ebook img

Differential Geometry and Mathematical Physics: Part I. Manifolds, Lie Groups and Hamiltonian Systems PDF

765 Pages·2013·10.371 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Differential Geometry and Mathematical Physics: Part I. Manifolds, Lie Groups and Hamiltonian Systems

Differential Geometry and Mathematical Physics Theoretical and Mathematical Physics The series founded in 1975 and formerly (until 2005) entitled Texts and Monographs in Physics (TMP) publishes high-level monographs in theoretical and mathematical physics. The change of title to Theoretical and Mathematical Physics (TMP) signals thattheseriesisasuitablepublicationplatformforboththemathematicalandthethe- oretical physicist. The wider scope of the series is reflected by the composition of the editorialboard,comprisingbothphysicistsandmathematicians. Thebooks,writteninadidacticstyleandcontainingacertainamountofelementary background material, bridge the gap between advanced textbooks and research mono- graphs. They can thus serve as basis for advanced studies, not only for lectures and seminarsatgraduatelevel,butalsoforscientistsenteringafieldofresearch. EditorialBoard W.Beiglböck,InstituteofAppliedMathematics,UniversityofHeidelberg,Heidelberg, Germany P.Chrusciel,GravitationalPhysics,UniversityofVienna,Vienna,Austria J.-P. Eckmann, Département de Physique Théorique, Université de Genève, Geneva, Switzerland H.Grosse,InstituteofTheoreticalPhysics,UniversityofVienna,Vienna,Austria A.Kupiainen,DepartmentofMathematics,UniversityofHelsinki,Helsinki,Finland H. Löwen, Institute of Theoretical Physics, Heinrich-Heine-University of Düsseldorf, Düsseldorf,Germany M.Loss,SchoolofMathematics,GeorgiaInstituteofTechnology,Atlanta,USA N.A.Nekrasov,IHÉS,Bures-sur-Yvette,France M.Ohya,TokyoUniversityofScience,Noda,Japan M. Salmhofer, Institute of Theoretical Physics, University of Heidelberg, Heidelberg, Germany S.Smirnov,MathematicsSection,UniversityofGeneva,Geneva,Switzerland L.Takhtajan,DepartmentofMathematics,StonyBrookUniversity,StonyBrook,USA J.Yngvason,InstituteofTheoreticalPhysics,UniversityofVienna,Vienna,Austria Forfurthervolumes: www.springer.com/series/720 Gerd Rudolph (cid:2) Matthias Schmidt Differential Geometry and Mathematical Physics Part I. Manifolds, Lie Groups and Hamiltonian Systems GerdRudolph MatthiasSchmidt InstituteforTheoreticalPhysics InstituteforTheoreticalPhysics UniversityofLeipzig UniversityofLeipzig Leipzig,Germany Leipzig,Germany ISSN1864-5879 ISSN1864-5887(electronic) TheoreticalandMathematicalPhysics ISBN978-94-007-5344-0 ISBN978-94-007-5345-7(eBook) DOI10.1007/978-94-007-5345-7 SpringerDordrechtHeidelbergNewYorkLondon LibraryofCongressControlNumber:2012951155 ©SpringerScience+BusinessMediaDordrecht2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Introduction This book is the first of two volumes on differential geometry and mathematical physics. It is the result of our teaching these subjects at the University of Leipzig over the last few decades to students of physics and of mathematics. The present volumeisdevotedtomanifolds,LiegroupsandthetheoryofHamiltoniansystems. The second volume will deal with fibre bundles, topology and gauge field theory, includingaspectsofthetheoryofgravity. Whiletheaimandscopeofdifferentialgeometryaresomewhatwelldefined,it is,perhaps,lessclearwhatwepossiblymeanbymathematicalphysics.Historically, thistermwasratherimpreciseandsoisstillnowadays.Indeed,itsinterpretationde- pendsoncultureandcontext.Inourunderstanding,mathematicalphysicsisthearea where theoretical physics and pure mathematics meet, stimulate and fertilize each other.Ontheonehand,thisinterplayleadstoadeeperstructuralunderstandingof theoreticalphysicsandtonewresultsobtainedwithnewmathematicalmethods.On theotherhand,itstimulatesthedevelopmentofoldandnewbranchesinmathemat- ics.Thus,inourunderstanding,itisimpossibletodrawapreciseborderlinebetween theoreticalphysicsandpuremathematics.Overthelastdecadesitsometimeshap- penedthatthesolutionofaproblemposedbyphysicistshadanevenlargerimpact onthedevelopmentofmathematicsthanonthefieldofphysicsfromwhereitarose. Thereisanumberoftextswherethestatusandtheroleofmathematicalphysicsis discussed,seee.g.thepapersofGreenberg[112],Faddeev[87]andJaffeandQuinn [151],1 aswellastheclassicalcontributionsofPoincaré[241]andHilbert[128]. There is no doubt that, over the last few centuries, the interrelation between physics and geometry has been especially tight and fruitful. In particular, this in- teraction has stimulated the development of modern differential geometry. In this complex process, which we cannot describe here,2 the development of the notion of manifoldwas of great importance.The conceptualdefinitionof this notionwas 1Thisveryinterestingandsomewhatprovocativearticlestimulatedalotofresponsesbyleading scientists,see[27]. 2See[264–266]and[281,282]foradetaileddiscussionofthesehistoricalaspects. v vi Introduction presented by Riemann in his famous Habilitationsvortrag in Göttingen in the year 1854, see [251].3 Riemann developed a general geometry (nowadays called Rie- manniangeometry),whichincludedEuclideanaswellasnon-Euclideangeometry asoriginatedbyBolyai,GaußandLobachevsky.FromRiemann’spresentationitis clearthatadeeperunderstandingofthenatureofphysicalspacewasoneofthemain motivationsforhisstudies.Inhisunderstanding,spaceworksonbodiesandbodies haveaninfluenceonspace.ThisideamadeRiemanndepartfromthemetaphysical attitudetowardsspaceasagivenunchangeableentityandpasstoamodernfieldthe- oreticalpointofview.Heevensuggestedthatthemetricmightbedeterminedbythe physicalmasses.Thus,onaratherphilosophicallevel,hemadeasteptowardsthe conceptual foundations of Einstein’s theory of gravity, which came 60 years later. Atthesametime,hecreatedthemathematicalframeworkforthistheory. Inthefollowingyears,anumberofgreatmathematicianscontributedtothefield, butitwasPoincaréwhobroughttheconceptofmanifoldtoitsmodernform.4Ashe saidhimself,hewasledtothisconceptbyhispreviousinvestigationsonthetheory ofdifferentialequationsanditsapplicationstodynamics,inparticular,ofthen-body problem. On the one hand, on the basis of this abstract manifold concept, he laid thefoundationsofmodernalgebraictopology.Ontheotherhand,hecontinuedhis studiesondynamicalsystemswithemphasisontheirglobal,qualitativebehaviour, onthewaycreatingalotoftoolswhichnowadaysstillplayanimportantrole.Atthe sametime,heprovidedageometrizationoftheformalismofanalyticalmechanics as developed by Lagrange,5 Hamilton,6 Jacobi, Liouville and Poisson. Instead of formulatingdynamicsintermsoflocalcoordinatesinEuclideanspace,heviewed it as a global system described by a Hamiltonian vector field on the phase space manifold.Thus,modernsymplecticgeometrywasborn.7 Inthetwentiethcentury,theinteractionbetweenphysicsandgeometrycontinued tobestrongandsuccessful.Ofcourse,firstofall,weshouldmentionEinstein’sthe- oryofgravity,whichisbasedonthediscoverythatgravityisageometricpropertyof spacetimeandthatspacetimeiscurvedbymatter.Startingfromthenineteen-fifties, allotherfundamentalforcesweregeometrizedinasimilarspiritleadingtomodern gaugetheory.Thenecessarymathematicalfoundations,includingthegeneraltheory 3Therewere,ofcourse,precursors.Inparticular,CauchyandGaußshouldbementioned.Gauß evenusedthetermmanifold,butinhisunderstandingitwasrestrictedtoaffinesubspacesofan n-dimensionalvectorspace. 4SeethefamousAnalysissitus[239]fromtheyear1895,togetherwithfivesubsequentcomple- mentswithinthefollowingnineyears.Actually,Poincarégavetwodefinitionsofamanifold:a manifoldasalevelsetandamanifoldasgivenbyanatlasoflocalcharts. 5TheoriginofsymplecticgeometrydatesbacktoLagrange’searlyworkoncelestialmechanics, see[177]and[308]foradetaileddiscussionbyWeinstein. 6See[120–122].Hamiltonwasledtotheformulationofdynamicsintermsofasystemoffirst orderdifferentialequationsforageneralmechanicalsystemthroughhisstudiesinoptics. 7ThewordsymplecticwasinventedbyWeyl[312]togiveanametothegroupoflineartrans- formations,preservinganon-degenerate,skew-symmetricbilinearform,andthetermsymplectic geometrywasproposedbySiegel,see[272]. Introduction vii offibrebundlesandconnections,weredevelopedbyÉ.Cartan,Koszul,Ehresmann andChern.Oncethesegeometricalformulationsofthefundamentalforceshadbeen found, another fascinating interaction of geometry and physics took place. In the mid-seventies physicists insisted on classifying the solutions (of a certain type) of the Yang-Mills field equations of classical gauge theory. This problem was finally solvedbyleadingmathematiciansandthetechniquesdevelopedontheway,inturn, ledtofundamentallynewanddeepinsightsintopology.Inparticular,exotictopo- logical structures on Euclidean four-space were found. We should also add that, startingfromtheworkofKaluza,Klein,EinsteinandWeylinthenineteen-twenties upuntilthepresent,therehasbeenmucheffortdevotedtosearchingforanultimate geometricalmodelunifyingallfundamentalforces.Thisgaveanotherstrongimpe- tustothedevelopmentofmoderndifferentialgeometryandrelatedfields.Someof theaspectsjustmentionedwillbediscussedinvolume2ofthisbook. Tofinishthisbriefhistoricalintroduction,weshouldmaketwofurtherremarks. Firstly, it should be mentioned that in the process described above the concept of symmetryplayedafundamentalrole.Thecreationofthemathematicalfoundations ofthisconceptdatesbacktoLie,whointheeighteen-seventiesdevelopedageneral theoryoftransformations.8LiewasinfluencedbytheworkofGaloisonsymmetries ofpolynomialequations,bytheworkofJacobionpartialdifferentialequations,and byKlein,whoseaimwas tounifygeometryandgrouptheory.Thetheorywas es- sentially pushed forward by Killing and É. Cartan, who classified semisimple Lie algebras and developed their representation theory. The early period closes with thecontributionsbyWeyl,whocreatedtherepresentationtheoryofsemisimpleLie groups. It was also Weyl who first applied concepts of group theory to quantum mechanics.Itgoeswithoutsayingthatthegeneraltheoryoffibrebundlesandcon- nections and, consequently, also the theory of gauge fields, heavily rests on Lie grouptheory. Secondly,overthelastfewdecades,ithasbecomemoreandmoreclearthatsym- plectic geometry plays a special role. This is not only due to the fact that there is merely a lot of applications of symplectic techniques in many areas of mathemat- ics and in physics. There is something more: a phenomenon which Arnold called symplectization,see[22],[111]andalso[308].Indeed,thereseemstobegrowing evidence that many concepts, constructions and results from different branches of mathematicsandmathematicalphysics(likethetheoryofpartialdifferentialequa- tions,thecalculusofvariationsorthetheoryofgrouprepresentations)canberecast insymplecticterms,findinginthiswaytheirultimateground.ThetheoryofHamil- toniansystemsinitsmodernformisofcoursestilloneofthemostprominentexam- ples.ViaHamilton-Jacobitheorythereisacloselinktothetheoryoflinearpartial differential equations. Here, representing a differential operator on a manifold by its symbol on the cotangent bundle and seeking solutions in terms of Lagrangian immersions and geometrical objects living on them, one arrives at a symplectized 8See[182–184].ForahistoricaloverviewonLiegrouptheorywereferto[50]and[126]. viii Introduction theory of first order partial differential equations.9 In a similar spirit and in close relation,largepartsofthetheoryofsingularitieshavebeensymplectized.Another beautifulexampleisprovidedbytheorbitmethodofKirillov,KostantandSouriau, which constitutes one of the cornerstones of geometric quantization. For a large class of Lie groups, this method yields a bijective correspondence between irre- ducible unitary representations of a Lie group and transitive symplectic actions of thisgroup. We conclude with a few remarks on the structure and the contents of this vol- ume.Itcontainsthreebuildingblocks,eachconsistingoffourchapters.Inthefirst fourchapters,wepresentthecalculusonmanifolds.Thenextfourchaptersarede- voted to the theory of Lie groups and Lie group actions and to an introduction to linear symplectic algebra and symplectic geometry. These chapters constitute the linkbetweentheabstractcalculusandthetheoryoffinite-dimensionalHamiltonian systems,whichwedevelopinthefinalfourchapters.There,wehadtomakearea- sonable selection of the topics to be presented. It is probably fair to say that our choiceofmaterialwasmademorefromaphysicist’spointofview,10 thus,putting emphasis on the concepts of symmetry and integrability and on Hamilton-Jacobi theory. At the same time, this means that we had to exclude a lot of interesting topicslike,forinstance,equivariantHamiltoniandynamicsorvariationalmethods. Sinceeachchapterhasitsownintroduction,hereweomitadetaileddescriptionof thecontents. We assume that the reader is familiar with elementary algebra and calculus, as well as with the basics of classical mechanics. Some knowledge in classical elec- trodynamics and in thermodynamics as well as in elementary set topology will be helpful.Thebookisself-contained,thatis,startingwiththetheoryofdifferentiable manifolds, it guides the reader to a number of advanced topics in the theory of Hamiltoniansystems.Atsomepoints,wetouchoncurrentresearch.Itisourstrong beliefthatwithoutdetailedcasestudiesadeepunderstandingoftheabstractmate- rialcanbehardlyachieved.Thus,wehaveincludedmanyworkedexamples,some of them are taken up repeatedly. Moreover, at the end of almost every section the readerwillfindanumberofexercises. 9ThisisduetoMaslov[197]andHörmander[141],seeChap.12ofthisvolume.Inthiscontext, thesymplectizationofMorsetheoryplaysabasicrole,seeSects.8.9and12.4. 10Inparticular,thismeansthatwedonotgointoadvancedtopicsrelatedtosymplectictopology. However,atsomepointswetouchonit.Forathoroughpresentationofsymplectictopologywe refertothetextbooksofHoferandZehnder[139]andofMcDuffandSalamon[206]. Acknowledgements It is a pleasure to thank Szymon Charzyn˙ski, Bernd Crell, Jochen Dittmann, Elis- abeth Fischer, Christian Fleischhack, Johannes Huebschmann, Peter Jarvis, Jerzy Kijowski, Rainer Matthes, Olaf Richter†, Matthias Schwarz, Torsten Tok, Igor P. VolobuevandRaimarWulkenhaarforfruitfuldiscussions.Weareespeciallygrate- ful to Christian Fleischhack, Peter Jarvis and Rainer Matthes for reading parts of the manuscript. We also thank our students Michael Kath and Sandro Wenzel for theirsupportinwritingthelecturenotesfromwhichthisvolumeevolved.Overthe years,wereceivednumerousvaluableremarksonthesenotesfromstudents,notably from Jörn Boehnke,AlexanderHertsch, André Jäschke, Adam Reichold and Axel Schüler. ix Contents 1 DifferentiableManifolds . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 BasicNotionsandExamples . . . . . . . . . . . . . . . . . . . . 1 1.2 LevelSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 DifferentiableMappings . . . . . . . . . . . . . . . . . . . . . . . 17 1.4 TangentSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5 TangentMapping . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.6 Submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.7 SubsetsAdmittingaSubmanifoldStructure . . . . . . . . . . . . . 42 1.8 Transversality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2 VectorBundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.1 TheTangentBundle . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.2 VectorBundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.3 SectionsandFrames . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.4 VectorBundleOperations . . . . . . . . . . . . . . . . . . . . . . 71 2.5 TensorBundlesandTensorFields . . . . . . . . . . . . . . . . . . 78 2.6 InducedBundles . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.7 SubbundlesandQuotientBundles . . . . . . . . . . . . . . . . . . 84 3 VectorFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.1 VectorFieldsasDerivations . . . . . . . . . . . . . . . . . . . . . 94 3.2 IntegralCurvesandFlows . . . . . . . . . . . . . . . . . . . . . . 97 3.3 TheLieDerivative . . . . . . . . . . . . . . . . . . . . . . . . . . 109 3.4 Time-DependentVectorFields . . . . . . . . . . . . . . . . . . . 111 3.5 DistributionsandFoliations . . . . . . . . . . . . . . . . . . . . . 115 3.6 CriticalIntegralCurves . . . . . . . . . . . . . . . . . . . . . . . 126 3.7 ThePoincaréMapping . . . . . . . . . . . . . . . . . . . . . . . . 137 3.8 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 3.9 InvariantManifolds . . . . . . . . . . . . . . . . . . . . . . . . . 154 4 DifferentialForms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 4.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.