ebook img

Differential Geometry and its Applications (Classroom Resource Materials) (Mathematical Association of America Textbooks) PDF

496 Pages·2007·57.99 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Differential Geometry and its Applications (Classroom Resource Materials) (Mathematical Association of America Textbooks)

This book was previously published by Pearson Education, Inc. © 2007 by The Mathematical Association ofA merica (Icorporated) Library of Congress Catalog Card Number 2007924394 ISBN 978-0-88385-748-9 Printed in the United States ofA merica Current Printing (last digit): 10 9 8 7 6 5 4 3 2 1 Differential Geometry and its Applications Second Edition John Oprea Cleveland State University The Mathematical Association of America Council on Publications James Daniel, Chair Classroom Resource Materials Editorial Board Zaven A. Karian, Editor Gerald M. Bryce Douglas B. Meade Wayne Roberts Kay B. Somers Stanley E. Seltzer Susan G. Staples George Exner William C. Bauldry Charles R. Hadlock Shahriar Shahriari Holly S. Zullo CLASSROOM RESOURCE MATERIALS Classroom Resource Materials is intended to provide supplementary classroom material for students-laboratory exercises, projects, historical information, textbooks with unusual ap proaches for presenting mathematical ideas, career information, etc. 101 Careers in Mathematics, 2nd edition edited by Andrew Sterrett Archimedes: What Did He Do Besides Cry Eureka?, Sherman Stein Calculus Mysteries and Thrillers, R. Grant Woods Combinatorics: A Problem Oriented Approach, Daniel A. Marcus Conjecture and Proof, Miklos Laczkovich A Course in Mathematical Modeling, Douglas Mooney and Randall Swift Cryptological Mathematics, Robert Edward Lewand Differential Geometry and Its Applications, John Oprea Elementary Mathematical Models, Dan Kalman Environmental Mathematics in the Classroom, edited by B. A. Fusaro and P. C. Kenschaft Essentials ofM athematics, Margie Hale Exploratory Examplesfor Real Analysis, Joanne E. Snow and Kirk E. Weller Fourier Series, Rajendra Bhatia Geometry From Africa: Mathematical and Educational Explorations, Paulus Gerdes Historical Modules for the Teaching and Learning of Mathematics (CD), edited by Victor Katz and Karen Dee Michalowicz Identification Numbers and Check Digit Schemes, Joseph Kirtland Interdisciplinary Lively Application Projects, edited by Chris Arney Inverse Problems: Activitiesfor Undergraduates, Charles W. Groetsch Laboratory Experiences in Group Theory, Ellen Maycock Parker Learn from the Masters, Frank Swetz, John Fauvel, Otto Bekken, Bengt Johansson, and Victor Katz Mathematical Connections: A Companionfor Teachers and Others, Al Cuoco Mathematical Evolutions, edited by Abe Shenitzer and John Stillwell Mathematical Modeling in the Environment, Charles Hadlock Mathematics for Business Decisions Part 1: Probability and Simulation (electronic textbook), Richard B. Thompson and Christopher G. Lamoureux Mathematics for Business Decisions Part 2: Calculus and Optimization (electronic textbook), Richard B. Thompson and Christopher G. Lamoureux Math Made Visual: Creating Images for Understanding Mathematics, Claudi Alsina and Roger B. Nelsen Ordinary Differential Equations: A BriefE clectic Tour, David A. Sanchez Oval Track and Other Permutation Puzzles, John O. Kiltinen A Primer ofA bstract Mathematics, Robert B. Ash Proofs Without Words, Roger B. Nelsen Proofs Without Words II, Roger B. Nelsen A Radical Approach to Real Analysis, 2nd edition, David M. Bressoud Real Infinite Series, Daniel D. Bonar and Michael Khoury, Jr. She Does Math!, edited by Marla Parker Solve This: Math Activities for Students and Clubs, James S. Tanton Student Manual for Mathematics for Business Decisions Part J: Probability and Simulation, David Williamson, Marilou Mendel, Julie Tarr, and Deborah Yoklic Student Manual for Mathematics for Business Decisions Part 2: Calculus and Optimization, David Williamson, Marilou Mendel, Julie Tarr, and Deborah Yoklic Teaching Statistics Using Baseball, Jim Albert Topology Now!, Robert Messer and Philip Straffin Understanding our Quantitative World, Janet Andersen and Todd Swanson Writing Projects for Mathematics Courses: Crushed Clowns, Cars, and Coffee to Go, Annalisa Crannell, Gavin LaRose, Thomas Ratliff, Elyn Rykken MAA Service Center P.O. Box 91112 Washington, DC 20090-1112 1-800-331-1MAA FAX: 1-301-206-9789 To my mother and father, Jeanne and John Oprea. Contents Preface xiii Note to Students xix 1 The Geometry of Curves 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Arclength Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 Frenet Formulas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Non-Unit Speed Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 27 1.5 Some Implications of Curvature and Torsion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34 1.6 Green's Theorem and the Isoperimetric Inequality. . . . . . . . . . . . . . . . . . . . . . . . . .. 38 1.7 The Geometry of Curves and Maple ........................................ 42 2 Surfaces 67 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 67 2.2 The Geometry of Surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 2.3 The Linear Algebra of Surfaces ........................................... , 86 2.4 Normal Curvature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 91 2.5 Surfaces and Maple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3 Curvatures 107 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 107 3.2 Calculating Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. III 3.3 Surfaces of Revolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 119 3.4 A Formula for Gauss Curvature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 123 3.5 Some Effects of Curvature( s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 127 3.6 Surfaces of Delaunay ..................................................... 133 3.7 Elliptic Functions, Maple and Geometry .................................... 137 3.8 Calculating Curvature with Maple ......................................... 149 4 Constant Mean Curvature Surfaces 161 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 161 4.2 First Notions in Minimal Surfaces ......................................... 164 ix 4.3 Area Minimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 170 4.4 Constant Mean Curvature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 173 4.5 Harmonic Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 179 4.6 Complex Variables ....................................................... 182 4.7 Isothermal Coordinates ................................................... 184 4.8 The Weierstrass-Enneper Representations .................................. 187 4.9 Maple and Minimal Surfaces .............................................. 197 5 Geodesics, Metrics and Isometries 209 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 209 5.2 The Geodesic Equations and the Clairaut Relation ........................... 215 5.3 A Brief Digression on Completeness ....................................... 225 5.4 Surfaces not in]R3 ........................................................ 226 5.5 Isometries and Conformal Maps ........................................... 235 5.6 Geodesics and Maple ..................................................... 241 5.7 An Industrial Application ................................................. 262 6 Holonomy and the Gauss-Bonnet Theorem 275 6.1 Introduction ............................................................. 275 6.2 The Covariant Derivative Revisited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 277 6.3 Parallel Vector Fields and Holonomy ...................................... 280 6.4 Foucault's Pendulum ..................................................... 284 6.5 The Angle Excess Theorem ............................................... 286 6.6 The Gauss-Bonnet Theorem ............................................... 289 6.7 Applications of Gauss-Bonnet ............................................. 292 6.8 Geodesic Polar Coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 297 6.9 Maple and Holonomy ..................................................... 305 7 The Calculus of Variations and Geometry 311 7.1 The Euler-Lagrange Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 311 7.2 Transversality and Natural Boundary Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . .. 318 7.3 The Basic Examples ...................................................... 322 7.4 Higher-Order Problems ................................................... 327 7.5 The Weierstrass E-Function ............................................... 334 7.6 Problems with Constraints ................................................ 346 7.7 Further Applications to Geometry and Mechanics ........................... 356 7.8 The Pontryagin Maximum Principle ........................................ 366 7.9 An Application to the Shape ofa Balloon ................................... 371 7.10 The Calculus of Variations and Maple ...................................... 380 8 A Glimpse at Higher Dimensions 397 8.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 397 8.2 Manifolds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 397 8.3 The Covariant Derivative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 40 I 8.4 Christoffel Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 409 8.5 Curvatures .............................................................. 416 8.6 The Charming Doubleness ................................................ 430

Description:
Differential geometry has a long, wonderful history. It has found relevance in areas ranging from machinery design to the classification of four-manifolds to the creation of theories of nature's fundamental forces to the study of DNA. This book studies the differential geometry of surfaces with the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.