ebook img

Differential Equations: Theory and Applications PDF

425 Pages·2018·2.347 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Differential Equations: Theory and Applications

DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS Maria Catherine Borres ARCLER P r e ss www.arclerpress.com Differential Equations: Theory and Applications Maria Catherine Borres Arcler Press 2010 Winston Park Drive, 2nd Floor Oakville, ON L6H 5R7 Canada www.arclerpress.com Tel: 001-289-291-7705 001-905-616-2116 Fax: 001-289-291-7601 Email: [email protected] e-book Edition 2019 ISBN: 978-1-77361-596-7 (e-book) This book contains information obtained from highly regarded resources. Reprinted material sources are indicated and copyright remains with the original owners. Copyright for images and other graphics remains with the original owners as indicated. A Wide variety of references are listed. Reasonable efforts have been made to publish reliable data. Authors or Editors or Publish- ers are not responsible for the accuracy of the information in the published chapters or conse- quences of their use. The publisher assumes no responsibility for any damage or grievance to the persons or property arising out of the use of any materials, instructions, methods or thoughts in the book. The authors or editors and the publisher have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission has not been obtained. If any copyright holder has not been acknowledged, please write to us so we may rectify. Notice: Registered trademark of products or corporate names are used only for explanation and identification without intent of infringement. © 2019 Arcler Press ISBN: 978-1-77361-403-8 (Hardcover) Arcler Press publishes wide variety of books and eBooks. For more information about Arcler Press and its products, visit our website at www.arclerpress.com ABOUT THE AUTHOR Catherine is currently taking up Master of Arts in Education Major in Mathematics in Philippine Normal University – Manila. She is currently working as a Content Developer for Mathematics at the Affordable Private Education Center (APEC Schools). TABLE OF CONTENTS Preface........................................................................ ..................................xi Chapter 1 Basic Concepts of Differential Equations ...................................................1 1.1. Introduction ........................................................................................2 1.2. The Bernoulli Equation ......................................................................31 1.3. Differential Equations of Higher Order ..............................................50 1.4. The Wronskian ..................................................................................85 Chapter 2 Fundamental Concepts of Partial Differential Equations .......................111 2.1. Introduction ....................................................................................112 2.2. Classification of Second Order PDE ...............................................112 2.3. Summary and Discussion ................................................................141 2.4. Classification of Second Order PDE ...............................................141 Chapter 3 Application of Differential Equations In Mechanics ..............................143 3.1. Introduction ....................................................................................144 3.2. Projectile Motion ...........................................................................161 3.3. Summary and Discussion ................................................................186 Chapter 4 Elliptic Differential Equation .................................................................191 4.1. Introduction ....................................................................................192 4.2. Boundary Value Problem (BVPs) .....................................................195 4.3. Some Important Mathematical Tools ...............................................197 4.4. Properties Of Harmonic Functions ..................................................199 4.5. Separation Of Variables ..................................................................210 4.6. Dirichlet Problem For A Rectangle ..................................................212 4.7. The Neumann Problem For A Rectangle .........................................215 4.8. Interior Dirichlet Problem For A Circle ...........................................217 4.9. Exterior Dirichlet Problem For A Circle ..........................................222 4.10. Interior Neumann Problem For A Circle ........................................227 4.11. Solution Of Laplace Equation In Cylindrical Coordinates .............229 4.12. Solution Of Laplace Equation In Spherical Coordinates ................238 4.13. Miscellaneous Example ................................................................247 4.14. Summary And Discussions ............................................................276 Chapter 5 Hyperbolic Differential Equation ..........................................................279 5.1 Introduction .....................................................................................280 5.2. Solution Of One-Dimensional Wave Equation by Canonical Reduction ...................................................................284 5.3. The Initial Value Problem; D’alembert’s Solution .............................288 5.4. Summary And Discussion ...............................................................297 Chapter 6 Parabolic Differential Equations ............................................................301 6.1. Introduction ....................................................................................302 6.2. Boundary Conditions ......................................................................304 6.3. Elementary Solutions Of The Diffusion Equation ............................305 6.4. Dirac Delta Function ......................................................................310 6.5. Separation Of Variables Method ......................................................316 6.6. Maximum-Minimum Principle and Consequences ..........................340 6.7. Miscellaneous Example. ................................................................343 6.8. Boundary Conditions ......................................................................352 Chapter 7 Laplace Transform Methods ..................................................................357 7.1. Introduction ....................................................................................358 7.2. Transform Of Some Elementary Functions .......................................362 7.3. Properties Of Laplace Transform .....................................................364 7.4. Transform Of A Periodic Function ...................................................370 7.5. Transform Of Error Function ............................................................372 7.6. Transform Of Bessel’s Function .......................................................374 7.7. Transform Of Dirac Delta Function .................................................376 7.8. Convolution Theorem (Faltung Theorem) .........................................382 Chapter 8 Green’s Function ...................................................................................389 8.1. Introduction ....................................................................................390 8.2. The Eigenfunction Method ..............................................................403 viii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.