraction. Wehavealsocon- University Program, the National Research Foundation ductedasearchforW andZ eventsproducedbydouble- of Korea; the Science and Technology Facilities Coun- Pomeron exchange, p¯+ p p¯+ [X + W/Z]+ p, and cil and the Royal Society, UK; the Institut National de → set confidence level upper limits of 1.5% and 7.7% on Physique Nucleaire et Physique des Particules/CNRS; the fraction of DPE/SD events, respectively. Finally, we the Russian Foundation for Basic Research; the Minis- searchedforexclusiveZ production,p¯+p p¯+Z+p. No teriode Cienciae Innovacio´n,andProgramaConsolider- → exclusiveZ candidateswerefoundwithintheDPEevent Ingenio 2010, Spain; the Slovak R&D Agency; and the sample,compatiblewiththeCDFRunIIpublishedlimit. Academy of Finland. VII. ACKNOWLEDGMENTS We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contribu- [1] P. D. B. Collins, An Introduction to Regge Theory and 574, 169 (2003). HighEnergy Physics,CambridgeUniversityPress,Cam- [13] A. R.White, Phys. Rev.D72, 036007 (2005). bridge, (1977). [14] A.Abulenciaet al.(CDFCollaboration), J.Phys.G34, [2] V.BaroneandE.Predazzi,High-EnergyParticleDiffrac- 2457 (2007). tion, SpringerPress, Berlin, (2002). [15] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D [3] S. Donnachie, G. Dosch, P. Landshoff, and O. Nacht- 77, 052004 (2008). mann, Pomeron Physics and QCD, Cambridge Univer- [16] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. sity Press, Cambridge, (2002). 94, 091803 (2005). [4] Rapidity, y = 21lnEE−+ppLL, and pseudorapidity, η = [17] Transverse energy is defined as ET = Esinθ, and miss- −reslnpetcatntθ2o,twhheepreroθtoins btheeampo(l+arzˆadnigrelectoiofna),paarreticulseedwiitnh- aingunEitTvaesctE6orTp=er|pE−6 →eTn|dwiciuthlarE−6→tTo=th−ePbeaimETianˆxii,swahnedreponˆiintis- terchangeably for particles detected in the calorimeters, ing at the ith calorimeter tower. The sum ET is defined since in the kinematic range of interest in this analysis by PET = PiETi. Both sums are over all calorimeter theyare approximately equal. towers above theset thresholds. [5] F.Abeet al.(CDFCollaboration), Phys.Rev.Lett.79, [18] F. Abe et al. (CDF Collaboration), Phys. Rev. D 50, 2636 (1997). 5518 (1994). [6] K.Hatakeyama,Ph.D.thesis,TheRockefellerUniversity, [19] F. Abe et al. (CDF Collaboration), Phys. Rev. D 50, 2003; FERMILAB-THESIS-2003-18. 5550 (1994). [7] T. Affolder et al. (CDF Collaboration), Phys. Rev. Lett [20] C. Amsler et al. (Particle Data Group), Phys. Lett. B 84, 5043 (2000). 667, 1 (2008) and 2009 partial update for the 2010 edi- [8] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. tion. 88, 151802 (2002). [21] R.BarlowandC.Beeston,Comput.Phys.Commun.77, [9] F.Abeet al.(CDFCollaboration), Phys.Rev.Lett.78, 219 (1993). 2698 (1997). [22] T.Aaltonenetal.(CDFCollaboration),Phys.Rev.Lett. [10] T.Affolderet al.(CDFCollaboration), Phys.Rev.Lett. 102, 222002 (2009). 84, 232 (2000). [23] M. G. Albrow, T. D. Coughlin and J. R. Forshaw, [11] T.Affolderet al.(CDFCollaboration), Phys.Rev.Lett. arXiv:1006.1289 [hep-ph],Prog.Part.Nucl.Phys.(tobe 87, 241802 (2001). published). [12] V. M. Abazov et al. (D0 Collaboration), Phys. Lett. B

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.